Feedback EDF Scheduling Exploiting Dynamic Voltage Scaling
Yifan Zhu and Frank Mueller *
Department of Computer Science/Center for Embedded Systems Research
North Carolina State University,Raleigh, NC 27695-7534
mueller@cs.ncsu.edu, phone: +1.919.515.7889, fax: +1.919.515.7925

Abstract

Dynamic voltage scaling (DVS) is a promising method
for embedded systems to exploit multiple voltage and fre-
quency levels and to prolong battery life. However, pure
DVS techniques do not perform well for systems with dy-
namic workloads where the job execution times vary signif-
icantly. In this paper, we present a novel approach com-
bining feedback control with DVS schemes targeting hard
real-time systems with dynamic workloads. Our method re-
lies strictly on operating system support by integrating a
DVS scheduler and a feedback controller within the EDF
scheduling algorithm. Each task is divided into two por-
tions. Within the first portion, the objective is to exploit
frequency scaling for the average execution time. We re-
serve enough time for the second portion to meet the dead-
line requirements up to the worst-case execution time fol-
lowing a last-chance approach. Feedback techniques make
the system capable to select the right frequency and voltage
settings for the first potion, as well as guaranteeing hard
real-time requirements for the overall task. Simulation ex-
periments demonstrate the ability of our algorithm to save
up to 29% more energy than previous work for task sets with
different dynamic workload characteristics.

1. Introduction

Energy consumption is a major concern for real-time
embedded systems due to their limited battery capacity.
Contemporary embedded processors support multiple volt-
age and clock frequency settings. The energy consumption
of a processor can be reduced by modulating voltage and
frequency dynamically because the power dissipation of a
CMOS circuit is proportional to its clock frequency and
its voltage square[2]. We refer to dynamic voltage scaling
(DVS) in the following whenever frequency or voltage are
changed during execution.

In hard real-time systems, DVS techniques need to main-
tain the system timing requirements. Subsequently, min-
imizing energy consumption under DVS becomes a hard
problem. Prior DVS techniques have been demonstrated to
obtain significant energy savings for time-constrained em-
bedded systems [21, 17, 1, 20, 1, 8]. However, pure DVS
techniques do not perform well for dynamic systems where
the system workloads vary significantly. Traditionally, hard

*This work was supported in part by NSF grants CCR-0208581, CCR-
0310860 and CCR-0312695.

real-time scheduling relies on a priori knowledge of the
worst-case execution time (WCET) of a task to guarantee
the schedulability of the system. However, experiments
have shown a wide variation between longest and shortest
execution times for many actual applications. In [22], ac-
tual execution times of real-world embedded tasks are ob-
served to vary by as much as 87% relative to their measured
WCET. Budgeting for the WCET may result in excessive
energy consumption even though actual utilizations are low
compared to the worst case. Many of the existing hard real-
time DVS schemes are not able to adapt well to dynami-
cally changing workloads. For example, we compared the
energy consumption of Look-ahead RT-DVS [17] between
constant workloads and fluctuating workloads, as depicted
in Figure 1. The constant workloads consist of tasks whose
actual execution times always equal to 50% of their WCET.
The fluctuating workloads consist of tasks with an average
execution time of 50% WCET. Their actual execution times
fluctuate between 20% and 80% of their WCET (following
variation patterns discussed later, similar to Figure 8). Fig-
ure 1 shows that, in the worst case, Look-ahead RT-DVS
degrades up to 61% for fluctuating workloads.

The objective of our work is to develop a novel DVS
technique targeting such dynamic changing workloads. We
combine feedback control theory with DVS for hard real-
time systems. Feedback control techniques have been
shown to be a promising approach for real-time scheduling
in prior work [12, 14, 16]. But all of them are for soft real-
time systems, where occasional deadline misses are accept-
able. Our work extends beyond previous work and is, to the
best of our knowledge, the first study of using feedback con-
trol techniques on DVS for hard real-time systems. On one
hand, feedback techniques enable the system to select the
right frequency/voltage settings so that energy consumption
is significantly reduced. On the other hand, feedback con-
trol helps to guarantee the timing constraints of hard real-
time tasks so that no tasks ever miss their deadlines.

This paper is structured as follows. In Section 2, we give
an framework overview of the feedback-DVS scheme. We
then describe the different elements of our feedback-DVS
framework in detail, i.e., the voltage-frequency selector in
Section 3, and the feedback controller in Section 4. Section
5 is an example showing how our scheme works on practi-
cal task sets. Section 6 presents the experimental results to



1.2

B cc==50%WCET

Wccin [20%WCET, 80%WCET]

Energy (normalized)

0.1 02 03 04 05 06 07 08 09 1
WCET Utilization

Fig. 1. Look-ahead RT-DVS Energy for Con-

stant/Fluctuating Workload
demonstrate the performance of our feedback-DVS scheme

under different workload conditions. Section 7 discusses
related work, and Section 8 summarizes our efforts.

2. Feedback-DVS Framework Overview

Prior research on DVS for hard real-time system was pri-
marily concerned with guaranteeing the schedulability of
the task sets while energy consumption is minimized. But in
a dynamic real-time environment where the workloads vary
significantly from time to time, the DVS scheduler should
not only produce a valid processor speed for each schedul-
ing unit, it should also be able to adapt to the ever-changing
workloads as fast as possible. One important performance
metric of such a system is how fast the DVS scheme can
adjust the processor according to different workloads so
that energy consumption is significantly reduced. To ad-
dress this issue, we propose a framework called feedback
dynamic voltage scaling (feedback-DVS). In this frame-
work, we consider the scheduling problem in hard real-
time systems with the earliest deadline first (EDF) policy.
The framework is based on feedback control that incremen-
tally corrects system behavior to achieve its targets, while
the hard real-time timing requirements are still preserved.
We assume that the processor can operate at several dis-
crete voltage/frequency levels, which represents contempo-
rary processor technology on support of DVS. When there
is no task running on the processor, the processor enters an
idle state at a particular voltage/frequency level, usually the
lowest voltage/frequency level on that processor.

