
QisDAX: An Open Source Bridge from Qiskit to
Trapped-Ion Quantum Devices

Kaustubh Badrike∗§, Aniket S. Dalvi†, Filip Mazurek†, Marissa D’Onofrio†, Jacob Whitlow†,
Tianyi Chen‡, Samuel Phiri†, Leon Riesebos†, Kenneth R. Brown† and Frank Mueller∗§

∗Department of Computer Science, North Carolina State University, Raleigh, NC
†Department of Electrical and Computer Engineering, Duke University, Durham, NC

‡Department of Physics, Duke University, Durham, NC
§Email: {kjbadrik,fmuelle}@ncsu.edu

Abstract—Quantum computing has become widely available to
researchers via cloud-hosted devices with different technologies
using a multitude of software development frameworks. The
vertical stack behind such solutions typically features quantum
language abstraction and high-level translation frameworks that
tend to be open source, down to pulse-level programming.
However, the lower-level mapping to the control electronics,
such as controls for laser and microwave pulse generators,
remains closed source for contemporary commercial cloud-hosted
quantum devices. One exception is the ARTIQ (Advanced Real-
Time Infrastructure for Quantum physics) open-source library
for trapped-ion control electronics. This stack has been com-
plemented by the Duke ARTIQ Extensions (DAX) to provide
modularity and better abstraction. It, however, remains discon-
nected from the wealth of features provided by popular quantum
computing languages.

This paper contributes QisDAX, a bridge between Qiskit and
DAX that fills this gap. QisDAX provides interfaces for Python
programs written using IBM’s Qiskit and transpiles them to
the DAX abstraction. This allows users to generically interface
to the ARTIQ control systems accessing trapped-ion quantum
devices. Consequently, the algorithms expressed in Qiskit be-
come available to an open-source quantum software stack. This
provides the first open-source, end-to-end, full-stack pipeline
for remote submission of quantum programs for trapped-ion
quantum systems in a non-commercial setting.

I. INTRODUCTION

Development of a practical quantum computer demands a
well-designed, modular software architecture that considers all
layers of a vertical stack, from the programming language
to the qubit-specific hardware [1]–[3]. However, the field is
currently dominated by a variety of architectures, where at
least some components of their software stacks are customized,
at lower levels in industry generally proprietary, and often
without a path to cross-platform compatibility.

One source of this incompatibility comes from proprietary
hardware components, such as microwave pulse generators and
lasers, that are decoupled from the higher-level, hardware-
agnostic layers of the software stack. Furthermore, their
controls tend to be closed-source. An alternate, open-source
design can instead be promoted by this type of decoupled
stack, which enables better abstraction as well as cross-
platform compatibility.

An increasingly popular, open-source quantum control sys-
tem is ARTIQ (Advanced Real-Time Infrastructure for Quan-

tum physics), a software framework with dedicated, open-
source control hardware [4], [5]. The ARTIQ stack is com-
plemented by DAX (Duke ARTIQ extensions) [6], a device
abstraction developed to provide high-level, modular utilities
for controlling trapped-ion systems. However, in ARTIQ-based
quantum computers, the rich capabilities offered by popular
quantum computing languages are not accessible to lower
layers of the computing stack.

This work contributes QisDAX to bridge this gap. QisDAX
facilitates an interface between DAX and Qiskit [7], [8],
allowing the entire quantum computation workflow for a
trapped ion system to be incorporated into a single open-
source, full-stack pipeline. A wide variety of Qiskit algorithms
and frameworks therefore become accessible to DAX users
and can be applied to a new set of backend devices, such as
trapped-ion systems and simulators. By exporting results in
Qiskit-compatible objects, QisDAX also facilitates classical
result analysis or processing in a hybrid environment with
repeated quantum kernel invocations.

Python programs written using Qiskit are transpiled via
QisDAX for the DAX abstraction, which includes paralleliza-
tion of gates wherever possible to reduce circuit depth. Qis-
DAX then remotely submits these programs to the respective
quantum device or runs them in simulation. One open-source
backend accessible through QisDAX is CRYO-STAQ, a DAX-
based trapped-ion quantum computing system hosted at Duke
University.

The contributions of this work can be summarized as
follows:

• We create a software bridge between Qiskit and DAX.
• We develop an algorithm to reduce circuit depth by

parallelizing gates within the capabilities of a given
backend device.

• We facilitate interactions between quantum and classical
processors in order to evaluate results and realize hybrid
quantum-classical computing.

• We allow verification of transpiled code by adding sim-
ulator backends.

• We evaluate our software stack both with a real quantum
device and a simulator backend.

