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Abstract. Adiabatic computing with two degrees of freedom of 2-local
Hamiltonians has been theoretically shown to be equivalent to the gate
model of universal quantum computing. But today’s quantum annealers,
namely D-Wave’s 2000Q platform, only provide a 2-local Ising Hamilto-
nian abstraction with a single degree of freedom. This raises the ques-
tion what subset of gate programs can be expressed as quadratic uncon-
strained binary problems (QUBOs) on the D-Wave. The problem is of
interest because gate-based quantum platforms are currently limited to
20 qubits while D-Wave provides 2,000 qubits. However, when transform-
ing entire gate circuits into QUBOs, additional qubits will be required.
The objective of this work is to determine a subset of quantum gates
suitable for transformation into single-degree 2-local Ising Hamiltonians
under a common qubit base representation such that they comprise a
compound circuit suitable for pure quantum computation, i.e., without
having to switch between classical and quantum computing for differ-
ent bases. To this end, this work contributes, for the first time, a fully
automated method to translate quantum gate circuits comprised of a
subset of common gates expressed as an IBM Qiskit program to single-
degree 2-local Ising Hamiltonians, which are subsequently embedded in
the D-Wave 2000Q chimera graph. These gate elements are placed in the
chimera graph and augmented by constraints that enforce inter-gate log-
ical relationships, resulting in an annealer embedding that completely
characterizes the overall gate circuit. Annealer embeddings for several
example quantum gate circuits are then evaluated on D-Wave 2000Q
hardware.

Keywords: Quantum Computation · Quantum Annealing · Quantum
Gate Circuits · Adiabatic Computation

1 Introduction

Recent advances in quantum hardware have resulted in the first systems becom-
ing publicly available. On one hand, gate-based quantum computers have been
? This work was funded in part by NSF grants 1525609 and 1813004.
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designed, such as the IBM Q, Rigetti’s Aspen, or IonQ’s systems using using
superconducting transmons or ion tubes [2, 11]. On the other hand, quantum
annealing has been promoted by D-Wave’s RF-Squids [6]. Both types of systems
are available in the cloud and can be programmed using Python, e.g., via IBM’s
Qiskit in the IBM Q Experience [1], Rigetti’s Forest DSK in their Quantum
Cloud Services [2], and D-wave’s Ocean Software [9] accessible via the cloud
through D-Wave Leap [8].

It was shown that adiabatic quantum computing can solve the same prob-
lems as gate-based (universal) quantum computing given at least two degrees
of freedom for 2-local Hamiltonian [3, 5, 10]. D-Wave supports a 2-local Ising
Hamiltonian with a single degree of freedom in their 2000Q system, which is
why it is believed to only solve a subset of the problems that can be expressed
by gate-based (universal) quantum machines. In fact, D-Wave’s programming
abstraction is specifically catering to optimization problems while gate-based
abstractions map to quantum gates, e.g., by expressing programs as circuits of
gates in OpenQASM [7].

In 2014, Warren outlined how a set of universal quantum gates could be
realized in adiabatic form using D-Wave’s annealing abstraction [12]. This is
demonstrated, among others, for C-NOT, Toffoli (CC-NOT), Swap and C-Swap
(Fredkin) gates in a {0, 1} base of qubit states, and for the Hadamard gate in a
two-vector {|0〉 , |1〉} base.

In this paper, we contribute a framework to automatically translate gate-
based circuits into adiabatic single-degree 2-local Hamiltonians expressed as
quadratic unconstrained binary optimization problems (QUBOs). We constrain
ourselves to a subset of quantum gates in the common {0, 1} base so that an
entire circuit can be expressed as a single QUBO. This allows us, given a Qiskit
program suitable for IBM Q execution, to generate an equivalent Ocean program
that can execute on a D-Wave machine. Such a translation is significant since
today’s gate computers are constrained to 20 qubits for IBM Q (or 19 qubits
for Rigetti’s available platform), while D-Wave supports around 2,000 qubits
on their latest publicly available platform, which enables experimentation at a
different scale.

