

- \succ Efficient simulation methods \rightarrow crucial for quantum algorithms
 - > High cost
 - **Error-prone**

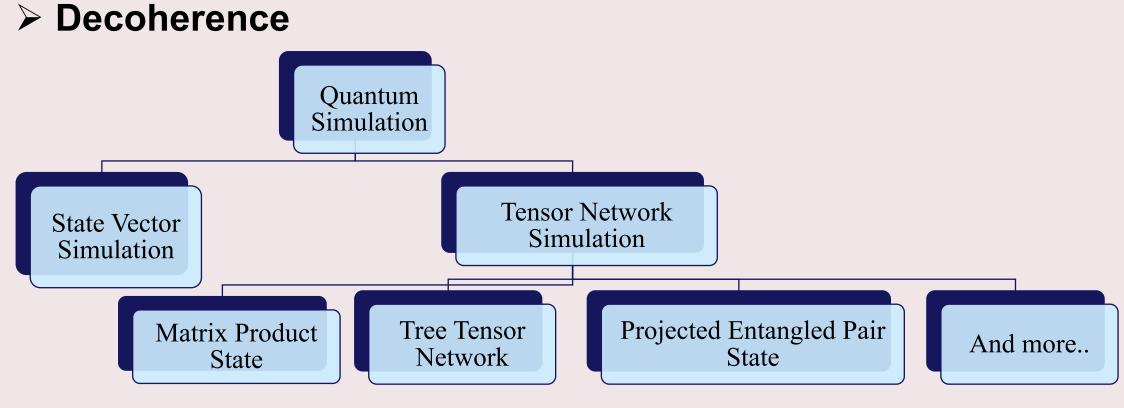
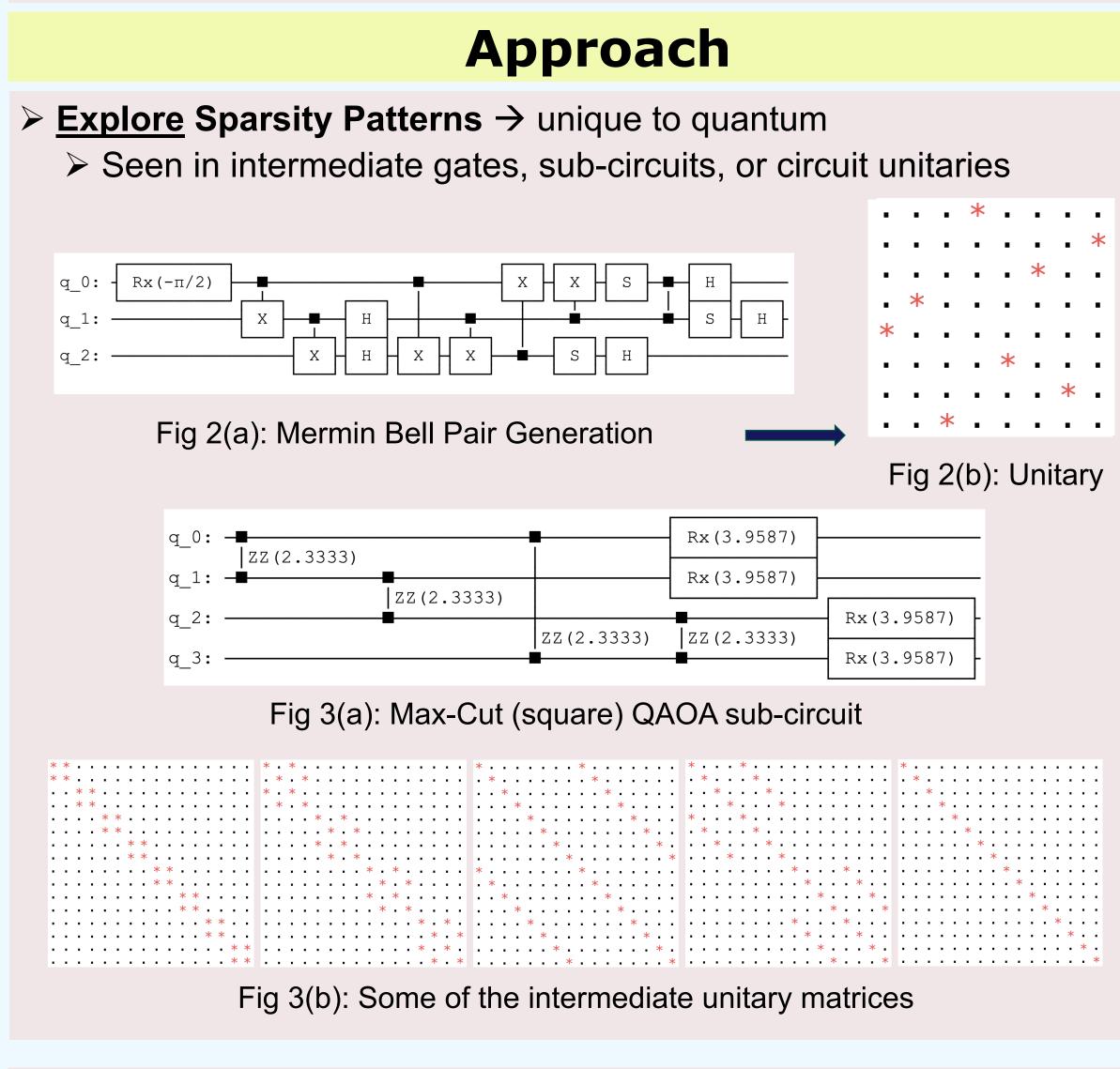