• We demonstrate the capability of the pipeline to remotely
execute programs written in Qiskit on an academically



hosted quantum computer.
Overall, we provide an open-source software stack, spanning
from quantum languages to low-level devices, that allows
remote execution of programs on an academically-hosted
quantum computer. The open-source software artifact is avail-
able to the public [9].

II. BACKGROUND

A. Qiskit

Qiskit is an open-source software development kit that
simplifies the ability to compose, run, and analyze quantum
circuits and programs [8], [10], [11]. Qiskit is currently the
most widely used software stack for quantum cloud computing
and is applied to a wide body of commercial and academic
research [12], [13]. Recent extensions have added abstractions
for entire algorithms plus domain-specific APIs (e.g., opti-
mization, finance, machine learning and chemistry) [14], [15],
as well as pulse-level programming [16].

The Qiskit software can be used for simulating circuits on
classical devices via Qiskit Aer, as well as interfacing to a suite
of IBM Quantum devices through the Qiskit Terra library. The
Terra library provides transpilers for circuit optimization and
translation to suitable data structures and interfaces. QisDAX,
the contribution of this work, decouples the Qiskit Terra ab-
straction from IBM Quantum backends and instead transpiles
down to DAX.

B. Duke ARTIQ Extensions (DAX) Architecture

DAX builds upon the ARTIQ infrastructure developed by
M-Labs and NIST [5]. The program flow of ARTIQ and
its dedicated FPGA hardware allows for real-time control
with nanosecond precision over quantum physics experiments.
However, due to ARTIQ’s genericity, quantum computing
stacks based on this infrastructure often develop quite mono-
lithic and system-specific control software.

DAX is a software framework that can reduce kernel over-
head and increase modularity and portability between ARTIQ
experiments [6]. DAX also provides high-level utilities and
is currently used as the control system framework at Duke
University, the University of Waterloo, and the University of
Sydney, among others. As a result of the framework’s growing
popularity in academic institutions, libraries such as QisDAX
will make the systems more accessible to users.

In the DAX framework, users build modular control soft-
ware by grouping system functionality into modules and
services. Modules are self-contained and control zero or more
related devices to perform basic procedures. E.g., a trap
module may control the voltages applied to ion trap electrodes,
in order to change the field shape about the ions. Modules are
limited in control to the devices which they contain, i.e., they
cannot share devices. Modules are added to a central registry
of a system, so they can be found by services.

Services are components that control multiple modules. Any
single module may be controlled by multiple services. E.g.,
a service that loads ions into a trap may control the trap
module to set electrodes so that they form a suitable trapping

gradient, an ablation module that pulses a laser at an
ablation target, and a cw module that controls the continuous-
wave lasers used to ionize and cool the ablated atoms.

DAX clients further increase code reusability. Clients are
generic experiments that, at runtime, combine with system-
specific code for execution, allowing for high-level code
transfer between systems. One such client is DAX.program,
which implements an Operation Interface containing
functions for common gate-level quantum operations with
explicit timing control. The DAX architecture is depicted in
Fig. 1.

DAX.program-sim is an addition to DAX.program allowing
for classical simulation of quantum systems, with its pipeline
designed to be identical to the one that runs on quantum hard-
ware [17]. This simulator framework is considered a canonical
backend for any program written using DAX.program and
provides a reliable test bench for programs converted using
QisDAX.

Fig. 1. Schematic overview of how DAX architecture combines with ARTIQ
to control a quantum system, in this case a trapped ion device. This figure
has been taken from [6].

III. DESIGN

The overall design objective of QisDAX is to provide users
the experience of the Qiskit platform, which combines circuit
abstractions with result evaluations. This means that the same
data structures used by Qiskit should be made available by
QisDAX, regardless of the underlying lower levels of the
quantum software stack.

A. Software Design Challenges

Both Qiskit and DAX are designed as Python libraries,
but they differ in their structure. These differences pose the
following challenges:

1) A Qiskit program supports heterogeneous backends
through providers. DAX, our immediate target, does not
package a provider and only targets ARTIQ.

2) Qiskit represents circuits as Directed Acyclic Graphs
(DAGs). As these DAGs do not translate directly to the
DAX representation, we propose a novel, time-sliced ap-
proach. DAX provides various scoping constructs to more
explicitly define the ordering of instructions within a
circuit, indicating whether they may execute sequentially
or in parallel. DAGs may be non-planar, but the scoping
constructs expressed within a program are required to be
planar.

3) The results of a DAX program are expressed as a vector
of measurement values, many of which may be extending



across multiple channels simultaneously. For the results
to be usable by any workflow that analyzes results from
a Qiskit program, this representation must be converted
to a Qiskit Result object representation.

