
Implementing NChooseK on IBM Q Quantum
Computer Systems

Harsh Khetawat1[0000−0003−2121−0958], Ashlesha Atrey1, George Li1, Frank
Mueller1[0000−0002−0258−0294], and Scott Pakin2[0000−0002−5220−1985]

1 North Carolina State University, NC, USA
{hkhetaw,amatrey,gpli,fmuelle}@ncsu.edu
2 Los Alamos National Laboratory, NM, USA

pakin@lanl.gov

Abstract. This work contributes a generalized model for quantum com-
putation called NChooseK. NChooseK is based on a single parametrized
primitive suitable to express a variety of problems that cannot be solved
efficiently using classical computers but may admit an efficient quan-
tum solution. We implement a code generator that, given arbitrary pa-
rameters for N and K, generates code suitable for execution on IBM Q
quantum hardware. We assess the performance of the code generator,
limitations in the size of circuit depth and number of gates, and pro-
pose optimizations. We identify future work to improve efficiency and
applicability of the NChooseK model.

Keywords: IBM Q · Quantum Computing · NChooseK.

1 Introduction

Despite a number of quantum-computing hardware platforms that have recently
become available and their theoretical potential to more efficiently solve prob-
lems that are of high computational complexity [12,23], few computational sci-
entists have embraced these novel platforms other than to demonstrate how very
small problems may be solved. A short-term challenge to adoption is hardware
immaturity (low qubit counts, rapid decoherence, poor gate fidelities, etc. [21]).
However, a longer-term impediment to using quantum computing as a practi-
cal resource for computational scientists is the difficulty of programming such
systems. Several programming paradigms and languages have been proposed in
prior work to address this issue but they are all variants of the same, low level
of abstraction over the underlying hardware [13].

We address the quantum programmability issue by designing a new high-level
quantum programming model that reduces the challenge for programmers to ex-
press their computational problems. We implement the software tools for gener-
ating programs expressed in our model to target contemporary quantum hard-
ware. More specifically, we develop the NChooseK model that constrains “N bits
such that K of those bits must be True” (where K can be a set of possibilities).
This is of inerest since one can express NP-complete problems as NChooseK.

2 H. Khetawat et al.

There are two unique aspects to our approach. First, the programming model
we propose has a classical semantics, which makes it not only approachable by
computational scientists who are not trained in quantum information theory but
also easy to integrate into existing classical workflows. Second, the same program
can be compiled unmodified on both gate-model quantum computers and quan-
tum annealers. The model represents computational problems as satisfiability
problems.

We first discuss our proposed programming model, NChooseK, and how it
can be used to represent computational problems. We then provide an implemen-
tation via a code generator that generates code for IBM Q quantum computer
systems [16] for any arbitrary parameters in the NChooseK programming model.
We present results for the characteristics of the generated IBM Q circuit rep-
resentation in terms of both circuit depth and gate count. Finally, we discuss
the limitations of the code generator and explore future work to optimize and
extend NChooseK to express more complex computation.

2 Background

A quantum Turing machine (or universal quantum computer) [11] is an abstract
machine that models the behavior of a quantum computer. It can be used to
formally express any quantum algorithm. A quantum circuit, which is compu-
tationally equivalent, is more widely used to model quantum algorithms rather
than a quantum Turing machine. In the quantum circuit model, computation
is described as a sequence of quantum gates on quantum registers. The model
necessitates that any computation be reversible as quantum gates are unitary.

The code generator introduced in this work generates code for IBM Q quan-
tum systems, which uses this model for computation. IBM Q systems use su-
perconducting Josephson junctions [5] to implement the state of qubits. Other
technologies, such as trapped ions [4] and optical lattices [2], have also been
used to realize quantum computers in hardware. While these technologies real-
ize quantum bits and gates through different substrates (materials) that exhibit
quantum effects and operations, they follow a common quantum circuit model
for operation.