We use a periodic, fully preemptive and independent task
model in our feedback DVS framework. We assume there
are n tasks in total, 7Y, 7Ts, ..., and T,,. Each task Tj is
defined by a tuple (P;, C;), where P; is the period of T;, and
C; is the measured worst-case execution time of T;. Each
task’s relative deadline d; is equal to its period, and all tasks
start at time 0. The periodically released instances of a task
are called jobs. Tj; is used to denote the ;%" job of task 7;.

Actual Execution Time

Poo i

: . - Voltage/Frequency = EDF Scheduler

| CA Selector
2 L
3 z
= =]
3 g &
=5 %
B :
x
©
=

Fig. 2. Feedback-DVS Framework
Its release time is P; x (j — 1) and its deadline is P; x j. The
hyperperiod H of the task set is defined as the least common
multiplier (LCM) of the tasks’ periods. At the end of each
hyperperiod, the schedule repeats.

Figure 2 depicts the framework of our feedback-DVS
scheme. It consists of a voltage-frequency selector, a max-
imal schedule profile and an EDF scheduler. The voltage-
frequency selector calculates the error from the difference
between the actual execution time of a task and C 4, the
execution time of the first portion of a tasks (detailed in
the task-splitting scheme in the next section). It then se-
lects a voltage/frequency level according to the error and
the maximal schedule profile. The error is used by a PID
feedback controller to adjust the estimation of the execu-
tion time for the next job. The maximal schedule profile in-
cludes a running scenario of the task set from the start time 0
to the end of a hyperperiod. It is generated offline assuming
each task’s actual execution time always equals its worst-
case execution time. The voltage-frequency selector uses
the information in the maximal schedule profile to choose
the right voltage-frequency level while guaranteeing that no
tasks miss their deadlines. After the voltage/frequency level
is determined, the EDF scheduler schedules the next ready
task at the specific processor speed. Tasks are scheduled ac-
cording to EDF policy, i.e., the task with the earliest dead-
line is given the highest priority. The actual execution time
of each task is further fed back to the voltage-frequency se-
lector for later decision making. The next two sections de-
tail the mechanism of the voltage-frequency selector and the
feedback controller in our feedback-DVS frame.

3. Voltage-Frequency Selector

The voltage-frequency selector is responsible for select-
ing a voltage-frequency pair each time a task is scheduled.
Since power consumption increases proportional to the pro-
cessor frequency and to the square of the voltage in CMOS
circuits [7], the minimal energy consumption is obtained by
running every tasks at a uniform processor speed. But this
is only a static optimal solution. In a dynamic environment
where a task’s actual execution time is unknown until the
task completes, it is not possible to derive the optimal uni-



form speed in advance. Our objective is to approximate a
close-to-optimal solution by monitoring the actual execu-
tion time of each task. The start point of our scheme is the
following inequation, which is a modification of the stan-
dard EDF [10] schgdulability test: c
(3
I + Z P <1 1)
ie{l,...,n\{k}

where « is a scaling factor defined as the ratio of the
current processor frequency to the maximal available fre-
quency, i.e., & = fi/fm. Instead of scaling at a single speed
for all tasks, only the highest priority task (the task with the
earliest deadline under EDF) is scaled. All remaining tasks
still execute at the maximum frequency f,, with a scaling
factor of 1. The motivation of scaling only the current task
is that a greedy scheme usually gives a near-optimal result
when optimal solutions are unavailable.

For each task, its « value depends on the total available
slack when the task is scheduled. For example, at time 0,
the available slack for the first task T4 is derived from In-
equation 1 as P1(1 Y, %), Its a value is calculated
as: a = 7n In order to obtain an even lower

T oP(- z
speed for each task Tk and to make feedback control avail-
able for hard real-time systems, our scheme goes beyond
that by splitting each task into two subtasks T4 and T's.
These two subtasks are allowed to execute at different fre-
guency and voltage levels. As shown in Figure 3, T'g always

tm

TA B

[—— CAla—=1 CB —
Fig. 3. Task Splitting

executes at the maximum frequency level f,,, while T4 is
able to execute at a lower frequency level than it could with-
out task splitting. We expect that a task can finish its actual
execution within T4 while reserving enough time in T's to
meet the deadline if its WCET is exhibited in full. With
this scheme, we can safely scale the frequency within T4
using available slack while Ts executes at maximum fre-
quency following a last-chance approach [3]. In the next
section, we can also see that such a task splitting scheme is
necessary for applying feedback control on hard real-time
systems. Let C'4 and Cp be the worst-case execution cy-
cles of subtask T4 and T'g, and s;, be the slack available to
Ty, when Ty}, is scheduled, from:

c
Ck:cA+CB,FA+CB:Ck+sk )

we get: == Ca 3)
A+ Sk
Equation 3 shows that when task splitting is used, the
scaling factor « depends not only on the amount of available
slack, but also on the number of execution cycles of T'4.

Other methods, such as idle time utilization and slack
passing, are also used in our scheme to achieve a low en-
ergy consumption as detailed in [4]. Both schemes, only
briefly outlined here, are based on a comparison between
the actual schedule and the worst-case or maximal sched-
ule,i.e., the schedule produced by EDF when the execution
time of every task’s job has its maximum value given by the
WCET. We call the schedule produced by our DVS-EDF
algorithm the actual schedule, where the execution time of
every task’s jobs may be scaled. The maximal schedule is
constructed offline in O(N) complexity, where N is the total
number of jobs executed in a hyperperiod H. The key to idle
utilization is to add an idle task into the original task set.