4) Resource constraints for hardware controls are not ex-
plicit for Qiskit, as circuits operate on virtual qubits. In
contrast, DAX programs operate on physical qubits with
explicit specification of parallel execution of gate sets
using shared resources, e.g., see resources in Sect. IV.

While these constraints are specific to DAX and ARTIQ,
the aim of QisDAX is to provide a software layer that can be
re-targeted to lower levels of other control stacks for ion traps,
or even to control stacks using different a quantum device type
such as neutral atoms.

B. Design Solutions

QisDAX provides the following solutions to the above
challenges, while considering the design objectives:

1) We provide a transpilation component from a Qiskit pro-
gram to a DAX program while considering the available
resource types.

2) We provision the required interfaces and objects com-
patible with Qiskit for heterogeneous quantum/classical
processing, namely provider and job abstractions.

3) We instantiate the DAX layer with hardware-specific op-
tions compatible to the Qiskit program, where a provider
can be chosen from (i) the ion trap device or (ii) a
simulator instance.

4) We facilitate the conversion of job results by transforming
the DAX execution results through a component to Qiskit
compatible objects.

We subsequently verify the correctness of this translation
by validating the generated circuits under simulation via the
DAX.sim [18] and the DAX.program-sim components. We
further demonstrate the capability of our approach via circuit
execution on trapped-ion quantum computer.

C. Circuit representations

Circuit representations must preserved in their semantics
through the vertical layers of the software stack as part of
the transpilation process, yet they should be compliant with
existing Qiskit inspection and visualization capabilities.

1) Visualizing a circuit: Qiskit provides utility functions to
display QuantumCircuit objects rendered as text, matplotlib,
or even LATEX. The rendered circuit consists of a (time) line
for every qubit, with gates as blocks spanning the lines for
the qubits they operate on and additional representations for
operations such as measuring (see Fig. 2) and barriers. This
representation has to be preserved by lower layers, where
virtual qubits can be mapped to physical ones.

2) Qiskit DAG: A circuit can be represented as a DAG
consisting of inputs, outputs and operations as nodes and
directed edges that correspond to gates and qubits (see Fig. 3).
The depicted information may be enhanced by device-specific
details such as operational parallelism, timing constraints and
mappings to physical qubits when generating optimal DAX

Fig. 2. A Qiskit circuit rendered using matplotlib renderer showing a
Hadamard gate, a Controlled-X gate, a single qubit measurement to a classical
register of size 3, and a Z rotation gate in order from left to right.

representations. On top of optimizations specified for the
Qiskit transpiler, QisDAX provides only the trivial layout of
mapping the i-th virtual qubit to the ith physical qubit. A
cost (in terms of gates) and noise-aware mapping could be
integrated as a post-processor at a later time to implement
code optimization strategies.

Fig. 3. Qiskit DAG

3) DAX: DAX extends the ARTIQ circuit representation
as a program, i.e., a sequence of gates using the explicit
program scoping constructs with sequential and with
parallel to support the specification of gate parallelism at
the level of physical qubits. Each scope may contain multiple
instructions or other nested scopes. Instructions and scopes at
the root level of a sequential scope are guaranteed to execute
in the order they appear. For a parallel scope, the instructions
and scopes at the root level may execute in parallel, subject to
resource availability. In other words, any subset of gates with
logical concurrency in a program can be executed utilizing
physical parallelism. In a noise-free environment, this adjust-



ment would always result in the same quantum state regardless
of the amount of actual parallelism (from none to all logically
concurrent gates in parallel). However, in noisy environments,
the result is a trade-off in which a system may be adversely
affected by an increase in parallelism while simultaneously
benefiting from lower decoherence due to decreased circuit
depth.

IV. IMPLEMENTATION

Details specific to the software packages Qiskit, DAX, and,
to a lesser extend, ARTIQ, influence implementation choices
under the objectives of the QisDAX project.

A. Software Stack

QisDAX serves as a bridge between two projects, Qiskit and
DAX. Qiskit serves as the input and surrounding driver pro-
gram. DAX provides a number of utilities that interface with
the lower-level ion-trap quantum hardware and simulators.

Qiskit

Qisdax

ARTIQ DAX.program
simulator

Ion trap

Functional
simulator

Pulse
simulator

Qiskit Aer

DAX

Fig. 4. Software stack

B. QisDAX Components

We ensure maximum interoperability with pre-existing
Qiskit programs and minimum refactoring by providing the
following utilities:

• DAXProvider: A counterpart to the Qiskit IBM [Q]
provider, which ordinarily serves as a reference to access
IBM Quantum backends, whereas ours refers to an ion
trap device.

