## Synthesis of Approximate Parametric Circuits for Variational Quantum Algorithms **Blake Burgstahler**

### Motivation

> Variational Quantum Algorithms (VQA) are promising in many applications on NISQ devices

Quantum Chemistry and Optimization

Prioritize use of shallow circuits to avoid decoherence  $\succ$  This limits the tractable size of executable circuits

### Problem

- Basic VQA scheme outlined in Figure 2
  - Superposition state
  - > (Repeat) Problem and Mixing Hamiltonians
  - ≻Measure
- $\geq$  QAOA specializes the scheme,
  - $\geq$  2-parameter subcircuits repeated p times
  - > Parameters optimized classically at each iteration
- > Two major issues arise on NISQ hardware
  - $\succ$  Repetitions of the subcircuits linearly increase depth.
  - > Hardware only supports small gate set (may complicate ansatz)







Figure 2: The basic Quantum Approximate Optimization Algorithm (QAOA) routine. https://doi.org/10.1109/QCE52317.2021.00016



- > Two approaches:





> Use existing test circuit suite from NchooseK (maxcut, set cover, map coloring, etc.) > All result circuits submitted to IBM's 27 qubit Hanoi machine > Note: Native Instantiation methods were terminated prior to completion > Unusably slow to instantiate huge number of parameters

Dr. Frank Mueller (NCSU) Dr. Scott Pakin (LANL)

> Synthesis only: synthesize new circuits at each iteration of the optimization Instantiation: Attempt to optimize the parameters of an existing template > Select a representative of minimal CNOT count (favor shallow circuits as necessary)  $\succ$  Optimize the parameters of the representative of using a typical QAOA-like approach.

### Results

- Advantages of new synthesis-based approaches: Comparable depth
- Greatly improves isolation of correct results
- Trends continue into Noisy simulation
- Disadvantages (at scale):
- Synthesis time consuming
- Instantiation presently even slower

NchooseK (github.com/lanl/nchoosek): Computing, Networking, Storage and Analysis, SC '22 https://dl.acm.org/doi/abs/10.5555/3571885.3571902

### Acknowledgements

Research presented on this poster was supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project number 20210397ER and is released under LA-UR-23-27212. Los Alamos National Laboratory is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy (contract no.~89233218CNA000001). This work was also supported in part by LANL subcontract 725530 and by NSF awards DMR-1747426, PHY-1818914, CCF-2217020, and MPS-2120757.

# NC STATE UNIVERSITY



Figure 5: Average depth of resulting circuits

### Conclusions

### References

> E. Wilson, F. Mueller, and S. Pakin, "Combining Hard and Soft Constraints in Quantum Constraint-Satisfaction Systems," in Proceedings of the International Conference on High Performance