The actual execution time of the idle task is always zero,
so that the actual system execution is not affected by the
behavior of the idle task, i.e., the idle task only exists in
the maximal schedule. The WCET and the period of the
idle task are chosen in such a way that the total utiliza-
tion of the new task set becomes 100%. Specifically, we
let P;gje = Ppin- By choosing the minimum period among
all tasks for the idle task, slack in the maximal schedule
becomes available as early as possible for scaling other
tasks. Slack passing is a technique to decrease the com-
plexity of calculating the amount of slack in the system. In-
stead of computing the available slack from the scratch for
each newly released job, the previous job passes its unused
amount of slack (s,,) to the next job. The unused slack is
further augmented by any idle slots between the deadline of
the previous job and the next job, as follows:

Sk+1 = Sk,r +Zdl€(dk dpy ) (@)
where zdle(dk dir1) is the sum of WCETs of all idle
tasks in [dg...dr+1]. Next, we demonstrate that task pre-
emption requires special handling and derive formulas to
compute s, .
3.1. Preemption Handling

When preemption occurs, the preempted task will relin-
quish its remaining slack and pass it on to the next task, just
as it does when a task completes. This follows a greedy
scheme in that we try to pass as much slack as possible to
scale the running task and to speculate on its early com-
pletion to aggregate more slack for following tasks. There
are also two differences here. First, the preempted task it-
self cannot generate any slack based on its own execution
at the preemption point since the task’s completion time is
unknown. Hence, no additional slack is added to its inher-
ited total slack. Second, the preempted task still needs some
time to complete its execution in the future. The remaining
execution time must be reserved in advance to avoid future
deadline misses caused by over-exploiting slack from other
tasks. At the preemption point, the expected remaining ex-

ecution time left;; of the preempted task is:

=C;—ciyy xat (5)
where ¢;; is the actuaI] execution time up to the preemp-
tion point. Our slack passing scheme promises that the pre-



empted task will not miss its deadline by reserving corre-
sponding slack:
Sk = Sk — lefts; (future slots) (6)

The old slack is derived from Equation 4 and the result-
ing slack sy, can be passed to the next task.

Future slot allocation in this manner is essential to en-
sure the feasibility of the schedule under DVS. Future slots
will be allocated only if the maximal schedule does not in-
clude sufficient slots for the preempted task’s job between
the preemption point and its deadline. We devised multiple
schemes for reserving these slots.

e Forward sweep: When a task T'1 is preempted and
requires le ft1; future slots, the preempting task 72
deducts this amount from its available slack s. |If
lefti; > s, then T'2 remains without slack. If another
task T°3 is initiated, the calculation repeats itself.

e Backward sweep: Future slots of T'1 are allocated in
idle slots within the maximal schedule from its dead-
line d1 backwards. Any of these idle slots become un-
available for slack generation, i.e., these slots are ex-
cluded in Equation 4.

An example is depicted in Figure 4. The upper time
line of idle slots presents a excerpt of the maximal sched-
ule that depicts idle task allocations, only. The lower time
line shows the dynamic schedule of tasks. Upon release of
T2 att2, T'1 is preempted. Let us assume that 7'1 does not
have sufficient static slots (three slots) beyond t2 to finish
its execution. Hence, it has to rely on future idle slots. Dur-
ing T'2’s execution, 7'3 is released. Both T2 and T'3 have
smaller deadlines than T'1 (d2 < d3 < d1). Subsequently,
T'1 only resumes some time after T3 completes.

t1l t2 d2 d3 di
Fig. 4. Future Slot Reservation

Future slot allocation of T'1 then depends on the cho-
sen scheme. The forward sweep results in zero idle slack
for T2 and T'3 since idle slots during the tasks’ periods are
not sufficient to cover T'1’s future needs of three slots at
the respective invocation times. The backward sweep, on
the other hand, reserves the last 3 idle slots (from d1 back-
wards), such that 72 and T'3 may consume at least two and
one idle slots for scaling, respectively, even if they use up
their time quantum in full.

Overall, the forward sweep is not as greedy as the back-
ward sweep in the sense that earlier tasks may not be scaled
due to T'1’s future slots. A forward sweep is likely to result
in zero slack for the preempting task 72 if P2 << P1, i.e.,
if its period is much shorter. There are simply fewer idle

slots available, which may not suffice to cover T'1’s future
requirements. More idle slots past d2 will be required in
this case. The backward sweep always results in the most
greedy approach in delaying the needs of 71 as long as pos-
sible. This is consistent with the observation that early com-
pletion is likely to generate slack for each task, a property
inherent to our algorithm.

4. PID Feedback Controller

Equation 3 shows that the scaling factor « depends not
only on the amount of available slack but also on C4, the
number of execution cycles assigned to T'4. The slack pass-
ing and forward/backward sweep schemes, as described in
the previous section, help us to determine the amount of
slack available for each task. In this section, we focus on
another key issue, i.e., how to determine the value of Cy4.
Since Cy4 is based on the estimated worst-case execution
time of the first subtask T4, our objective is to let C4 ap-
proximate T5;’s actual execution time ¢;; so that T;;’s actual
execution can be completed at the low frequency level cor-
responding to a. If C'4 were not exceeded by the actual ex-
ecution time ¢;;, there would be no need for the task to enter
the second subtask portion T'g and switch to the maximum
processor frequency. Hence, the entire task could execute
at a low frequency, and a near-optimal energy consumption
would be obtained.

In real-time applications, the actual execution time ¢;; of
tasks T; often experiences fluctuations over different inter-
vals. The fluctuations may result in tendencies leading to
higher processing demands up to some point and receding
demands after that peak point. Past work in dynamic real-
time scheduling has demonstrated that adaptive techniques
derived from control theory can enhance a schedule by re-
acting to tendencies in execution time fluctuations [12]. In
order to devise a DVS-EDF algorithm adaptive to such a
dynamic environment, we integrated a PID-feedback con-
troller into our DVS systems.