• DAXSimulator: An alternate backend that simulates the
results of the DAX program execution transpiled down
from Qiskit, by utilizing the DAX program simulator.

• DAXPrinter: A backend used for generating the DAX
program without executing it. All results are reported in
the ground state.

• DAXArtiq: A backend for executing circuits on sup-
ported quantum hardware. Backend can be configured
through a resource configuration file for the network ad-
dress and destination filesystem of the device controller.

• DAXJob: The base class for QisDAX jobs specifying the
execution pipeline for circuits. It is also responsible for
converting results back to Qiskit-compatible objects.

• DAXSimJob: Dispatches circuits to the DAX program
simulator. It is derived from DAXJob.

• DAXPrintJob: Displays DAX code to stdout. It is also
derived from DAXJob.

• DAXArtiqJob: Dispatches circuits to the configured
ARTIQ-compatible backend. Requires network address
information for the backend.

• qobj to dax: Converts a Qiskit QasmQobj to the equiv-
alent DAX program.

imports

Qiskit
program

get_backend

DAXProvider

execute

DAXSimulator
or DAXPrinter

result

DAXJob

qobj_to_dax

DAX program

Simulator

Code
Printer

DeviceJob Type

run_sim
DAXSimJob

WriteDAXPrintJob

Qiskit.Result

data_context
DAX-compatible

simulator

stdout

run_artiq
DAXArtiqJob

retrieve_result
ARTIQ

get_raw_data

Fig. 5. QisDAX architecture

These utility classes are used to dispatch the circuits to
the specified backends, including the circuit definition and all
subsequent classical computations, which are handled as if
processed by the IBM Quantum backend. As the backend is
abstracted, both the input to the backend and the subsequent
Qiskit result object do not need to be transformed but are fully
compatible (see Fig. 5 for execution stages).

C. Resource Configuration

Resources availability can be configured through a resource
specification file, resources.toml, in TOML format. The TOML
specification provides an association through key-value pairs.
QisDAX supports the following configuration options:

• total lasers: Indicates the total number of lasers available
for the trapped ion device. This number is assumed to
account only for the lasers realizing gate operations, but



not others used for cooling, measurement, etc. Note that
we assume no constraints on the other laser types. This
allows flexibility for operations such as measurement,
assuming no upper bound for simultaneous measurement
operations and future enhancements for handling of mid-
circuit measurements or qubit re-initializing.

• total mirrors: Provides the total number of mirrors avail-
able to the trapped ion computer. (Note that mirrors are
specific to ion traps utilizing Micro-electromechanical
systems (MEMS) technology [19]).

• relative time: Comma-separated list of relative times for
executing the n-qubit gate, where n is the 1-based index
of the timing value in the list.

• lasers: The number of lasers required to perform the gate
on the circuit. Used in a TOML table for a particular
gate.

• mirrors: The number of mirrors required to perform the
gate on the circuit. Used in a TOML table for a particular
gate.

D. Converting to DAX

1) Restructuring Gates: We restructure the linear timeline
from Qiskit to a list of layers. Each layer in turn is a list
of lists for each qubit. We utilize an approach similar to a
breadth-first search over the DAG, adding parallel blocks to a
sequential root block. Instructions are added to the parallel
block spanning the entire circuit as individual sequential
blocks for every qubit.

The pseudocode for the algorithm is shown in Algorithm 1:
The algorithm uses the following functions:
• get qb indices: Returns a priority ordering of the qubit

indices, ordered as the qubit with the longest remaining
depth first. This also takes in account the relative time
comparing single qubit and 2 qubit gates.

• should add: Returns a tuple of a boolean and integer. If
the first value is True, the gate is to be inserted in the
current parallel layer. Note that in our implementation, the
first value is always True for the first gate for every qubit
in the layer. If the gate is not the first, the gate is added if
the difference in depth for the particular qubit in the layer
and the maximum depth for any qubit in the layer does
not increase, ensuring uniform depth distribution across
qubits. Adding the first gate for any qubit is the only
exception, which ensures that the layer is not empty,

• resource cnt: Returns a dictionary of the gate resources
required to execute a particular layer. Since the gate
execution may be concurrent, it is the type-wise (mirrors,
lasers, etc.) total of resources across all the gates in a
layer.

• resource check: Returns True if the resources required
for the layer may be fulfilled by the available resources.

The algorithm works in a step-by-step manner:
i. Initialize total gates as the count of all the gates to be

scheduled and next indices as the indices of the gates to
be scheduled next.