Figure 1 depicts a 5 qubit IBM Q processor with the Josephson junctions for
qubits, measuring circuits and interconnection between qubits. The image shows
that there is no all-to-all connection between qubits as only certain qubits are
connected to and may thus directly interact with one another.

3 The NChooseK Programming Model

We first describe the NChooseK programming model and then present our im-
plementation on IBM Q systems. NChooseK is based on a single parameterized
primitive, which can be used to express a wide variety of problems that quantum
computer programmers might be interested in solving. The single NChooseK
primitive constrains k of n Boolean variables to True. More precisely, given

Implementing NChooseK on IBM Q Quantum Computer Systems 3

Fig. 1. IBM Q processor. Photo: IBM Research

n Boolean variables and a set of K integers in the range [0, n], executing the
primitive sets exactly k of those Boolean values to True for some k ∈ K.

Executing an entire NChooseK program results in the system assigning
Boolean values that honor all of the program’s constituent primitives. For ex-
ample, using the notation “nck(V,K)” to indicate that of the n variables in the
set V, k ∈ K of them must be set to True, Figure 2 presents a trivial example
of an NChooseK program. The program expresses the constrains that either 0
or 1 of the set of variables {a,b,c} must be True, either 2 or 3 of the set of
variables {b,c,d} must be True, and exactly 1 of the set of variables {c,d,e}
must be True. Execution of this program amounts to computationally finding
an assignment of variables that satisfies all three constrains. In this case, the
sole solution is {b,d} = True, {a,c,e} = False.

nck({a, b, c}, {0, 1})
nck({b, c, d}, {2, 3})
nck({c, d, e}, {1})

Fig. 2. Trivial example of an NChooseK program

3.1 Implementing the NChooseK model

The objective of this work is to convert the entire NChooseK program into a
quantum black box (i.e., a unitary operator Uω expressed as a quantum circuit)
suitable for use in Grover’s search algorithm [15]. Given a total of n Boolean vari-
ables in an NChooseK program, an exhaustive (classical) search for a satisfying
assignment takes time O(2n). Grover’s algorithm reduces the time to O(

√
2n).

4 H. Khetawat et al.

Consider the example in Figure 3 depicting a quantum black box that corre-
sponds to nck({b, c, d}, {2, 3}). It maps a quantum state |bcd〉 |x〉 to |bcd〉 |x⊕ 1〉
when exactly 2 or 3 of |b〉, |c〉, and |d〉 are |1〉 and to |bcd〉 |x〉 otherwise, as
required by Grover’s algorithm.

|b 〉 • •
|c 〉 • •
|d 〉 • •
|x 〉

Fig. 3. A quantum black box for nck({b, c, d}, {2, 3})

It is always possible to generate a circuit of the form used in Figure 3 from
an NChooseK expression of a problem by following the approach described by
Younes [24]. Although the gates required by Younes’s approach—CNOT, CC-
NOT, CCCNOT, etc.—are not provided natively by modern hardware (with
the occasional exception of CNOT), standard transformations can be applied
to map these gates onto the available gate set. Assuming a typical gate set of
single-qubit gates plus CNOTs, these transformations would normally realize the
circuit shown in Figure 3 as a large (∼40-qubit) circuit. To keep the depth more
manageable for current hardware, which exhibits relatively short decoherence
times, one could employ the techniques developed by Cincio et al. [3] to find
shorter-depth equivalents. In the case of nck({b, c, d}, {2, 3}), Cincio et al. find
the 17-qubit circuit shown in Figure 4.

|b 〉 • • •

|c 〉 • • u3 • u6 • u8

|d 〉 u1 • u2 u5 • u7

|x 〉 u4
where ui is a unitary transformation

Fig. 4. A short-depth implementation of nck({b, c, d}, {2, 3}) using only single-qubit
gates and CNOTs

3.2 Generality of the NChooseK Model

The NChooseK model is based on the single, easy-to-understand constraint of
“K of N bits must be True” (where K can be a set of possibilities). The key
advantages of this model are that

Implementing NChooseK on IBM Q Quantum Computer Systems 5

1. it is sufficiently high-level as to abstract away the underlying hardware archi-
tecture so compilers and optimizers can target gate-model quantum comput-
ers, quantum annealers, and even classical computers and supercomputers;

2. it enables programs written to that model to be formally specified and exhibit
a unique interpretation, even across disparate architectures; and

3. as a classical programming model, it can integrate easily into existing, clas-
sical, scientific workflows.