The objectives of this work are (1) to identify a subset of gates suitable for
translation, (2) to demonstrate the feasibility of auto-translating entire circuits
of these quantum gates to adiabatic programs, (3) to assess the cost of an-
cilla qubits required to express gates in QUBOs, (4) to find an embedding into
D-Wave’s Chimera graph for a circuit and assess its cost in extra qubits and
circuit lines / wires, and (5) to compare hardware experimentation results with
the expected ground state to determine the annealer’s ability identify coherent
solutions for circuit embedding. We contribute an automated method for en-
coding quantum gate circuits comprising X, C-NOT, Toffoli, Swap and C-Swap
(Fredkin) gates as single-degree 2-local Ising Hamiltonians (QUBOs) and embed
the resulting representation in the D-Wave 2000Q chimera graph. We provide
the single-degree 2-local Ising QUBOs with K4,4 connectivity, a compete bipar-
tite graph with 8 vertices corresponding to D-Wave’s unit cell, for which ground
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state configurations logically characterize quantum X, C-NOT, Toffoli, and Swap
gates. Notice that we do not provide a translation for the Hadamard gate, H,
as it requires a different base of qubit states than the above, i.e., one cannot
directly embed H in the same circuit. Instead, one would have to transition
between quantum and classical programs, which collapses the quantum state
and thus defeats the purpose of quantum computing in first place. These gates
supported by our translation constitute building blocks that are placed in the
chimera graph and augmented by constraints that enforce inter-gate logical rela-
tionships. The resulting annealer embedding is equivalent to the corresponding
gate circuit in terms of its computational functionality. In experimental results,
we evaluate annealer embeddings for several sample quantum gate circuits on
D-Wave hardware.

2 Design and Implementation

In adiabatic computing, the comprehensive state of qubits is annealed via a com-
bination of tunneling and entanglement toward a ground (energy) state. There
may be more than one such state, and tunneling aids in not getting stuck in local
minima but rather find other ground states, subject to practical considerations
of adiabatic computing, such as experienced by near absolute zero Kelvin op-
eration and hardware-induced errors in any practical quantum devices. To this
end, D-Wave supports a single-degree 2-local Ising Hamiltonian

H(t) = −
∑N−2

i=0
∑N−1

j=0 Ji,jσiσj −
∑N−1

i=0 Siσi − Γ (t)
∑N−1

i=0 σi

with N qubits σi ∈ {−1, 1} as vertices, coupler strengths Jij ∈ {−2, 2} that
connect σi, σj and biases (weights) Si per qubit such that the amplitude, Γ (t),
of the third term, the traverse field is gradually decreased to drive the aggregate
of the first and second term into a ground state, H0.

A 2-local Hamiltonian is expressed as quadratic unconstrained binary opti-
mization problem (QUBO) that describes a ground state and is subsequently
mapped onto D-Wave’s 2000Q embedding of qubits respecting the connectivity
of qubit pairs. Specifically, D-Wave’s inner cell is a K4,4 bipartite graph to which
we map quantum gates. This embedding of a gate is described in Section 2.1.

The K4,4 unit cells are arranged in a 2-dimensional 16×16 grid in a Chimera
graph with sparse horizontal and vertical couplings between equivalent qubits of
neighboring unit cells. The Chimera graph provides the means to connect unit
cells representing a quantum gate with each other to create the desired quantum
circuit of a given gate-based quantum program, which is described in Section 2.2.

We then develop an automatic transition from Qiskit programs representing
circuits of quantum gates to an equivalent adiabatic representation in a system-
atic manner in Section 2.3. This translator leverages the class and file structure
of IBM’s open-source Qiskit API for definitions of quantum gate circuits due
to its familiarity and ease-of-use. Specifically, a Qiskit translator was created so
that any Qiskit script defining a quantum gate circuit could be used to generate
and run a corresponding annealer embedding.
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2.1 2-Local Ising Hamiltonians for K4,4 Embeddings of Quantum
Gates

Gate embeddings for a σi ∈ {0, 1} base, depicted in Figure 4, were designed
to have a ground state characterizing the corresponding quantum gate’s logical
function. The process by which the gate embeddings used in this project were
determined is described below in terms of the C-NOT gate as an example.

The C-NOT gate operates on 2 qubits, a control qubit and a target qubit.
Because the target qubit is potentially altered by the C-NOT operation, its value
after the C-NOT operation must be considered distinctly. Accordingly, the 8
possible configurations of 3 binary variables — q0, q1, and q2 — are shown in
the truth table on the left of Figure 1. Arbitrarily, these variables are designated
to represent the control qubit value, the value of the target qubit before the
C-NOT operation, and the value of the target qubit after the C-NOT operation,
respectively.