Algorithm 1 QisDAX restructuring algorithm
1: procedure GET PARALLELIZED LAYERS(instrs, resources)
2: parallelized layers ← []
3: while instrs are unvisited do
4: while resources available and instr queues for all
5: qbs have not been marked unavailable do
6: layer ← get next layer(instrs, resources)
7: parallelized layers.append(layer)
8: return parallelized layers
9: procedure GET NEXT LAYER(instrs, resources)

10: for qb index =
11: get qb indices(instrs, next indices, resources) do
12: layer ← []
13: for qb ∈ 1 to qbs do
14: layer.append([])
15: sequence ← instrs[qb index]
16: if instr is last for qb then
17: mark instr queue as unavailable
18: continue
19: instr ← sequence[next indices[qb index]]
20: flag ← True . True if the succeeding loop does not

break
21: for participant ∈ instr.qbs do
22: if instr != participant.next then
23: mark instr queue as unavailable
24: flag ← False
25: break
26: if flag then
27: is first gate ← instr = layer.first for all participants
28: should add, new width ←
29: should add(instr, layer, is first gate)
30: if should add then
31: add instr to layer for all participants
32: resource cnt ← resource cnt(layer, resources)
33: resource check ←
34: resource check(resource cnt, resources)
35: if resource check then
36: for participant ∈ instr.qbs do
37: next indices[participant] += 1
38: if new width > max width then
39: max width ← new width
40: mark participant layers as unavailable
41: else if new width = max width then
42: mark participant layers as unavailable
43: else
44: Remove instr from all participants
45: resources unavailable
46: break
47: else
48: mark participant layers as unavailable
49:
50: return layer

ii. For generating each layer, keep track of the participation
of each qubit (first gate), whether the next gate has for
each qubit has already been considered for the current
layer (width checked), the max depth for any qubit in the
current layer (max width), and whether the current layer
has exhausted all available resources(resource exhausted).

iii. Prioritize qubits with longer remaining depths to add to
the current layer. Add the next gate for the highest priority
qubit to the layer if there are enough resources and if



it is either the first gate for the qubit in the layer or if
the difference between the layer depth and depth of the
deepest layer does not change.

iv. Continue adding gates to the layer, keeping track of the
depth for each qubit. If the maximum depth for a layer
changes, reset the depth tracker for all the layers.

v. Continue adding layers to the root list until all the gates
from the circuit have been included.

2) Handling Multi-qubit Gates: With the restructuring ap-
proach discussed above, we assume that each qubit has in-
dependent gate sequences. However, there may exist intersec-
tions in the form of multi-qubit gates. We mitigate this by
splitting a layer into sub-layers, with a multi-qubit gate as the
latter boundary of the preceding split.

3) Serializing to DAX Code: The QisDAX representation
is that of a nested list of lists. At each level, we have:

i. A collection of sub-layer organizer lists. The total time
for each qubit in the layer is approximately equal to the
other qubits, except for the last layer. They are realized as
with_parallel scopes. The root context is assumed
to be sequential.

ii. A collection of sub-layer lists. They are realized as
with_sequential scopes to ensure the relative order
before and after a multi-qubit gate.

iii. A collection of a list of gates for each qubit. They are
realized as with_parallel scopes, as qubits in a sub
layer are independent except for the final gate, which may
be multi-qubit.

iv. A collection of gates for each qubit. They are wrapped in
a with_sequential scope, executed in the order they
appear in the Qiskit circuit.

The DAX program is rendered through a Jinja template.
However, the loops do not exist in the template itself. Instead,
they are preprocessed and injected in the template as a string,

E. Measurement

DAX supports simultaneous measurement of multiple qubits
while maintaining all intermediate measurement results in
memory. A measurement extraction from a DAX data context
simply consists of a nested list of integer values, one for each
qubit channel being measured. When converting to DAX, the
register information for the corresponding measurement gates
is stored. Each value from the DAX data context can then
be mapped to its corresponding Qiskit register in the Qiskit
Result object.

V. EXAMPLE

A. Original circuit

As an example, we choose the Simon’s algorithm [20]
applied to a bitstring of 110 (see Fig. 6 for the quantum
circuit).

B. Circuit after Transpilation

We transpile the above circuit via QisDAX with the resource
configuration as specified by Listing 1.