Let us next demonstrate that the NChooseK model is useful. Specifically,
we show how one can express NP-complete problems [6]—loosely, problems that
cannot efficiently be solved classically—using NChooseK.

Circuit Satisfiability Given a Boolean expression, the goal of the circuit-
satisfiability problem is to find a set of inputs for which the expression evaluates
to True or report that no such set exists. Figure 5 shows how one can construct
the primitive operations needed to express circuit-satisfiability problems in terms
of the NchooseK model.

The figure illustrates various NchooseK primitives as rectangles and the vari-
ables upon which they act as circles. The simplest primitives are shown in Fig-
ures 5a and 5b. The former illustrates that variable A can be biased towards
True by expressing, “1 of out 1 input should be True”. Likewise, the latter
illustrates that variable A can be biased towards False by expressing, “0 of out
1 input should be True”. Figure 5c shows that an inverter can be expressed as
“1 out of 2 inputs should be True”, which leads one of variables A and ¬A to
be True and the other False. Expressing or and and requires a modicum of
creativity. For a 2-input or, Table 1a indicates that K = {0, 2, 3} corresponds
to valid rows and K = {1, 2} corresponds to invalid rows.

Table 1. Adapting the truth table for or for expression with NchooseK

A B A∨B Valid? #True

F F F 3 0
F F T 1
F T F 1
F T T 3 2
T F F 1
T F T 3 2
T T F 2
T T T 3 3

(a) Truth table for
Boolean or

Ü

A B A∨B A∨B Valid? #True

F F F F 3 0
F F T T 2
F T F F 1
F T T T 3 3
T F F F 1
T F T T 3 3
T T F F 2
T T T T 3 4

(b) Truth table for Boolean or
with the third column repeated

Because 2 appears in both the valid and invalid sets, one cannot use
nck({A, B, A∨B}, {0, 2, 3}) to express or. However, if one repeats the third col-

6 H. Khetawat et al.

A {1}

(a) nck({A}, {1}): Favor
A being True

A {0}

(b) nck({A}, {0}): Favor
A being False

A

{1}

¬A

(c) nck({A,¬A}, {1}): Fa-
vor A and ¬A having dif-
ferent truth values

A

{0, 3, 4}

B

A∨B

(d) nck({A, B, A∨B, A∨B}, {0, 3, 4}):
Favor A∨B being True if and
only if at least one of A or B is
True

A

{0, 1, 4}

B

A∧B

(e) nck({A, B, A∧B, A∧B}, {0, 1, 4}):
Favor A∧B being True if and
only if both A and B are True

Fig. 5. NchooseK building blocks for circuit satisfiability

Implementing NChooseK on IBM Q Quantum Computer Systems 7

umn of the truth table as in Table 1b, then K = {0, 3, 4} corresponds to valid
rows and K = {1, 2} corresponds to invalid rows. Because these are disjoint sets,
or can be expressed as in Figure 5d. One can employ the same trick to find that
and can be expressed with nck({A, B, A∨B}, {0, 1, 4}) as in Figure 5e.

A trivial circuit-satisfiability problem, corresponding to the function x6 =
(x1 ∨ x2) ∧ ¬x3, is illustrated in Figure 6. Figure 6a depicts this function as a

(a) Circuit expression

x1

{0, 3, 4}

x2 x3

{1}

x4

{0, 1, 4}

x5 x6

{1}

(b) NChooseK expression

Fig. 6. Example of expressing a circuit-satisfiability problem with NChooseK

digital circuit, and Figure 6b demonstrates how to find values of inputs x1, x2,
and x3 in the NChooseK model. x4 is constrained to x1 or x2 using the or
primitive defined in Figure 5d; x5 is constrained to the negation of x3 using the
inverter primitive defined in Figure 5c; x6 is constrained to x4 and x5 using the
and primitive defined in Figure 5e; and x6 is further constrained to True using
the True primitive defined in Figure 5a.

