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Solution
Ø Our new format: ~10 times faster than the dense format for state vector 
simulation à see Fig 6

Ø Other sparse formats run faster for fewer qubits à see Fig 7
Ø State vector: very inefficient for >14 qubits à use Tensor Networks

Ø But all the dense formats fail to contract the HAM TN for >=18 qubits
Ø Numpy cannot go beyond 16 qubits à see Fig 8

Ø For our format, the last transpose operation takes a very long time
Ø Omitted this step for the 20-qubit run

Ø Opportunity: to simulate larger number of qubits with smaller memory
Ø Challenges: 

Ø Format Conversion operation: dense to our format
Ø Reshape operation: changing shape without moving data
Ø Transpose operation: moving internal data around

Problem
Ø Efficient simulation methods à crucial for quantum algorithms

Ø High cost
Ø Error-prone
Ø Decoherence

  

Ø State Vector method does not scale well
Ø Memory requirements grow exponentially

Ø Tensor Networks 
Ø Break large tensors into a network of multiple tensors 

interconnected by bond interactions
Ø This approach delays the need for greater memory requirements 

until later contraction stages

Ø Conserving Memory à crucial to enable the scalability of quantum 
simulations to large number of qubits

Fig 1: Quantum Simulation Methods

Ø Explore Sparsity Patterns à unique to quantum
Ø Seen in intermediate gates, sub-circuits, or circuit unitaries

Fig 3(b): Some of the intermediate unitary matrices

Fig 2(a): Mermin Bell Pair Generation
Fig 2(b): Unitary

Fig 3(a): Max-Cut (square) QAOA sub-circuit

Ø SupermarQ[3] benchmark suite: (GHZ, Hamiltonian, Mermin-Bell Pair)
Ø Empirical Analysis: Using Qiskit[1] unitaries at each time-step

Ø Naïve chain matrix multiplication à mimick state-vector simulation
Ø Integrated with Quimb[2] for tensor-network based simulation
Ø All tests have been run on a single node: 192GB DDR4, 16 physical 
cores @ 2.50GHz, Cache: L1: 32 KB, L2 cache: 1 MB, L3 cache: 10 MB Ø This serves as a proof-of-concept for the advantages of our approach

Ø Can simulate for larger number of qubits with the same memory

Ø Transpose operation is the bottleneck for tensor network contraction
Ø Demands a better specialized kernel and further optimization

Ø Integrate with simulation libraries like TNQVM[5]
Ø To explore the possibility of bypassing the format conversion step

Ø Exploit these patterns à new sparse data format

Ø Like SciPy[4] DIA but for arbitrary number of diagonals
Ø Offers significant memory savings 
 

Ø Enables linear (or a factor of) spM-spM kernel: O(d × d × n)
where d à number of non-empty diagonals, n à matrix size

Ø Extend this sparse matrix format à matricized tensor format
Ø For tensor network simulations

Ø Sparsity patterns can be seen in tensors (stored as matrices) too

data[diagonal index] ← diagonal elements

Fig 4: Memory requirements across formats for GHZ unitary 
simulation

Fig 5(a): GHZ Circuit Fig 5(b): GHZ Tensor Network
i_{Time Step}_qq{Qubit Number}

Fig 8: Tensor Network contraction comparison across numerical libraries

Fig 7: State vector simulation for 
different formats

Fig 6: Dense vs our format runtime 
analysis
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2. Quimb: Tensor network library; doi: 10.21105/joss.00819
3. SupermarQ: Quantum benchmark suite; doi: 10.1109/HPCA53966.2022.00050
4. Scipy: Scientific computing numerical library; doi: 10.1038/s41592-019-0686-2
5. TNQVM: Tensor Network Quantum Virtual Machine; doi: 10.1145/3547334
COO àCo-Ordinate format, CSR àCompressed Sparse Row format, DIA àDiagonal
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