Fig. 6. Circuit for Simon’s algorithm

Listing 1 Sample resource configuration for Simon’s algorithm
1 total_lasers = 5
2 total_mirrors = 5
3 relative_time = '1,2,4'
4

5 [x]
6 lasers = 1
7 mirrors = 1
8

9 [h]
10 lasers = 2
11 mirrors = 2
12

13 [cx]
14 lasers = 2
15 mirrors = 2

We then obtain a representation for the circuit as seen in
Fig. 7. Each colored box of gates is a layer executed within
a with_parallel scope. This representation will then be
serialized to DAX.

Fig. 7. DAX representation for Simon’s algorithm
For the first layer, we schedule the Hadamard gates to be run

on the first and second qubits from the top. When executed in
parallel, these utilize 4 of the 5 available lasers. We then add
the Hadamard on the third qubit in the next layer. Similarly,
we obtain layers for the subsequent CNOTs. Barriers always
terminate the current layer.

Note that the relative ordering of the gates may change,
while preserving logical order. This is a result of the priority
ordering of the qubits based on the length of the remaining
circuit during processing the subsequent gates. Some of the
qubits are non-engaged in some layers, even though gates are
assigned to them in the immediately succeeding layer. This is



intentional, and inspecting the resource files reveals that the
layers where qubits are inactive may have already exhausted
the available resources.

C. Reshaping Raw Data to a Results Object

The data context stores measurement results as a nested
list of values. For our example above, it stores results for
each store_measurement invocation and for the qubit
channel(s) specified by the parameter. For x shots and y
measurements, we have x ∗ y measurements returned by
the data context. Each measurement result returned by the
data context is independent of the specified Qiskit register
associated to store the result. Hence, we additionally maintain
the order of registers in which measurements are to be reported
in the Qiskit context, overwriting registers as necessary.

D. Understanding scoping constructs

While the previous example considers a small number
of available resources on a simpler circuit, we get optimal
parallelization by just scheduling gates using a first-come-
first-served policy on each qubit, until we exhaust resources.
However, for complicated circuits running on devices with a
larger number of available resources, we also consider sub-
circuit parallelization. Consider the resource configuration as
outlined by Listing 2.

Listing 2 Resource configuration for demonstrating scoping
structure

1 total_lasers = 20
2 total_mirrors = 20
3 relative_time = '1,4,10'
4

5 [x]
6 lasers = 1
7 mirrors = 1
8

9 [h]
10 lasers = 2
11 mirrors = 2
12

13 [cz]
14 lasers = 4
15 mirrors = 4
16

17 [ccx]
18 lasers = 6
19 mirrors = 6

This represents a circuit with a possible scoping arrange-
ment overlaid as colored boxes, as depicted in Fig. 8.

1) The red boxes denote the parallel context of a layer, in a
root sequential context.

2) The blue boxes are sequential contexts to organize the
contents of a layer in the parallel context of the layer
itself. These contexts are defined groups of qubits that
execute completely independently of other sibling con-
texts in the layer.

3) The green boxes are parallel contexts within the parent
sequential context (blue). These are used when the exe-
cution timelines of multiple qubits concur to execute a

Fig. 8. Circuit with nested scopes

multi-qubit gate, after which they may resume indepen-
dent execution.

4) The orange boxes are sequential contexts within the
parent parallel context (green). These contain the gates
in order for a single qubit.

We have a 3 qubit Toffoli on the first 3 qubits executing
for 10 time units. We may schedule the Hadamard gate, the
X gate, the CZ followed by another Hadamard and X gate on
the 4th and 5th qubits, in parallel to the Toffoli. Further, for
the 4th and 5th qubits, the X and Hadamard gates on either
side of the CZ must be sequential. The maximum resource
utilization in such a timeline would be when the Toffoli and
both Hadamards on either side of the CZ execute concurrently.

While some boxes in Fig. 8 might not demonstrate all
child nesting levels (see the top blue box, the horizontally
middle green box, or the rightmost red box), it is deliberately
drawn for ease of visualization. The implementation will only
generate the innermost scope to reduce overhead. This results
in the DAX.program circuit as seen in Listing 3.

In Fig 8, the first red box from the left corresponds to the
context at line 23, while the second red box corresponds to
line 41. The top and bottom blue boxes are represented by the
contexts at lines 24, and 25, respectively. The green boxes from
left to right are represented by the contexts at lines 26, 33 and
34. Finally, each of the orange boxes appear top to bottom
in the green boxes in the image exactly as their sequential
contexts appear ordered in the generated DAX program.

VI. RESULTS

The QisDAX pipeline was demonstrated on a physical quan-
tum computer and in simulation. The following subsections
describe the results from these experiments.