Fig. 1: Truth table showing all possible logical combinations of 3 binary variables
and the corresponding Ising Hamiltonian constraints for a C-NOT operation.
Ground state configurations are highlighted in green.

Of the 8 possible configurations, only 4 correspond to a qubit transformation
performed by a C-NOT gate. As such, it is these configurations that we require
to correspond to the lowest energy of the Ising Hamiltonian. This results in a
set of constraints — one for each row of the truth table shown in Figure 1 —
in terms of 2-local Ising Hamiltonian variables, Si and Jij , and ground state
energy, G. These constraints are shown on the right of Figure 1. Si and Jij are
referred to as qubit biases and coupler strengths, respectively.

These inequalities were then solved under the constraint that the solution
comprised only integer values between -10 and 10. (Notice that this range is
later mapped to some Si ∈ {−2, 2} to meet the D-Wave embedding constraints.)
If a given set of constraints had no solution, as in the case of the C-NOT, an
ancilla variable was added as shown in Figure 2 and a system of constraints was
again generated and a solution was sought.

The graph of the resulting C-NOT Ising Hamiltonian is shown on the left of
Figure 3. This graph however, is not compatible to D-Wave’s chimera graph. Re-
call that the chimera graph is a 16 by 16 array of K4,4 unit cells whose right-hand
nodes are connected horizontally and left-hand nodes are connected vertically.
Therefore, the graphs obtained by solving the system of constraints were mod-
ified into logically equivalent graphs conforming to the K4,4 connectivity of a
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Fig. 2: Truth table showing all possible logical combinations of binary variables
after an ancilla variable is added and the corresponding Ising Hamiltonian con-
straints for a C-NOT operation. Ground state configurations are highlighted in
green.

unit cell. This was done by splitting qubits requiring connections having no cor-
responding coupler in the chimera graph. For example, as shown on the left of
Figure 3, the vertical connections, J1a and J02, have no physical counterpart
in the chimera graph. To remedy this, one of the logical qubits being coupled
through these connectors can be represented by two physical qubits, one on each
side of the graph, rendering the all the connections physically realizable. On the
right of Figure 3 is the graph that results from splitting qa into qa and qa′ and
q2 into q2 and q2′ . Qubit biases for these new qubits are increased from their
original value by a positive offset, δ, and the coupling strength between them
is set to the negative of the bias of the original qubit minus 2δ. This ensures
that, when both physical qubits are in sync, the embedding is equivalent to the
corresponding configuration in the unmodified graph. For example, referring to
the graph on the right of Figure 3, when both qa and qa′ are equal to 1, an
energy of

(Sa + δ) + (Sa + δ) + (−Sa − 2δ) = Sa

is contributed to the system. This is the same energy contribution made to the
system represented by the graph on the left of Figure 3 when qa is equal to 1.
Further, splitting qubits in this way ensures that the energy of any new logical
configurations introduced by the new qubits are above the ground state by at
least δ. In this work, δ was set to 5.

Finally, to ease the process of embedding the overall gate circuit (described
in Section 2.2), we also required that any qubit representing a gate input be
on one side of the graph and any qubit that could be used as an input to a
later gate be on the opposite side of the graph. For example, the Toffoli gate
pictured in Figure 4(c) has 3 inputs (Target, Control 1, and Control 2) and 3
outputs (Out, Control 1, and Control 2). The value of the Control qubits are not
transformed by the gate and as such must be present on both sides of the graph.
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Fig. 3: (Left) Ising Hamiltonian graph obtained from system of constraints. Sec-
tions highlighted in green and orange are not compatible with D-Wave’s chimera
graph. (Right) Logically equivalent graph modified to conform to chimera graph
unit cell connectivity. Sections highlighted in green and orange indicate the mod-
ifications to the graph.

This ensures that the most recent state of these qubits are easily accessible to
other, later gates. The value of the Target qubit is transformed by the gate into
the value of the Out qubit. As such, the Target qubit is required to be present on
the input side of the gate embedding and the Out qubit is required to be on the
output side of the gate embedding. In the Toffoli embedding, the Out qubit also
happens to be present on the input side, but this is for the purpose of making
the connections needed to form a valid gate embedding.