Feedback control is one of the fundamental mechanism
for dynamic systems to achieve equilibrium. In a feedback
system, some variables, i.e., controlled variables, are mon-
itored and measured by the feedback controller and com-
pared to their desired values, so-called set points. The dif-
ferences (errors) between the controlled variables and the
set points are fed back to the controller for further actions.
Corresponding system states are usually adjusted according
to the differences to let the system variables approximate
the set points as closely as possible.

PID-feedback control is a continuous feedback con-
troller. A PID controller consists of three different elements,
namely, proportional control, integral control, and deriva-
tive control. Proportional control influences the speed of
the system adapting to errors, which is defined as the dif-
ference between the controlled variable and the set point,
by a pure proportional gain item. Integral control is used to



adjust the accuracy of the system through the introduction
of an integrator on past error histories. Derivative control
usually increases the stability of the system through the in-
troduction of a derivative of the errors. The PID feedback
controller can be described in three major forms: the ideal
form, the discrete form and the parallel form. Although the
discrete form is often used in digital algorithms to keep tun-
ing similar to electronic controllers, the parallel form is the
simplest one. The integral and derivative actions are also in-
dependent of the proportional gain in the parallel form. We
choose the following parallel form as the base of our PID
feedback implementation:

output = K, * e(t) + 1 [e(t)dt + DB (7)
where K, I and D are the proportional, integral and deriva-
tive coefficients, respectively, and (t) is the system error.

We integrated the above PID controller into our DVS
scheme to control the number of execution cycles assigned
to C4. According to the objective described above, we
choose the value of C4 as the controlled variable while c;;
is chosen as the set point. The system error is defined as the
difference between the controlled variable and the set point,
i.e., — i —

The error is measuer(eg per?é’dicaﬁ? by the PID controll(gr).
Its output is fed back to the DVS-EDF scheduler to adjust
the value for C'4. Let C4;; be the estimated C4 value for
the 5t job of a task T;. The following discrete PID control
formula is used in our DVS-EDF scheduler:

ACaij = Kpxe(t) + 23 elt) + DW

Caij+1) = Caij + ACa4;
where K, | and D are proportional, integral, and deri(®
tive coefficients, respectively. ¢(¢) is the monitored error.
The output AC 4, is fed back to the system and is used to
regulate the next anticipated value for C4. IW and DW
are tunable window sizes such that only the errors from the
last IW (DW) task jobs will be considered in the integral
(derivative) term. We use DW = 1 to limit the history,
which ensures that multiple feedback corrections do not af-
fect one another.

Due to the task slitting scheme, all tasks can still meet
their deadline, even if the PID feedback controller does not
adjust the C'4;; value close enough to ¢;;. For example, if
Cai; < cjj, the task will enter its second portion and run
T'p at the maximal frequency level. The feedback scheme,
together with the task splitting scheme, guarantees the dead-
line requirements of real-time tasks.

5. Example

Combining all the techniques illustrated above, we now
turn to a description of the entire algorithm. Our algorithm
starts with an offline construction of the static maximal EDF
schedule within the interval of the hyper-period. Figure
5(i) shows an example of such a maximal EDF schedule.
The example includes a task set of three tasks T1={3,8},
T2={3,10} and T3={1,14}, where T; = {C;, P;} denotes

task T3;’s worst case execution time C; and its period P;.
An idle task 1={1,4} is also included in the maximal sched-
ule to fill underutilized processor time niches. Every task’s
actual execution time is 1 except the first job of T1, who
has an actual execution time of 2. All scheduling events
(task release, preemption, resumption, and completion) of
the maximal EDF schedule are stored in a look-up table to

reduce time complexity.
100% ‘I T1 1 T2 IT3 T1 | T2 | T1 1T3r21 172 T1
0

75%
50% —
25% —

. T l:.:+ t
0 5 10 20 25 30
2idigfo 1 lidligfor T2

(i) Static Worst-Case EDF Schedule with Idle Task |
q)Tl T2/2 T3 T1 T2 TLATLB T3 T2T1 T3

A
100% — 12
75%
50% —
25% —

0 5 10 15 20 25 30
(ii) Our Feedback DVS at Beginning of 1st Hyperperiod
Fig. 5. Discrete Scaling Levels for 3 Tasks

Next, the task set is scheduled according to our algorithm
(without the idle task). Additional operations to calculate
slack and to set the CPU frequency/voltage are inserted at
scheduling points. As shown in Figure 5(ii), when the first
task T (with the earliest deadline) is activated at time 0, its
initial slack is assigned according to Equation 4. The initial
s1,0 IS set to 0 since no previous task had been scheduled.
The value of idle(0..d; ) is obtained from the pre-calculated
maximal EDF schedule. Then, a frequency scaling factor
o is set according to Equation 3: a@ = C4/(Ca + si).
The CPU frequency is set to a * f,,,. When the first task
completes, unused slack is adjusted and passed on to the
next task according to Equations 5 and 6. The estimated
value of C, for the first task is updated according to our
feedback scheme. When the second task is scheduled, its
slack is again determined by Equation 4, this time with a
non-zero slack on the right-hand side of the equation (since
the first task passes no unused slack). The frequency level
is determined in a similar way as the first task. For later task
instances, the feedback scheme chooses C'4 to approximate
the task’s actual execution time. Hence, the entire task is
scaled at a low frequency level. Preemption handling, as
described in Section 3.1, is also applied but not shown here
to simplify the example.