Fig 1: Quantum Simulation Methods

- State Vector method does not scale well
 - > Memory requirements grow exponentially
- > Tensor Networks
 - > Break large tensors into a **network** of multiple tensors interconnected by bond interactions
 - > This approach **delays** the need for greater memory requirements until later contraction stages

 \succ Conserving Memory \rightarrow crucial to enable the scalability of quantum simulations to large number of qubits



This work was supported in part by NSF awards DMR-1747426, PHY-1818914, MPS-2120757, and CCF-2217020. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-000R22725.

A Novel Approach to Sparsity in Quantum Simulations Srikar Chundury^{1,2}, In-Saeng Suh², and Frank Mueller¹ ¹ Department of Computer Science, North Carolina State University

² National Center for Computational Sciences, Oak Ridge National Laboratory

 \succ **Exploit these patterns** \rightarrow new sparse data format

data[diagonal index] \leftarrow diagonal elements

Like SciPy[4] DIA but for arbitrary number of diagonals > Offers significant memory savings

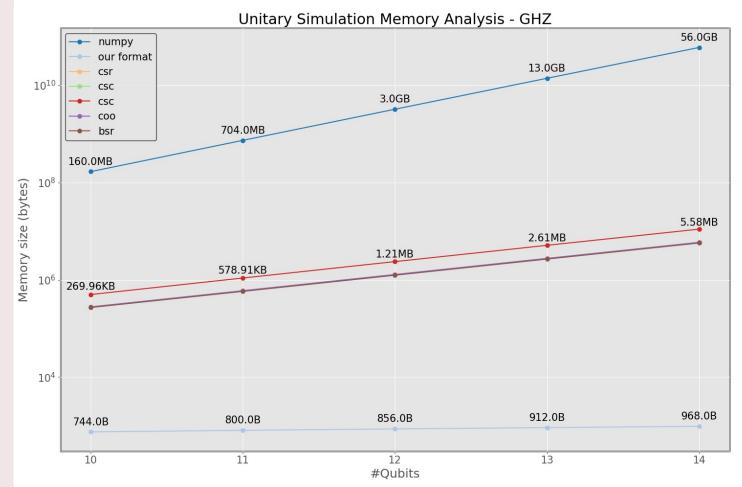


Fig 4: Memory requirements across formats for GHZ unitary simulation

Enables linear (or a factor of) spM-spM kernel: O(d × d × n) where d \rightarrow number of non-empty diagonals, n \rightarrow matrix size

 \succ **Extend** this sparse matrix format \rightarrow matricized tensor format For tensor network simulations