The above process was carried out to determine embeddings for X, Toffoli,
and Swap gates. A 2-local Ising Hamiltonian assuming full graph connectivity for
the C-NOT gate was sufficiently determined in a previous work [12]. This Ising
Hamiltonian was used as a starting point and modified to conform to the criteria
described above. A 2-local Ising Hamiltonian assuming full graph connectivity
for the C-Swap function was also determined in this work. However, the graph of
this Hamiltonian could not be modified into a form meeting the criteria described
above. Specifically, configuring the connections comprising the full connectivity
graph to conform to chimera graph connectivity requires at least 2 unit cells.
Also, satisfying our requirement that gate inputs and outputs be present on
certain sides of a cell requires the use of more resources, and further removes
the symmetries that the circuit embedding algorithm relies on. Due to these
problems, the C-Swap gate was implemented with 2 C-NOT embeddings and a
Toffoli embedding, connected as illustrated on the right of Figure 5.

2.2 Embedding the Problem in the Chimera Graph

Determining an optimal embedding for an arbitrary annealer problem is NP-
complete and the heuristics commonly used to determine working embeddings
can often fail when the problem is complex. We implement a process that exploits
properties of quantum gate circuits and the symmetries of the gate embeddings
determined above to reliably construct working embeddings for gate circuits.

Chaining Logical connections between gate embeddings are made via “chains”
of qubits that encode a single logical qubit. A chain is created by assigning the
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Fig. 4: (Left) Embeddings for (a) X, (b) C-NOT, (c) Toffoli, and (d) Swap gates
illustrated to show qubit names, qubit biases, and coupler strengths. (Right)
Ground state configurations of logical variables.

Fig. 5: (Left) C-Swap gate symbol with qubit names indicated (Right) Function-
ally equivalent circuit used to implement C-Swap gate.

biases of the qubits that comprise the chain and the strengths of the couplers
between them similarly to how they were assigned when splitting a logical qubit
(Figure 3). Specifically, each section of the chain is constructed by offsetting the
biases of the qubits being connected by δ and assigning to the corresponding
coupler a strength of −2δ. This is done one section at a time, from the earlier
gate to the later gate. An example of the resulting chain is shown in Figure 6
for the case of two X gates connected by an identity function.

Chimera Graph Cell Designations The “signal flow” of a gate circuit natu-
rally lends itself as an organizing principle for the problem embedding. To best
translate the notion of a signal flow to the Chimera graph, gate embeddings are
placed as shown in Figure 7. The connectivity between adjacent gate embed-
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Fig. 6: Chaining example. (Top) Illustration of gate elements X1 and X2 showing
names of qubit biases and coupler strengths. Qubits whose biases are denoted
with the letter “i” are input qubits and those denoted with the letter “o” are
output qubits. (Bottom) An embedding of the identity function resulting from
chaining the output of X1 to the input of X2.

dings is highlighted and cell designations are indicated. Each gate embedding
has corresponding sections of the graph designated for delivering chains to non-
adjacent gates (chain output column) and assembling its inputs (input assembly
cell) denoted in Figure 7 as CO and IA, respectively.

Gate embeddings, designed to have inputs and outputs on either side of a
single bipartite cell, are reflected depending on whether the gate number is even
or odd. Specifically, if the gate number is even, the output column of the gate
embedding is on the left and the input column is on the right. If the gate number
is odd, the input column is on the left and the output column is on the right.

If an input of a given gate is dependent on an output of a previous adjacent
gate, the rows of the new gate embedding are permuted to align its input with
the previous output and a chain is made through its input assembly cell. Rows
of unit cells can be permuted without change to the network topology of the
gate embedding, which makes connections between adjacent gates trivial.

If an input of a gate is dependent on an output of a previous non-adjacent
gate, a chain is routed from the chain output column of the earlier gate through
empty positions on the Chimera graph to the input assembly cell of the new
gate. The role of chain out column and input assembly cell designations in chain
routing are illustrated in Figure 8. New gates first align their rows with connec-
tions to adjacent gates, then non-adjacent gates. Rows with no dependencies are
assigned a position in the bipartite cell last.