Because and, or, and not constitute a universal (classical) gate set, the
implication is that any Boolean function can be expressed in the NChooseK
model, demonstrating its universality.

Map Coloring Map coloring is another NP-complete problem. The goal is to
color a map (a planar graph) using at most c colors, such that no two adjacent
regions share a color, where is c is a constant, e.g., c = 4 to color a map of states
or countries. Here, we show that the map-coloring problem, like the circuit-
satisfiability problem, is easily expressed in the NChooseK model.

An NChooseK version of map coloring relies on only two primitives, which
are illustrated in Figure 7. Following the approach taken by Dahl [10] we use a

8 H. Khetawat et al.

{1}

A B C D

(a) nck({A, B, C, D}, {1}): Favor col-
oring the current region with exactly
one of colors A, B, C, or D

A

{0, 1}

B

(b)
nck({A, B}, {0, 1}):
Favor coloring at
most one of re-
gions A and B
with the current
color

Fig. 7. NChooseK building blocks for map coloring

unary encoding of each region of the map: one Boolean for each of red, orange,
green, and blue. In NChooseK, this is expressed as “1 out of 4 inputs should be
True” and is illustrated in Figure 7a. The other primitive ensures that for two
adjacent regions, at most one of them is red—and likewise for each of orange,
green, and blue. As Figure 7b illustrates, an “either 0 or 1 of 2 inputs must be
True” NChooseK primitive expresses that constraint.

Figure 8 illustrates the construction of a two-region map-coloring problem
using the building blocks from Figure 7. The two regions are dubbed P and

Pr

{1}

{0, 1}

Po

{0, 1}

Pg

{0, 1}

Pb

{0, 1}

Qr

{1}

Qo Qg Qb

Fig. 8. Coloring two adjacent regions using NChooseK

Q, and each is represented by four variables, one per color, yielding the eight
variables Pr, Po, Pg, Pb, Qr, Qo, Qg, and Qb. The four P variables connect to
a block in Figure 7a while the four Q variables connect to a block in Figure 7a.

Implementing NChooseK on IBM Q Quantum Computer Systems 9

The P and Q “red” variables connect to a block in Figure 7b, and likewise for
each of “orange”, “green”, and “blue”.

4 Implementation of the Code Generator

We implement a code generator for IBM Q Quantum Systems. It generates
code for the IBM Qiskit API [17] given arbitrary N and K parameters for the
NChooseK model. Our code generator then generates a complete program that
can be executed on the IBM quantum simulator or actual quantum computing
hardware.

To demonstrate how the code generator works, we first implement the basic
logic gates, and and or, in Quirk [14]. Figure 9 depicts the implementation of
the gates using Quirk for all |0〉 inputs (equivalent to False in the following).
Because Quirk allows the use of not gates with multiple controls and anti-
controls, a circuit and its behavior can easily be visualized.

(a) and of 6 NChooseK Combinations in Quirk

(b) or of 6 NChooseK Combinations in Quirk

Fig. 9. Implementation of basic gates on Quirk

10 H. Khetawat et al.

Figure 9a shows 6 conditions that would need to be addressed for the and
circuit. The first condition (all anti-controls) specifies that the output is True
if all inputs are False. The next 4 conditions set the output to True if one
and only one of the inputs is True (while the other 3 inputs are False). The
last condition sets the output to True if all 4 inputs are True. These 6 condi-
tions correspond to the conditions required for the NChooseK primitive shown
in Figure 5e. So when the output is True, this circuit represents an and circuit
of NChooseK combinations. Similarly, Figure 9b uses 6 conditions to represent
a multi-bit or circuit of NChooseK combinations. In this case, the conditions
represent those for the NChooseK primitive shown in Figure 5d. For both Fig-
ures 9a and 9b we need two qubits to represent A ∧ B and A ∨ B, respectively.
The truth table and intuition for this is described in Table 1.