A. Hardware Results

QisDAX was demonstrated on the CRYO-STAQ device,
an experimental trapped-ion quantum computing system at
Duke University [21]. CRYO-STAQ is designed to be a fully
connected 32 qubit system with a cryogenic vacuum chamber.
All-to-all connectivity of the qubits is enabled by a multi-
channel acousto-optical modulator (AOM). CRYO-STAQ uses



Listing 3 DAX program to demonstrate scopes
1 from DAX.program import *
2

3 class QisDaxProgram(DaxProgram, Experiment):
4

5 def build(self):
6 # initialize program information
7

8 def run(self):
9 # Run the kernel

10 self._run()
11

12 @kernel
13 def _run(self):
14 self._qiskit_kernel()
15

16 @kernel
17 def _qiskit_kernel(self):
18 with self.data_context:
19 for _ in range(self._num_iterations):
20 self.core.reset()
21 self.q.prep_0_all()
22

23 with parallel:
24 self.q.ccx(0,1,2)
25 with sequential:
26 with parallel:
27 with sequential:
28 self.q.x(3)
29 self.q.h(3)
30 with sequential:
31 self.q.x(4)
32 self.q.h(4)
33 self.q.cz(3,4)
34 with parallel:
35 with sequential:
36 self.q.x(3)
37 self.q.h(3)
38 with sequential:
39 self.q.h(4)
40 self.q.x(4)
41 self.q.ccx(3,4,2)
42 # continues accordingly

a Kasli 2.0, from the ARTIQ hardware ecosystem, as the real-
time control hardware solution. DAX is used as the control
software solution.

To demonstrate the pipeline on CRYO-STAQ, we used Qis-
DAX to remotely execute a series of single-qubit circuits writ-
ten in Qiskit. Here, QisDAX was configured to use the DAX
ARTIQ device backend, which appropriately generates the
DAX.program circuit and executes it on a physical system
using an ARTIQ based control system. The configuration file
associated with this backend allows the user to enter the
appropriate credentials required to access the remote system.

We ran a series of single-qubit circuits with increasing
number of gates to benchmark the pipeline overhead with in-
creasing circuit depth. This pipeline overhead captures the time
it takes QisDAX to convert a Qiskit circuit to a DAX.program
circuit, send the circuit to be remotely run on the physical
device, and finally retrieve the results back to be returned to
the user. It does not include the configurable wait time for the
circuit to be executed on the physical device.

Fig. 9 shows the results from this experiment. As we scale
the number of gates, and consequently the circuit depth (as

20 40 60 80 100 120 140
Number of Gates

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Qi
sD

AX
 P

ip
el

in
e 

Ov
er

he
ad

 T
im

e 
(s

)

Fig. 9. QisDAX pipeline overhead. Each of these points indicates the average
time taken by QisDAX to convert a Qiskit program into a DAX.program
circuit, remotely submit it to CRYO-STAQ, and return the final result. Each
data point on the plot was averaged over 10 samples, and the error bars
indicate the standard deviation. The data shows a near-constant overhead of
∼ 1.1 seconds across increasing circuit depths.

it is a single-qubit system), from 10 gates to 150 gates,
the overhead time of the pipeline is constant at 1.1 seconds
on average, with a standard deviation of 0.16 seconds. This
demonstrates the favorable scaling of the pipeline overhead as
the number of operations in a system increases.

The QisDAX pipeline also returns metadata about the
executed job that the user may be interested in. The default
metadata returned is described in Tab. I.

TABLE I
DEFAULT METADATA RETURNED BY QISDAX

Metadata Description

RID Unique ID of the job for lookup post execution
Arguments Describes runtime arguments like name of generated DAX file
Queue time Time stamp when job was queued
Run start time Time stamp of when the circuit began execution
Run end time Time stamp of when the circuit completed execution

B. Simulation Results

A number of benchmark programs were tested to analyze
performance. Of these, we feature a subset that includes
the Deutsch-Jozsa algorithm [22], Bernstein-Vazirani algo-
rithm [23], Simon’s algorithm [20], Grover’s algorithm [24]
and GHZ state generation [10]. All benchmarks are run using
3 qubits for consistency

1) Simulation using DAX.program simulator: At the time
of writing, CRYO-STAQ was only capable of executing
single-qubit circuits. Hence, we complemented these results
by running additional benchmarks using the DAX.program-
sim simulation [18] architecture. This was accomplished pro-
grammatically by selecting the DAX simulator backend
provided by the QisDAX pipeline.