2.3 Implementing the Qiskit to D-Wave Ocean Translator

Qiskit is an open-source Python API developed for the implementation and exe-
cution (or simulation) of quantum gate circuits on IBM quantum computers [1].
As this API provides a convenient and intuitive framework with which quantum
gate circuits can be defined, this translator project was built within its class
structure. This was achieved with the objective that any Qiskit script defining
a quantum gate circuit could be used to generate and run a corresponding an-
nealer embedding. Our approach allows a gate circuit in Qiskit to be executed
(a) on IBM Q quantum hardware, (b) in simulation using IBM’s APIs, or, after
translation, (c) on D-Wave’s quantum annealer hardware. Given IBM Q’s con-
straint to at most 20 qubits at this time, Qiskit programs requiring more than
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Fig. 7: Chimera graph cell designations for gate circuit embeddings. G1, G2, etc.
= Gate 1, Gate 2, etc.; IA = Input assembly cell; CO = Chain out column; I/O
= Input/Output column

20 qubits, which may be very slow in simulation, can be executed on D-Wave
hardware in a fraction of the corresponding simulation time.

Our translator is implemented as new backend to the Qiskit source code
in terms of the AnnealerGraph class, whose methods handle the configura-
tion, placement, and chaining together of gate embeddings. An instance of
AnnealerGraph was added as an attribute to Qiskit’s QuantumCircuit class,
which is a central object in the Qiskit framework, whose attributes are operated
on or used by every Qiskit function relevant to this project.

In a Qiskit script, an instance of QuantumCircuit is initialized as a collection
of QuantumRegister and ClassicalRegister instances. A gate circuit is then
defined via QuantumCircuit methods that operate on QuantumRegister objects.

Our translator thus implements a modified version of Qiskit, where an
AnnealerGraph instance is initialized in the QuantumCircuit initialization func-
tion and builds data structures needed to construct an annealer embedding from
Qiskit instructions. AnnealerGraph has a dictionary attribute, qubits, in which
each qubit in the gate circuit, assigned a name in the initialization function of
QuantumCircuit, has a corresponding entry (with keys corresponding to Qiskit
register names). This dictionary keeps track of which annealer graph nodes are
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Fig. 8: Detail illustrating role of input assembly cells and chain out columns in
making inter-gate connections

assigned to a given logical qubit, in what order these nodes were assigned, and
whether or not the final state of this qubit is considered an output (i.e., whether
the measure function was used on this qubit). There is also an entry in qubits
that keeps track of annealer graph nodes that do not correspond to logical qubits.

Annealer graph nodes, identified by D-Wave Ocean as numbers, are added
to the lists comprising the qubits dictionary as gates and chains between
gates are added to the graph. Dictionary objects used as the input argu-
ments to the D-Wave Ocean embedding compilation function, qubitbiases and
couplerstrengths, are also built as gates and chains are assigned to the graph.
The qubitbiases dictionary contains as keys a number identifying a given node
in the chimera graph. The value associated with a given key is the bias itself.
The couplerstrengths dictionary contains as keys a tuple identifying the two
qubits being coupled (smaller number first). The value associated with a given
key is the coupler strength.

AnnealerGraph contains methods for adding the circuit’s gate elements
(addX, addCNOT, etc.). Therefore, Qiskit functions for adding gates to a quantum
circuit were modified to call the appropriate AnnealerGraph method in lieu of
the original Qiskit code. In general, AnnealerGraph methods for adding gate ele-
ments to the circuit embedding are structured as follows. AnnealerGraph has as
an attribute a counter that indicates how many gates have already been placed
in the circuit embedding. This is used to determine where in the graph the new
gate is placed per the cell designations described in Section 2.2. Next, connec-
tions to previously placed gate embeddings are determined. For each input in
the gate, the last element in the qubit dictionary entry for the corresponding
gate circuit qubit indicates the most recent state of that of that qubit and its
position. If its position is in an adjacent gate, the row containing the correspond-
ing input of the new gate is placed in the unit cell to align it with its connection
in the previous gate. These qubits are then connected with a chain through the
new gate embedding’s input assembly cell. If the new gate requires a connection
from a non-adjacent gate, a chain is made from the last instance of the qubit
to the input assembly cell of the new gate. The input of the new gate is then
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assigned a position in the gate cell aligned with the position of its connection.
Once gate qubits with dependencies are placed in the gate cell, qubits with no
dependencies are placed in remaining positions.