An algorithmic description of our DVS-EDF scheme in-
tegrated with the PID feedback control is given in Figure 6.
This algorithm is a refinement of our previous work [4] and
integrates the PID feedback scheme and preemption han-
dling with future slot reservation. The online complexity
of our algorithm is O(n) for n tasks, because the length of
slots in the maximal schedule during the interval between
the release time and deadline of the current task have to be
updated when a task is released or completes. The number



Procedure Initialization

if leftpr > slots(Tpr, now..dpr) then
reservepy < leftpr—

for each T}, € {T1,T»,...,T,} do slots(Tpx, now..dpy)

Car + Cr/2 allocate reserve,y, in

'lfe]zik%(— Ck idle(now..dpy)

i completed(now..dpk
U« % + % +...+ 103—: slack <+ slack —( reservpe,,)k
Py P else (T, completed execution)
Crnt1 < PLx(1-0) if now > d,i, then
Cnt1 + 0} slack <+ slack — idle(dpk, now)
slack < 0

slack «+ slack + idle(dpy..dij)

Procedure TaskCompletion(T;;)
slack < slack — cij + C;
€4 Cij — CAij
ACuij + Kp *€(t) + + Do €ti)+
pEti)—clts —DW)
DW

Cai(j+1) = Caij + ACay;
ti—t;+1
leftir1y = C;
if reserve;; > 0 then

release idle(now..d;;)+

! in{4L ...
Procedure TaskA ctivation(T;;) o/ ¢ min{ fm?

if processor was idle for d then if (a/ = 1) then
slack < slack — d Ca0

if T, preempted/interrupted then else
leftpk = Cp — Cp X

slack + slack — idle(d;;..dpk)
SetFrequency(a/)

* fm

Ca + slack x at /(1 — aur)
Setinterrupt(Z;, Ca /a)

m | fi > _ Caij completed(now..d;;)
fm = Caij+tslack

up to |reserve;;|
Procedure SetInterrupt(T;;, Ca)
Set timer interrupt for T;;,
triggered C 4 time units later
Procedure SetFrequency(a/)

Fig. 6. Pseudocode of Feedback DVS Scheme

of slots in this interval is bounded by the number of tasks
since only a constant number of jobs for each task and a
constant number of preemptions may occur in this interval.
We use the following notation:
o T;;: the j-th job of task T
e ij, pk : indices for the current and previous tasks rela-
tive to Tij
now: the current time
r;;. the release time of Tj;
;. the deadline of T};
C;: the WCET of T; (without scaling)
ci;- the actual execution time of 73; up to now (with
scaling)
left;;: the remaining WCET of T;; (without scaling)
e slack: system current slack
e idle(t1..t2): the amount of idle slots between times
[t1,t2]
e completed(t1..t2): slots of already completed tasks
between times [t1,t2]
o slots(T;;,t1..t2): the amount of time slots reserved
for T;; in the worst case between times [t1,t2]

e o o o o
&
<

The effect of the PID feedback scheme is shown in
the following example. Consider a task set of three tasks
T1={12,32}, T2={12,40} and T3={4,65}. Let the actual
execution times of different jobs of a task fluctuate accord-
ing to the execution time pattern 1, as depicted in Figure
8. Figure 7(a) is a snapshot of the DVS-EDF schedule for
this task set without PID-feedback. Figure 7(b) depicts the
DVS-EDF schedule for the same task set using feedback
with PID parameters CP=0.9, CI=0.08 and CI=0.1.

We can see from the figures that the first job of 75 and
the second job of T, are scheduled to run at a much lower
frequency in the PID feedback schedule than the one with-
out PID-feedback. The first job of T3 with an actual execu-
tion time of 2.57 starts at time 524 in the schedule without

f—alx fn
100% T1 T2 T1 T3 T2
75%
50%
25%
t
480 500 520 540

(a) DVS—-EDF Schedule without PID—Feedback

100% Tl T2 T1 T3 T2
(v

75%
50%
25%

480 500 520 540
(b) DVS-EDF Schedule with PID Feedback
Fig. 7. Schedules: Simple and PID Feedback

PID-feedback, and starts at time 520 in the PID feedback
schedule. The PID feedback scheme gets an execution time
of 3.06 for its C'4 according to Equation 4. With the closer
approximation of c;;, the PID scheduler is able to scale the
task more aggressively than the one without PID-feedback.
Similarly, the non-feedback schedule only gets an average
execution time of 5.26 for the second job of 7%, which has
an actual execution time of 7.07. But the PID feedback
scheme obtains a C'4 = 6.76, which is again closer to T5’s
actual execution time. This demonstrates the superiority of
our feedback-DVS scheme in adapting to dynamic work-
loads resulting in additional energy savings.

6. Experiments

We evaluated the performance of our schemes in a simu-
lation environment which supports feedback-DVS schedul-
ing. In order to make a comparison with our algorithm, Pil-
lai and Shin’s [17] Look-ahead RT-DVS algorithm was also
implemented. We assume a processor model capable of op-
erating at four different voltage and frequency levels, as de-
picted in Table 1. Comparable frequency and voltage setting
were also used in the Look-ahead RT-DVS work [17] and
the experimental work with StrongARM processors [18].
When there are no ready tasks available for scheduling, the



processor enters an idle state and operates at the lowest fre-
guency and voltage level. We use a simplified energy model
in our experiment as £ = fV?2t. Energy values reported
in the following experiments were normalized for ease of
comparison.

frequency | voltage
25% 2V
50% 3V
75% 4V
100% 5V

Table 1. Processor Model for Scaling

Altogether 50 task sets were generated, each consisting
of 3 tasks. In our experiments, we first investigated the per-
formance of our scheme over fluctuating workload patterns.
The objective in studying different patterns is to assess the
sensitivity of feedback DVS to different types of fluctua-
tions, which have been observed in interrupt-driven sys-
tems [15]. As shown in Figure 8, we constructed three syn-
thesized execution time patterns to simulate realistic work-
loads. In the first pattern, the actual execution time of a