4.1 Code Generation Example

In this section we present an example code generated by our code generator. We
choose the example of nck({A, B , C}{0 , 2}), which implements the xor function
C = A⊕B using the NChooseK primitive. The generated code is shown below.
We exclude the initialization and measurement code for brevity.

1 q = QuantumRegister (3)
2 qoutput = QuantumRegister (1)
3 c = C l a s s i c a lR e g i s t e r (3)
4 coutput = C l a s s i c a lR e g i s t e r (1)
5 qc = QuantumCircuit (q , qoutput , c , coutput)
6

7 de f andInner (t , qx , qz , m, qc) :
8 i f m == 1 :
9 qc . ccx (t [0] , qx [0] , qz [0])

10 e l s e :
11 tmp = QuantumRegister (1)
12 qc . add (tmp)
13 qc . ccx (t [0] , qx [m−1] , tmp [0])
14 andInner (tmp , qx , qz , m−1, qc)
15 qc . ccx (t [0] , qx [m−1] , tmp [0])
16 re turn qc
17

18 de f and_nway(qx , qz , n , qc) :
19 i f n == 1 :
20 qc . cx (qx [0] , qz [0])
21 e l s e :
22 i f n == 2 :
23 qc . ccx (qx [1] , qx [0] , qz [0])
24 e l s e :
25 t = QuantumRegister (1)
26 qc . add (t)
27 qc . ccx (qx [n−1] , qx [n−2] , t [0])
28 andInner (t , qx , qz , n−2, qc)
29 qc . ccx (qx [n−1] , qx [n−2] , t [0])

Implementing NChooseK on IBM Q Quantum Computer Systems 11

30 re turn qc
31

32 #Creat ing equal s up e rpo s i t i on .
33 qc . h(q)
34

35 qc . x (q)
36 and_nway(q , qoutput , 3 , qc)
37 qc . x (q)
38

39 qc . x (q [0])
40 and_nway(q , qoutput , 3 , qc)
41 qc . x (q [0])
42

43 qc . x (q [1])
44 and_nway(q , qoutput , 3 , qc)
45 qc . x (q [1])
46

47 qc . x (q [2])
48 and_nway(q , qoutput , 3 , qc)
49 qc . x (q [2])
50

51 qc . measure (q , c)
Listing 1. xor using NChooseK

The Python code creates a 3-qubit register, q for the inputs, a single qubit
register, qoutput to represent the output. During measurement these registers
map to their classical counterparts, c and coutput. The andInner and and_nway
functions create the necessary circuit required to implement an n-input and gate
using CCNOT gates. Finally, we add the gates for the necessary conditions of
each k, where k ∈ {0, 2}, i.e., the first condition for k = 0 and the last three
conditions for k = 2.

4.2 Evaluation

Because contemporary quantum hardware, including the IBM Q, does not sup-
port controlling a single gate by multiple controls, we use CCNOT and X gates
(provided by IBM’s Qiskit API) to create complex, multi-control gates. While
complex logical circuits can be created using these previously described and and
or circuits, our code generator supports more expressive NChooseK circuits by
combining simpler ones. A programmer can thus more effectively describe their
computational problem. The CCNOT operation is an expensive operation be-
cause it is composed of 9 single qubit and 6 two-qubit gates [22]. Because the cost
of the circuit is dominated by CCNOT operations, we focus on the number of
CCNOT gates required for a particular NChooseK computation. We also assess
the depth of the circuit for different values of N and K.

Figure 10 shows the number of CCNOT gates required for different combi-
nations of N and k. We can see from the plot that the number of gates required
is maximal when k = N

2 , where k ∈ K. Also, the number of gates required

12 H. Khetawat et al.

Fig. 10. Number of CCNOT gates required for arbitrary N and k

increases exponentially with N . So while more complex computation can be
expressed with larger values of N , programmers need to establish a trade-off
between the using simpler circuits, such as and and or, and expressing more
complex computation with larger values of N .