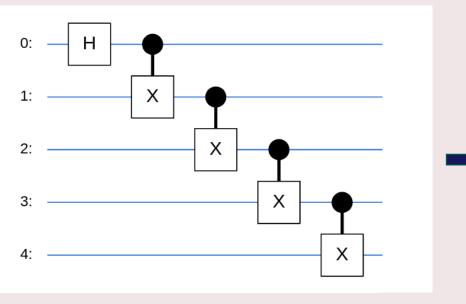
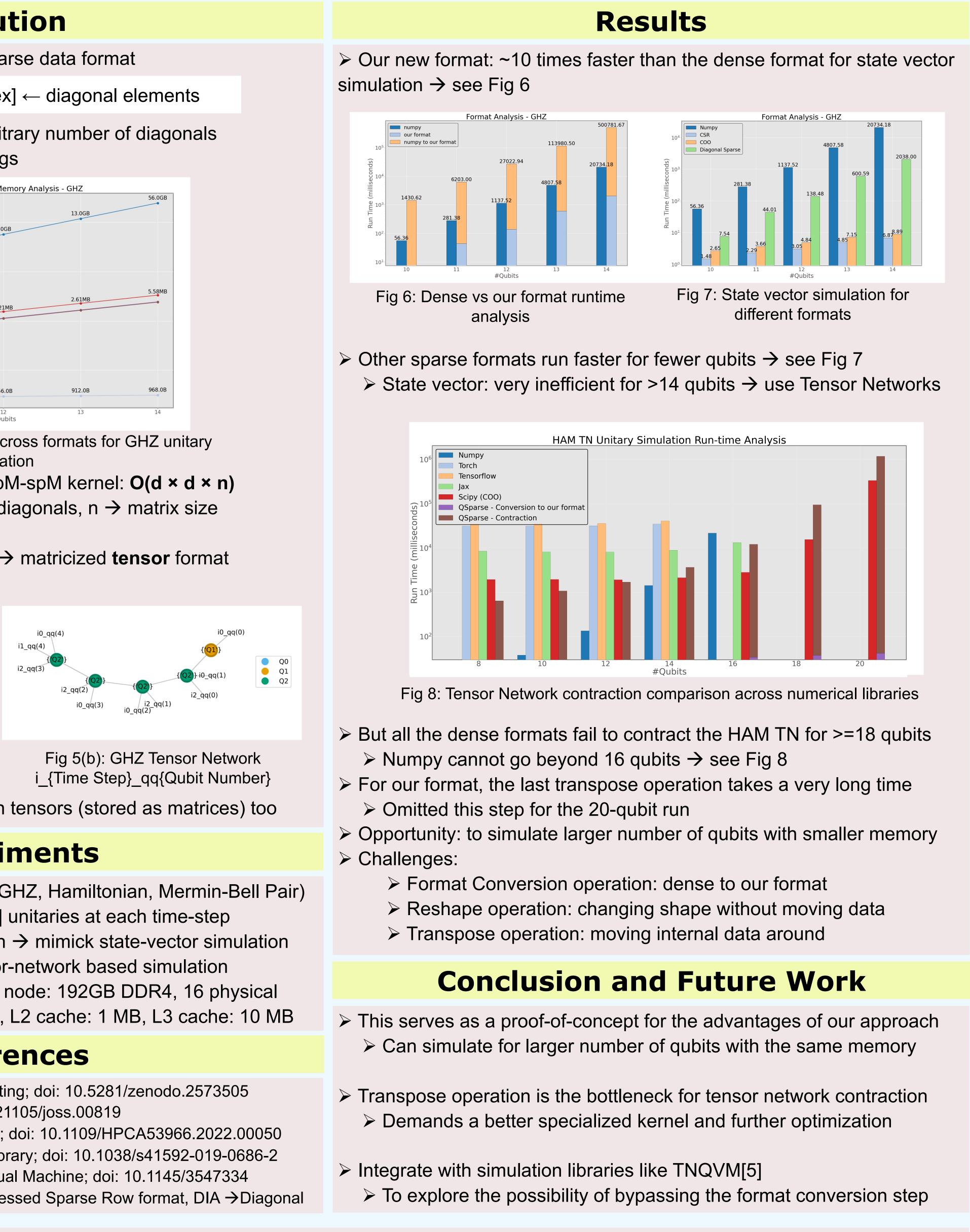


Fig 5(a): GHZ Circuit



> Sparsity patterns can be seen in tensors (stored as matrices) too

Experiments

> SupermarQ[3] benchmark suite: (GHZ, Hamiltonian, Mermin-Bell Pair) > Empirical Analysis: Using **Qiskit[1]** unitaries at each time-step \succ Naïve chain matrix multiplication \rightarrow mimick state-vector simulation

Integrated with Quimb[2] for tensor-network based simulation > All tests have been run on a single node: 192GB DDR4, 16 physical cores @ 2.50GHz, Cache: L1: 32 KB, L2 cache: 1 MB, L3 cache: 10 MB

References

- 1. Qiskit: Framework for Quantum Computing; doi: 10.5281/zenodo.2573505
- 2. Quimb: Tensor network library; doi: 10.21105/joss.00819
- 3. SupermarQ: Quantum benchmark suite; doi: 10.1109/HPCA53966.2022.00050
- Scipy: Scientific computing numerical library; doi: 10.1038/s41592-019-0686-2
- 5. TNQVM: Tensor Network Quantum Virtual Machine; doi: 10.1145/3547334

 $COO \rightarrow Co-Ordinate$ format, CSR $\rightarrow Compressed$ Sparse Row format, DIA $\rightarrow Diagonal$