WCET

50%WCET

WCET

50%WCET

WCET T
50%WCET

10%WECET - === === === o= o mmmmmm oo
Pattern 3

Fig. 8. Task Actual Execution Time Pattern
job starts at 50% of the task’s WCET before spiking to a
peak value ¢, every 10th job. The peak value ¢, is ran-
domly generated for each spike from a uniform distribution
between 50% of WCET and 100% of WCET. After the peak
value is reached, the actual execution time of the follow-
ing jobs drop exponentially (modeled as ¢; = 1/2(t—¢m))
until it reaches 50% of WCET again. This pattern sim-
ulates event-triggered activities that result in sudden, yet
short-term computational demands due to complex inputs
often observed in interrupt-driven systems. In the second
execution time pattern, the peak execution time c,, still fol-
lows a random uniform distribution between 50% of WCET
and 100% of WCET. But the actual execution time of the
following jobs initially drops more gradually, modeled as
¢i = cmsin(t + 7/2). This pattern simulates events re-
sulting in computational demands in a phase of subsequent
complex inputs (with a decaying tendency). In the third
execution pattern, the actual execution time of the jobs al-

1.2

—8— Our Feedback-DVS

--©--Look-ahead RT-DVS

0.8

0.6

Energy (normalized)

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
WCET Utilization

Fig. 9. Execution Time Pattern 1
ternates between positive and negative peaks every 10 jobs.
Both the peak values in either direction are randomly gen-
erated from a uniform distribution between 50% of WCET
and 100% of WCET. The actual execution time of the jobs
following the peak value is modeled as ¢; = ¢, sin(t) and
c; = —cmsin(t). This pattern represents periodically fluc-
tuating activities with gradually increasing and decreasing
computational needs around peaks. For each execution time
pattern, the task sets” WCETSs were uniformly distributed in
the range [10,1000]. When tasks” WCETS were generated,
each task’s period was chosen so that the worst case uti-
lization of the task set (i.e., > W<ELi) varies from 0.1 to
1.0 in increments of 0.1. Different combinations of PID co-
efficients were investigated in our experiments. It was ob-
served that both increasing or decreasing the proportional
coefficient resulted in less accurate system estimations for
C'4. The derivative item is less significant compared to the
other two parameters. Increasing the integral window size
improves the energy saving effect in the very beginning, but
when ITW becomes larger than 10, no dramatic system per-
formance improvements were observed. We restrict our-
selves here to report results based on the PID coefficients of
K, =0.9,1=0.08, D = 0.1. The derivative and integral
window size were 1 and 10, respectively.

Figure 9 compares the energy consumption between
our feedback-DVS scheme and the Look-ahead RT-DVS
scheme under the execution time pattern 1. When the
task set utilization is less than 0.3, it is observed that both
schemes consume the same amount of energy. This is be-
cause task sets with low utilizations usually have enough
slack and idle slots, so that all jobs were able to be scaled
to the lowest speed level. In this case the processor al-
ways operates at the 25% frequency level and consumes
the same amount of energy for both schemes. With the
increase of the worst-case utilization, our feedback-DVS
scheme started saving more energy than Look-ahead RT-
DVS. Our scheme adapts to the changing workload better
than Look-ahead RT-DVS and costs 8% to 24% less energy



1.2

1 —— Our feedback-DVS
_ -0 Look-ahead RT-DVS o
3
§ os
©
€
S 06
go
>
o
2 04
w
0.2
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
01 02 03 04 05 06 07 08 09 1
WCET Utilization
Fig. 10. Execution Time Pattern 2
1.2
1 —&— Our Feedback-DVS
- o Look-ahead RT-DVS o
=) /.
£ os
2 ;
£
[*]
2 os
>
=
2 04
w
0.2
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
WCET Utilization
Fig. 11. Execution Time Pattern 3

than it. The maximal energy savings (24%) can be observed
at 80% utilization. Similar results can be observed for ex-
ecution time pattern 2 and 3, as depicted in Figures 10 and
11. The maximal energy savings, 22% and 16%, are ob-
served at 0.5 and 0.9 utilziations, respectively. The aver-
age energy saving over Look-ahead RT-DVS is around 15%.
These experiments show that our feedback-DV'S scheme is
not sensitive to different patterns of fluctuating workloads.

In order to further observe the scalability of our algo-
rithm, we generated three task sets following execution time
pattern 1, but with different baseline values. While the pat-
tern depicted in Figure 8 has a 50% WCET baseline, the
other two task sets have baselines of 75% and 25% WCET,
respectively. Shifting the baseline among different task sets
also results in a change of their actual utilizations. Figure 12
compares the energy consumption between feedback-DVS
and Look-ahead RT-DVS for these three task sets. The en-
ergy values are normalized to the maximal point of the 75%
WCET baseline task set. The result shows that our scheme
is able to scale to task sets with different baselines very well.
Feedback-DVS saved up to 20% more energys than Look-
ahead RT-DVS for a baseline of 75% WCET case. When

—&— Ours,baseline=75%WCET
|| —@— Ours, baseline=50%WCET
—&— Ours, baseline=25%WCET
----Look-ahead, baseline=75%WCET
--©--Look-ahead, baseline=50%WCET
---&---Look-ahead, baseline=25%WCET

0.8

Energy (normalized)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
WCET Utilization

Fig. 12. Varying Baseline under Pattern 1

1.2
—e— 10 tasks, ours
11— +-10 tasks, Look-ahead
- —&— 3 tasks, ours
T
Q 0.8 — --o-3tasks, Look-ahead
©
£
S 06
20
>
<]
@
2 04
w
0.2
0 T T T T T T T T T

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
WCET Utilization

Fig. 13. 10-tasks vs. 3-task under Pattern 1
the baseline is 25% of the WCET, up to 29% more energy
savings are observed. The maximal energy saving appears
in the task set with 25% WCET baseline since it provides
the largest range for execution time fluctuation.

Figure 13 illustrates the performance of the feedback-
DVS scheme by varying the number of tasks in the task
sets. We compared the energy consumption between our al-
gorithm and Look-ahead RT-DVS for task sets with 10 and
3 tasks. The energy values are normalized to the maximal
point in Look-ahead RT-DVS for the 10-task set. We notice
that there is little effect of varying the number of tasks on
our scheme. We are able to save almost the same percentage
of energy over Look-ahead RT-DVS between 10-task sets
and 3-task sets. However, a larger number of tasks tends to
result in lower overall energy consumption.

