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Problem Solution Results

» Efficient simulation methods - crucial for quantum algorithms » Exploit these patterns - new sparse data format » Our new format: ~10 times faster than the dense format for state vector

> High cost data[diagonal index] < diagonal elements simulation = see Fig 6
> ErrOr-prone Format Analysis - GHZ Format Analysis - GHZ
> Decoherence > Like SciPy[4] DIA but for arbitrary number of diagonals === |
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Fig 1: Quantum Simulation Methods _ _
» Other sparse formats run faster for fewer qubits - see Fig 7

» State vector: very inefficient for >14 qubits = use Tensor Networks
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> State Vector method does not scale well
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» Memory requirements grow exponentially e n . .
Fig 4: Memory requirements across formats for GHZ unitary HAM TN Unitary Simulation Run-time Analysis
> Tensor Networks simulation 1o
> Break large tensors into a network of multiple tensors > Enables linear (or a factor of) spM-spM kernel: O(d x d % n) —
interconnected by bond interactions where d = number of non-empty diagonals, n = matrix size " E %;Ey(coog)fm
» This approach delays the need for greater memory requirements
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until later contraction stages » Extend this sparse matrix format - matricized tensor format
» For tensor network simulations
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» Conserving Memory - crucial to enable the scalability of quantum
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> Explore Sparsity Patterns - unique to quantum 1 ' o | |
> Seen in intermediate gates, sub-circuits, or circuit unitaries » But all the dense formats fail to contract the HAM TN for >=18 qubits
e Fig 5(a): GHZ Circuit Fig 5(b): GHZ Tensor Network » Numpy cannot go beyond 16 qubits - see Fig 8
----- s _{Time Step}_qq{Qubit Number} > For our format, the last transpose operation takes a very long time
q_0: § Rx(-n/2) |—m . il il I i B L » Sparsity patterns can be seen in tensors (stored as matrices) too » Omitted this step for the 20-qubit run
2‘2; | e e o TP A e e e ] » Opportunity: to simulate larger number of qubits with smaller memory
e e e e K Experiments > Challenges:
Fig 2(a): Mermin Bell Pair Generation — T > SupermarQ[3] benchmark suite: (GHZ, Hamiltonian, Mermin-Bell Pair) > Format Convers.lon operatllon: dense tc? 20 formgt
Fig 2(b): Unitary > Empirical Analysis: Using Qiskit[1] unitaries at each time-step > Reshape gperation: changllng.shape without moving data
0 W . Rx (3.9587) > Naive chain matrix multiplication = mimick state-vector simulation > Transpose operation: moving internal data around
i . n Rx (3.9987) » Integrated with Quimb[2] for tensor-network based simulation -
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12 . 1212.933%)  |2z2.9393) L0 T > All tests have been run on a single node: 192GB DDR4, 16 physical Conclusion and Future Work
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o 3(a) MaxcCut | QAOA sub-cireui cores @ 2.50GHz, Cache: L1: 32 KB, L2 cache: 1 MB, L3 cache: 10 MB 5 This serves as a proof-of-concept for the advantages of our approach
g ota). Max-Lutisquare sub-clreul > Can simulate for larger number of qubits with the same memor
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Fig 3(b): Some of the intermediate unitary matrices COO - Co-Ordinate format, CSR - Compressed Sparse Row format, DIA = Diagonal » To explore the possibility of bypassing the format conversion step
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