The last significant modification to Qiskit was to its execute function, which
was modified to make final adjustments to the circuit embedding, execute the
embedding on D-Wave hardware, and report the results. In our code, when
execute is called, the user is prompted, for each qubit in the gate circuit, to
answer whether the initial state of the qubit should be constrained to a value of
zero. If the user answers that it should be and it was not earlier identified as a
circuit output by the measure command, it is assumed this qubit is an ancilla
and as such is not reported in the results. If the user answers that it should be
constrained to zero and it has been identified as a circuit output by the measure
command, the output values are still reported, but the input values are not. The
initial state of a logical qubit is constrained to a value of zero by adding 5 to
the bias of the first physical qubit associated with it. Results are reported with
input variable values on the left and output variable values on the right.

3 Experimental Results

An upper bound on the resource requirements on both ends can be given as
follows. Given an n-gate quantum circuit (in our case specified as a Qiskit pro-
gram), a translation to an adiabatic form is provided in no more than 32n adi-
abatic qubits on the D-Wave 2000Q. The factor is comprised of 8 qubits for
the K4,4 representation of a gate, the remaining 24 qubits are used as wiring to
the left and below that gate-equivalent K4,4 graph (cf. the example below and
Figure 3.1). Notice that an increase by 32X still increases the capabilities by
mapping to D-Wave, if possible, since the IBM/D-Wave gap is 100X now, and
problems can often be mapped more efficiently.

3.1 Circuit for Comparison of 1-Qubit Numbers

Shown at the top of Figure 9 is a quantum circuit whose output is |1〉 if its
two input qubits, |a〉 and |b〉, are in the same logical state and |0〉 if they are
not. The temporary qubit is not necessary for a 1-qubit equivalence circuit such
as this but temporary registers are needed for similar circuits when comparing
multi-bit inputs. The temporary register is included here to make this example
more interesting. The main illustration in Figure 9 shows the embedding auto-
matically generated from a Qiskit program that defines the circuit depicted. This
embedding anneals as expected. If the initial states of the output and temporary
qubits are constrained to be zero there are 4 valid results. All 4 results are reli-
ably obtained within 100 samples. The embedding uses 32 physical qubits and
48 couplers, 12 of which are used for inter-gate connections. This embedding is
clearly not optimal. An optimal graph for a circuit of this size and functionality is
easily obtained using the process by which the gate embeddings were determined
(Section 2.1). An optimal graph for this circuit’s function (XNOR) is shown in
Figure 10. It uses 6 qubits and 8 couplers and is contained within a single K4,4
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Fig. 9: Embedding of equivalence check circuit for 1-qubit numbers. Colors indi-
cate logical qubits.

cell. Therefore, the generated circuit uses about 6 times more resources than is
optimal.

Fig. 10: An optimal XNOR graph with matching functionally to the generated
1-qubit equivalence circuit embedding

3.2 Circuit for Comparison of 5-Qubit Numbers

The 1-qubit equivalence circuit was expanded into a circuit for comparison of
5-qubit numbers. The current chain routing algorithm caused the embedding for
this circuit to become congested when routing temporary qubits from earlier in
the circuit to be uncomputed at the end of the circuit, which resulted in a graph
that did not map to the chimera graph. Specifically, the current chain routing
algorithm does not yet implement any precautions against routing chains into
graph positions from which there are no further available connections. When this
occurs, the algorithm is forced to assign a connection via a nonexistent coupler.
Due to this, gates used for uncomputing the temporary qubits were not included
in the circuit, and without them, the resulting embedding conformed to chimera
graph connectivity and was able to be annealed on D-Wave 2000Q hardware.
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The embedding generated for the 5-qubit equivalence circuit uses 156 physical
qubits and 240 couplers, 68 of which are used in chains between gates. These
values are also about 5 times larger than those of the 1-qubit equivalence circuit,
as expected. However, this embedding does not anneal as effectively as the 1-
qubit equivalence circuit. Only about 20 of the 1,024 valid results are obtained
within 10,000 samples.