Besides the execution time patterns listed in Figure 8,
we also investigated the task sets with truly random char-
acteristics, i.e., tasks’ actual execution times do not follow
any pre-defined patterns and are generated completely from
a random uniform distribution. Experiments reveal that
our feedback-DVS scheme does not give additional bene-
fits over Look-ahead RT-DVSS for such cases , because truly



random execution times cannot provide any useful history
information to our feedback controller. This is the limita-
tion of our (or any other) feedback scheme.

Overall, our Feedback DVS-EDF algorithm is able to
exhibit considerable energy savings for different task sets.
Feedback control in conjunction with DVS scheduling
makes the system more adaptive to dynamically changing
workloads. Our scheme achieves lower energy consump-
tion levels than other less adaptive schemes.

7. Related Work

There have been a number of efforts of applying feed-
back techniques on general-purpose control systems. But
only recently did researchers begin to incorporate feed-
back control to real-time scheduler with timing constraints
[12, 13]. Lu at al. proposed a feedback control real-time
scheduling framework for unpredictable dynamic real-time
systems where task execution times diverge from their worst
case [13]. Real-time system performance specifications
are analyzed and satisfied systematically through a control
theory-based methodology. Dynamic models of real-time
systems are developed to identify different categories of
real-time applications with different feedback control algo-
rithms. While their feedback control framework is mainly
used to satisfy general purpose real-time system require-
ments, our scheme focuses on exploiting feedback control
schemes to reduce energy consumption.

Our work is more closely related to the ones in [14]
and [16]. Lu et al. describe a formal feedback con-
trol algorithm combined with dynamic voltage/frequency
scaling technologies for multimedia systems [14]. Both
continuous and discrete DVS settings are exploited in a
scheme to reduce energy consumption while still guaran-
teeing real-time requirements. An adaptive set-point is used
to achieve fast responses with a stable multimedia through-
put. Both their work and our approach exploit feedback
control to DVS/DFS technologies. They target soft real-
time/multimedia systems, while we focus on hard real-time
systems where timing constraints must not be violated.

A general energy management scheme with feedback
control was proposed by Minerick at al. [16]. An aver-
age energy usage is achieved by continuously adjusting the
voltage/frequency of a processor to meet the energy con-
sumption goal. A PI (proportional and integral) feedback
controller is used to adapt the proper power setting based
on previous energy consumptions without the prediction of
future system workloads. While their objective is to obtain
low energy consumption for general purpose systems, we
target hard real-time systems with deadline requirements.

Dynamic voltage scaling has been studied by many pre-
vious researchers. Saewong et al. [19] proposed a series of
voltage scaling schemes targeting different hardware con-
figurations and task set characteristics. Their results showed
that some non-optimal schemes may be more suitable than

optimal schemes when the system has a high voltage scal-
ing overhead. Lee et al. [9] presented a branch-and-bound
algorithm to statically determine the operating frequency of
real-time task sets. But due to the complexity of the algo-
rithm, only two frequency levels are assumed in their model.
The algorithm proposed in [11] derives optimal speed func-
tions between an upper bound and a lower bound of pro-
cessor cycles. Their online algorithm reclaims unused ex-
ecution cycles to further reduce energy consumption. The
algorithms in [17, 1, 5] are more closely related to ours.
Pillai and Shin [17] proposed a set of dynamic DVS al-
gorithms based on traditional hard real-time mechanisms,
namely rate-monotone (RM) scheduling and EDF schedul-
ing. They extended the schedulability test of RM and EDF
algorithms to incorporate CPU frequency scaling. Unlike
our algorithm that applies frequency scaling to only the cur-
rent task, they assumed a unified frequency scaling factor
upon all tasks. In their most aggressive variant, the look-
ahead technique is used to achieve extensive energy savings
by deferring as much work as possible. However, the fre-
quency value obtained in their algorithm is not always the
lowest possible frequency for a single task, as shown in [4].

Some of the other aggressive real-time DVS schemes ex-
ploit early completion of task executions based on statistical
information of the workload under dynamic scheduling [1]
or static priority scheduling [5]. The algorithm proposed in
[1] was based on early completion of tasks and idle time up
to the next task’s activation. The feedback scheme in our
algorithm adapts even to dynamically changing execution
demands, not just statistical information. We exploit both
the idle time prior to the next task’s activation and any idle
slots up to the deadline of the task in the maximal schedule.

The idea of deriving a feasible dual-level DVS sched-
ule from an ideal case was first proposed by Gruian [5, 6].
It combines off-line and on-line scheduling at both task
level and task-set level. Stochastic data was used to de-
rive energy-efficient schedules. Multiple frequency levels
may be assigned to a single task. In our approach, we as-
sign at most two different frequencies for each task, and the
highest frequency is always assigned to the second subtask.
Our algorithm also targets dynamic scheduling (EDF) while
Gruian restricts his approach to fixed-priority static schedul-
ing. Dual speed scheduling was also proposed in two other
approaches. First, Zhang et al. switch the processor speed
between high and low whenever non-preemption blocking
occurs among tasks that share resources [23]. Second, Lee
et al. assume an architecture model where only two phys-
ical speed levels exist [9]. Our approach considers a more
general case where multiple frequency and voltages levels
are chosen by subsequent jobs of the same task or even
different tasks, although for a single job, only two speeds
are used. Last-chance scheduling without energy consider-
ations goes back at least to Chetto and Chetto [3]. We ap-



ply this philosophy in a DVS context. We develop a novel
variant based on task splitting with exactly two parts. Such
a dual-subtask approach aggressively reduces power con-
sumption if the first subtask is fully utilized while the sec-
ond subtask never executes. Our feedback approach trig-
gers this behavior, which is superior to Gruian’s step-wise
increase of frequencies using stochastic approach.