Figure 11 indicates the depth of CCNOT gates required for different com-
binations of N and k. Similar to the previous figure, the depth of the circuit is
maximal when k = N

2 , where k ∈ K. These results further confirm the need for
programmers to establish a trade-off between expressing computation in high-
level NChooseK primitives vs. using several small NChooseK primitives to ex-
press the same computation.

5 Related Work

It is projected that the number of qubits will approach 50 or more in the next
few years, yet we are still addressing the quantum programmability issue to re-
duce the challenge for programmers to express quantum computational problems
effectively and effortlessly.

Several attempts were made to address this issue. The first attempt was made
by Deutsch [11] to define notations of quantum Turing machines (QTM). A for-
malized quantum programming language proposal given by Knill [18] defined
pseudo code for implementation on a quantum random access machine (QRAM)
but was not precise enough to be implementable as a quantum programming
language. The first real quantum computing language, QCL [20], was developed

Implementing NChooseK on IBM Q Quantum Computer Systems 13

Fig. 11. Depth of circuit in CCNOT gates for arbitrary N and k

by Omer with syntax similar to C and provides a range of high level quantum
programming features such as memory management and automatic derivation
of conditional versions of operators. Another high-level language based on C++
was developed by Bettelli [1]. A quantum programming language based on prob-
abilistic predictive programming, guarded-command language, quantum lambda
calculus with operational semantics and an equational theory were defined. A
first-order functional programming language, QML in which control as well as
data suitable for quantum was defined. Quantum programming with Haskell by
defining basic elements of quantum mechanics as data types and functions was
also implemented. These solutions still failed to reduce the challenges faced to
solve quantum computational problems efficiently [13].

Recently, many open-source quantum software projects are being developed
and many major companies are trying to develop their own solutions. An open
source framework Qiskit [17] was developed by IBM Research in 2017 for creating
and manipulating quantum programs [7]. Qiskit uses the Python programming
language to eventually translate a quantum programs to the OpenQASM [8]
representation of circuits of quantum gates. Microsoft has defined a new pro-
gramming language, Q#, with simulators working either on local systems or a
cloud platform [19]. D-Wave Systems’s Qbsolv solves QUBO problems on quan-
tum processors as well as classical hardware architecture [9]. Our solution is
different from these solutions as we are providing a way to express a variety of
problems in a generalized model of computation called NChooseK. It makes the
process of describing a problem efficient by requiring users to define problems

14 H. Khetawat et al.

in terms of the model so that software can generate the code to execute the
problem.

6 Conclusion and Future Work

In this work we present a novel model, NChooseK, for expressing quantum com-
putation. We show how this model can be used to express computation for a
circuit based universal quantum computer like the IBM Q. We demonstrate the
generality of the programming model using 2 important applications, circuit
satisfiability and map coloring. Finally, we describe the implementation of our
code generator, which can generate Qiskit code for arbitrary inputs of N and
K along with an example of the xor gate. Our evaluation shows how the gate
count and circuit depth is affected by different input parameters. In this context
we discuss the trade-offs involved in using a single NChooseK primitive for more
expressiveness vs. several smaller primitives to keep the gate count and circuit
depth low.

We would like to further extend our code generator to combine multiple
NChooseK primitives to express complex computational problems. The code
generator/compiler can even explore the aforementioned trade-off space to auto-
matically break down large NChooseK primitives into smaller more efficient sub-
primitives allowing the programmer to use larger, more expressive constructs.
We are also looking at code generation of NChooseK primitives for quantum
annealing systems such as the D-Wave.

Acknowledgments

Research presented in this article was supported in part by NSF grants 1525609
and 1813004 and by the Laboratory Directed Research and Development pro-
gram of Los Alamos National Laboratory under project numbers 20160069DR
and 20190065DR. This work was also supported by the U.S. Department of
Energy through Los Alamos National Laboratory. Los Alamos National Lab-
oratory is operated by Triad National Security, LLC for the National Nu-
clear Security Administration of the U.S. Department of Energy (contract
no. 89233218CNA000001).