3.3 Adder for 1-Qubit Numbers

The top of Figure 11 shows a quantum circuit implementing a full adder func-
tion. The main illustration in this figure shows the embedding generated from
a Qiskit script defining this circuit. This embedding is composed of 79 physical
qubits and 110 couplers, 47 of which are used for inter-gate connections. Several
improvements that could be made to this embedding are apparent. Most obvi-
ously, the chains connecting gates could be routed more efficiently. An optimal
full adder annealer embedding uses 8 qubits and 13 couplers and fits within a sin-
gle K4,4 cell [4]. So, in terms of bipartite cell embeddings used, the generated full
adder embedding is 6 times larger than the optimal case. Considering resources
used to connect gates, the generated embedding is about 11 times larger.

The generated full adder embedding anneals as expected. There are 8 valid
results if the initial states of sum and carry-out qubits are constrained to be
zero. All 8 results are reliably obtained within 400 samples.

Fig. 11: Embedding of adder for 1-qubit numbers. Colors indicate logical qubits.
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3.4 Adder for 4-Qubit Numbers

The 1-qubit adder was expanded to implement a 4-qubit adder. The correspond-
ing embedding used 322 physical qubits and 430 couplers, 212 of which were used
for inter-gate connections. Qubits in gate cells G9, G10, and G17 were down on
the D-Wave machine, and as such these cells were not used. Due to having to
route around these cells, extra qubits and couplers were included in the em-
bedding. Nonetheless, the number of qubits and couplers used in the generated
embedding are still approximately 4 times that of the 1-qubit adder embedding.

This embedding does not anneal as effectively as the 1-qubit adder. There are
256 valid ground states when the initial state of the output qubits are constrained
to zero. Only 16 of these are ground states are found within 10,000 samples.

3.5 Multiplication Circuit for 2-Qubit Numbers

Fig. 12: 2-qubit multiplication circuit
The quantum circuit pictured in Figure 12 takes 2-qubit numbers, a1a0 and

b1b0, as input and computes their product p3p2p1p0. The embedding generated
from a Qiskit script defining this quantum circuit comprises 200 physical qubits
and 262 couplers, 142 of which were used for inter-gate connections. In related
work, an embedding for a 3-bit multiplication function was implemented by
making appropriate connections between single cell embeddings for full adder,
half adder, and AND functions [4]. An embedding for a 2-bit multiplication
function constructed in this way would comprise 4 AND embeddings and 2
half adder embeddings, which require 28 qubits and 32 couplers between them.
Assuming a similar chaining scheme, about 16 qubits and 23 couplers would
be required to connect the minor embeddings. Therefore, the embedding would
require approximately 44 qubits and 55 couplers. Compared to this embedding,
the embedding generated here uses about 6 times the amount of qubits, and
about 3 times the number of couplers. Note that, as in the case of the 4-qubit
adder, qubits in gate cells G9, G10, and G17 were down on the D-Wave machine,
and so these cells were not used. This resulted in extra qubits and couplers being
included in the generated embedding.

This embedding anneals as expected. If the initial state of output qubits and
temporary qubits, t0 and t1, are constrained to zero there are 16 valid results.
All 16 results have been obtained in 10,000 samples.
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4 Conclusion

We contributed an automatic translation scheme from a set of quantum gates,
expressed as a Qiskit circuit suitable for execution on the IBM Q platform, to an
adiabatic circuit with an equivalent single-degree 2-local Ising Hamiltonian that
is embedded on a chimera graph and expressed as an Ocean program suitable
for D-Wave 2000Q execution. Experiments indicated that the generated target
circuits were using six times more qubits and three times more couplers than
the source circuits. In future work, we plan to develop optimization techniques
to reduce the number of resources required by exploiting inter-gate embeddings
within unused couplers of a cell representing a gate and by reducing qubits by
fusing gates together. We also intend to further extend the set of gates suitable
for adiabatic transformation in circuits.
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5 Appendix: Sample Qiskit Program

The sample Qiskit program below defines the 1-qubit adder circuit described
in Section 3.1. Note that the imports have been modified to indicate the use
of the gate-circuit-to-annealer embedding translator (i.e., ’converter.qiskit’
replaces ’qiskit’). This is the only modification that is required to run a Qiskit
program with our translator code.

from converter.qiskit import QuantumRegister, ClassicalRegister
from converter.qiskit import QuantumCircuit, execute