8. Conclusion

This paper presents a novel scheduling approach com-
bining DVS with feedback control schemes, which extends
EDF in a most aggressive manner. The technique relies
strictly on operating system support to implement both the
real-time scheduler and the feedback controller. Our con-
tributions include techniques for preemption handling and
feedback control for hard real-time systems with dynami-
cally fluctuating workload characteristics, i.e., when execu-
tion times of a task’s jobs vary significantly. A feedback
scheme is applied on the system with different workloads.
The online complexity of our algorithm is O(n) for n tasks.
The feedback technique makes the system capable to se-
lect the right frequency and voltage settings, so that energy
consumption is significantly reduced. It also guarantees the
timing constraints of hard real-time tasks, so that no tasks
ever miss their deadlines. For predictable fluctuating exe-
cution time patterns, our feedback DVS scheme is able to
adapt to dynamically fluctuating workloads better than pre-
vious work and saves up to 29% additional energy. The
scheme is not sensitive to any particular workload charac-
teristics, i.e., the execution time patterns, and is capable of
scaling for task sets with different number of tasks. Di-
rections for future work include the assessment of the al-
gorithm under real embedded environments and the inves-
tigation of the impact that different PID parameters have
together with systematic approaches in parameter tuning.

References

[1] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Dy-
namic and agressive scheduling techniques for power-aware
real-time systems. In |[EEE Real-Time Systems Symposium,

Dec. 2001.
[2] A. Chandrakasan, S. Sheng, and R. W. Brodersen. Low-

power cmos digital design. In IEEE Journal of Solid-Sate

Circuits, Vol. 27, pp. 473-484., April, 1992. )
[3] H. Chetto and M. Chetto. Some results of the earliest dead-

line scheduling algorithm. |EEE Transactions on Software

Engineering, 15(10):1261-1269, Oct. 1989. )
[4] A. Dudani, F. Mueller, and Y. Zhu. Energy-conserving

feedback edf scheduling for embedded systems with real-
time constraints. In ACM SIGPLAN Joint Conference
Languages, Compilers, and Tools for Embedded Systems
(LCTES 02) and Software and Compilersfor Embedded Sys-

tems (SCOPES 02), pages 213-222, June 2002. )
[5] F. Gruian. Hard real-time scheduling for low energy using

stochastic data and dvs processors. In Proceedings of the In-
ternational Symposium on Low-Power Electronics and De-
sign ISLPED’ 01, Aug 2001.

[6] F. Gruian and Kuchcinski. Lenes: task scheduling for low-
energy systems using variable voltage processors. In Pro-

ceedings of ASP-DAC, 2001.
[7] T. Ishihara and H. Yasuura. \oltage scheduling problem for

dynamically variable voltage processors. In Proceedings of
the 1998 inter national symposium on Low power electronics

and design, pages 197-202. ACM Press, 1998.
[8] D. Kang, S. Crago, and J. Suh. A fast resource synthesis

technique for energy-efficient real-time systems. In IEEE

Real-Time Systems Symposium, Dec. 2002.
[9] Y.-H. Lee and C. M. Krishna. \oltage-clock scaling for

low energy consumption in fixed-priority real-time systems.
Real-Time Syst., 24(3):303-317, 2003.

[10] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment. J. of the Associ-

ation for Computing Machinery, 20(1):46-61, Jan. 1973.
[11] Y. Liuand A. K. Mok. An integrated approach for applying

dynamic voltage scaling to hard real-time systems. In Pro-
ceedings of the ninth |EEE Real-Time and Embedded Tech-
nology and Applications Symposium, May 2003.

[12] C. Lu, J. Stankovic, G. Tao, and S. Son. Design and evalua-
tion of a feedback control edf scheduling algorithm. In |[EEE

Real-Time Systems Symposium, Dec. 1999.
[13] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son. Feedback

control real-time scheduling: Framework, modeling, and al-

gorithms. Real-Time Syst., 23:85-126, 2002.
[14] Z. Lu, J. Hein, M. Humphrey, M. Stan, J. Lach, and

K. Skadron. Control-theoretic dynamic frequency and volt-
age scaling for multimedia workloads. In International Con-
ference on Compilers, Architectures, and Synthesis for Em-

bedded Systems, pages 156-63, 2002.
[15] M. Méchtel and H. Rzehak. Measuring the Influence if Real-

Time Operating Systems on Performance and Determinism.

Control Eng. Practice, 4(10):1461-1469, 1996.
[16] R. Minerick, V. W. Freeh, and P. M. Kogge. Dynamic power

management using feedback. In Proceedings of Workshop

on Compilers and Operating Systems for Low Power, 2002.
[17] P. Pillai and K. Shin. Real-time dynamic voltage scaling for

low-power embedded operating systems. In Symposium on

Operating Systems Principles, 2001.
[18] J. Pouwelse, K. Langendoen, and H. Sips. Dynamic volt-

age scaling on a low-power microprocessor. Technical re-

port,Delft University of Technology, 2000.
[19] S. Saewong and R. Rajkumar. Practical voltage-scaling for

fixed-priority rt-systems. In Proceedings of the ninth IEEE
Real-Time and Embedded Technol ogy and Applications Sym-

posium, May 2003.
[20] D. Shin, J. Kim, and S. Lee. Intra-task voltage scheduling

for low-energy hard real-time applications. In IEEE Design

and Test of Computers, March 2001.
[21] Y. Shin, K. Choi, and T. Sakurai. Power optimization of real-

time embedded systems on variable speed processors. In Int’l

Conf. on Computer-Aided Design, 2000.
[22] J. Wegener and F. Mueller. A comparison of static analysis

and evolutionary testing for the verification of timing con-

straints. Real-Time Systems, 21(3):241-268, Nov. 2001.
[23] F. Zhang and S. T. Chanson. Processor voltage scheduling

for real-time tasks with non-preemptable sections. In |[EEE
Real-Time Systems Symposium, Dec. 2002.