References

1. Bettelli, S., Calarco, T., Serafini, L.: Toward an architecture for quantum program-
ming. The European Physical Journal D-Atomic, Molecular, Optical and Plasma
Physics 25(2), 181–200 (2003)

2. Brennen, G.K., Caves, C.M., Jessen, P.S., Deutsch, I.H.: Quantum logic gates in
optical lattices. Physical Review Letters 82(5), 1060 (1999)

3. Cincio, Ł., Subaşı, Y., Sornborger, A.T., Coles, P.J.: Learning the quantum algo-
rithm for state overlap. arXiv preprint arXiv:1803.04114 (2018)

Implementing NChooseK on IBM Q Quantum Computer Systems 15

4. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Physical
review letters 74(20), 4091 (1995)

5. Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453(7198), 1031
(2008)

6. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
third annual ACM symposium on Theory of computing. pp. 151–158. ACM (1971)

7. Cross, A.: The IBM Q experience and QISKit open-source quantum computing
software. Bulletin of the American Physical Society 63(1), BAPS.2018.MAR.L58.3
(2018)

8. Cross, A.W., Bishop, L.S., Smolin, J.A., Gambetta, J.M.: Open quantum assembly
language. arXiv:1707.03429 (2017), http://arxiv.org/abs/1707.03429

9. D-Wave Systems, Inc.: qbsolv, https://docs.ocean.dwavesys.com/projects/
qbsolv/

10. Dahl, E.D.: Programming with D-Wave: Map coloring problem. D-Wave Official
Whitepaper (2013)

11. Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quan-
tum computer. Proc. R. Soc. Lond. A 400(1818), 97–117 (1985)

12. Feynman, R.P.: Simulating physics with computers. International Journal of The-
oretical Physics 21(6-7), 467–488 (1982)

13. Gay, S.J.: Quantum programming languages: Survey and bibliography. Mathemat-
ical Structures in Computer Science 16(4), 581–600 (2006)

14. Gidney, C.: Quirk: A drag-and-drop quantum circuit simulator. http://
algassert.com/quirk

15. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing.
pp. 212–219. ACM (1996)

16. IBM: IBM Q Experience. https://quantumexperience.ng.bluemix.net/qx
17. IBM: IBM Qiskit (2019), https://qiskit.org/
18. Knill, E.: Conventions for quantum pseudocode. Tech. Rep. LA-UR-96-2724, Los

Alamos National Laboratory (Jun 1996)
19. Microsoft Research: Microsoft quantum development kit samples (2019), https:

//github.com/Microsoft/Quantum
20. Ömer, B.: A Procedural Formalism for Quantum Computing. Master’s thesis, De-

partment of Theoretical Physics, Technical University of Vienne (Jul 1998)
21. Schneider, S., Milburn, G.J.: Decoherence and fidelity in ion traps with fluctuating

trap parameters. Physical Review A 59(5), 3766 (1999)
22. Shende, V.V., Markov, I.L.: On the cnot-cost of toffoli gates. arXiv preprint

arXiv:0803.2316 (2008)
23. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-

ing. In: Foundations of Computer Science, 1994 Proceedings., 35th Annual Sym-
posium on. pp. 124–134. IEEE (1994)

24. Younes, A.: Using Reed-Muller expansions in the synthesis and optimization of
Boolean quantum circuits. In: Inspired by Nature, pp. 113–141. Springer (2018)

http://arxiv.org/abs/1707.03429
https://docs.ocean.dwavesys.com/projects/qbsolv/
https://docs.ocean.dwavesys.com/projects/qbsolv/
http://algassert.com/quirk
http://algassert.com/quirk
https://quantumexperience.ng.bluemix.net/qx
https://qiskit.org/
https://github.com/Microsoft/Quantum
https://github.com/Microsoft/Quantum

	 Implementing NChooseK on IBM Q Quantum Computer Systems