# Input Registers: a = qi[0]; b = qi[1]; ci = qi[2]
qi = QuantumRegister(3)
ci = ClassicalRegister(3)

# Output Registers: s = qo[0]; co = qo[1]
qo = QuantumRegister(2)
co = ClassicalRegister(2)

circuit = QuantumCircuit(qi,qo,ci,co)

# Define adder circuit
for idx in range(3):

circuit.ccx(qi[idx], qi[(idx+1)%3], qo[1])
for idx in range(3):

circuit.cx(qi[idx], qo[0])
circuit.measure(qo, co)

# Run
execute(circuit)

In this program, the QuantumRegister and ClassicalRegister classes are
identical to those used by a regular Qiskit program. The initialization of the
QuantumCircuit object following the register initializations is identical to that
of a regular Qiskit program except that an instance of the AnnealerGraph class
is initialized within it as an attribute.

The Toffoli and C-NOT gate methods (ccx and cx, respectively) build the
qubitbiases and couplerstrengths dictionaries that define the embedding and
are used as arguments to the D-Wave Ocean compilation method called in the
execute method. Truncated versions of the qubitbiases and couplerstrengths
dictionaries constructed by the Qiskit program above are shown below. The keys
of these dictionaries indicate a given qubit or coupler between qubits, and the
entries indicate the bias of the qubit or strength of the coupler.

qubitbiases = {397: 5, couplerstrengths = {(393, 397): -10,
393: 10, (394, 398): -10,
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398: 5, (392, 399): -13,
394: 10, (395, 396): -9,
396: 9, (395, 397): -4,
399: 8, (395, 398): -5,
392: 13, (395, 399): 9,
395: 9, (392, 396): -7,

... ...
293: 10, (168, 172): -14,
301: 10, (168, 175): -4,
299: 10, (169, 172): -4,
171: 11, (168, 173): 4,
175: 6, (171, 175): -11,
173: 1, (171, 173): -2,
168: 9, (169, 175): 2,
172: 9} (169, 173): -2}

The measure method is used as an indication that a given qubit register is
considered a circuit output, which aids in organizing the results. The execute
method makes final modifications to the embedding definition given by the
qubitbiases and couplerstrengths dictionaries, runs the embedding on D-
Wave 2000Q hardware and reports the result. When the execute method is
called, the user is prompted to answer whether or not initial values of qubits
should be constrained to zero. Qubits are identified using Qiskit’s naming scheme
in the program and by the order with which they appeared in the initialization
of the QuantumCircuit. In the case of the 1-qubit adder above, the user would
like for the initial state of the sum and carry-out qubits be constrained to zero,
and so responds to the prompts from execute as follows:

Constrain input of measured qubit q1_0 to be 0 (y/n)? y
Constrain input of measured qubit q1_1 to be 0 (y/n)? y
Constrain input of unmeasured qubit q0_0 to be 0 (y/n)? n
Constrain input of unmeasured qubit q0_1 to be 0 (y/n)? n
Constrain input of unmeasured qubit q0_2 to be 0 (y/n)? n

The initial state of a qubit is constrained to zero by adding a positive offset
to the bias of the first physical annealer qubit associated with it.

Next, the user is prompted to specify the number of anneals that they would
like to run. For the 1-qubit adder, 400 has been shown to sufficient. After this,
the embedding is constructed using the D-Wave BinaryQuadraticModel method
and annealed via the sample method

bqm = dimod.BinaryQuadraticModel(qb, cs, 0, dimod.BINARY)
response = sampler.sample(bqm, **kwargs)

where qb and cs are copies of the qubitbiases and couplerstrengths dictio-
naries, respectively, and kwargs contains annealing parameters.
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The results of annealing the embedding generated by the Qiskit program
are then reported. The results of the embedding generated by the 1-qubit adder
program above are shown below:

[0, 0, 0, 0, 0]
[0, 0, 1, 1, 0]
[0, 1, 0, 1, 0]
[0, 1, 1, 0, 1]
[1, 0, 0, 1, 0]
[1, 0, 1, 0, 1]
[1, 1, 0, 0, 1]
[1, 1, 1, 1, 1]

Results are presented with inputs on the left and outputs on the right, in the
order that they were listed when QuantumCircuit was initialized. The columns
of the results then, from left to right, correspond to qubits a, b, ci, s, and co.
Note that if the initial state of an output is not constrained to zero by the user,
its initial state is reported as an input.
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