The benchmark setup measures the transpilation and execu-
tion time, not including the time to convert the results back



TABLE II
MEAN TRANSPILATION TIME [MS] WITH AND WITHOUT RESTRUCTURING

Benchmark No restructuring QisDAX Slowdown

Bernstein-Vazirani algorithm 8104 13106 61.72%
Deutsch-Jozsa algorithm 9649 13917 44.24%
GHZ state 3063 6961 127.25%
Grover’s algorithm 17584 21579 22.72%
Simon’s algorithm 8400 11989 42.74%

Geometric Mean 50.77%

Listing 4 System configuration for transpilation time analysis
1 CPU Model name: Intel(R) Core(TM) i7-4820K CPU @

3.70GHz↪→

2 Operating System: Ubuntu 22.04.2 LTS
3 GPU: NVIDIA Corporation GK104 [GeForce GTX 660

OEM]↪→

4 Memory: 7.7GiB
5 Swap: 2.0GiB
6 Disk: 2.0TB

to the Qiskit Result object. We compare this against
a simplistic transpilation with no restructuring, where all
instructions are assigned to a single with_sequential
scope, which results in a longer circuit depth.

These results are shown in Tab. II, measured on a system
with the configuration specified by Listing 4. The results
depicted in Tab. II show average compilation of times (in
milliseconds) of the benchmark circuits, each with 512 shots
and repeated 16 times. The data indicate that QisDAX with its
circuit transpilation adds an overhead in runtime cost of ≈50%
(geometric mean) over the simpler approach of scheduling the
instructions sequentially with a standard deviation of 0.4. This
cost is independent of the available quantum hardware, and
may be minimized with advanced, performant hardware.

TABLE III
RUNTIME [µS] WITH AND WITHOUT RESTRUCTURING, CRYO-STAQ

CONFIGURATION

Benchmark No restructuring QisDAX Speedup

Bernstein-Vazirani algorithm 400 345 13.75%
Deutsch-Jozsa algorithm 585 505 13.68%
GHZ state 360 340 5.56%
Grover’s algorithm 1465 1315 10.24%
Simon’s algorithm 895 520 41.90%

Geometric Mean 13.5%

2) Statistical simulation: We analyze the predicted execu-
tion time by considering the resource configuration outlined in
Listing 5. The configuration option relative_time defines
estimated execution times for single qubit gate operations as
5 units and two qubit gate operations to be 150 units. The
estimated gate times here are based on measurements from
the CRYO-STAQ machine, with units as µs. We consider
the runtime for a benchmark as the runtime on the simple
path that takes the longest time. Here, runtime includes only
circuit execution time, but neither device initialization nor
measurement costs. These runtime estimates in Tab. III are

Listing 5 Resource configuration for runtime savings analysis
1 total_lasers = 5
2 total_mirrors = 5
3 relative_time = '5,150'
4

5 [id]
6 lasers = 1
7 mirrors = 1
8

9 [x]
10 lasers = 1
11 mirrors = 1
12

13 [z]
14 lasers = 1
15 mirrors = 1
16

17 [h]
18 lasers = 2
19 mirrors = 2
20

21 [cx]
22 lasers = 2
23 mirrors = 2
24

25 [cz]
26 lasers = 2
27 mirrors = 2

for a single shot. QisDAX results in a speedup of 13.5%
(geometric mean) over a purely sequential approach.

We also compute benchmark times for a commercially avail-
able quantum system, the IonQ Aria [25]. For comparability,
we keep the available resources the same, only changing the
relative_time configuration option. Listing 6 highlights
the changes made to the CRYO STAQ configuration in List-
ing 5 to obtain the configuration for IonQ Aria.

Listing 6 Changes to Listing 5 to obtain IonQ Aria configu-
ration
- relative_time = '5,150'
+ relative_time = '135,600'

TABLE IV
RUNTIME [µS] WITH AND WITHOUT RESTRUCTURING, IONQ ARIA

CONFIGURATION

Benchmark No restructuring QisDAX Speedup

Bernstein-Vazirani algorithm 3900 2415 38.08%
Deutsch-Jozsa algorithm 5715 3150 44.88%
GHZ state 2820 2280 19.15%
Grover’s algorithm 11955 7905 33.88%
Simon’s algorithm 6915 3690 46.64%

Geometric Mean 34.89%

The results in Tab. IV demonstrate a higher relative savings.
With single-qubit gates making a higher contribution to the
circuit time, costs due to unparallelized two-qubit gates may
be offset by parallelizing a larger set of single-qubit gates.

Savings are a function of a number of factors, including
gate time, order of gate operations in the initial circuit and
subcircuit optimizations. The current approach is greedy and
does not consider alternative configurations for commutative
operations, which may lead to different circuits.



TABLE V
PIPELINE RUNTIME [MS] WITH AND WITHOUT RESTRUCTURING, 106

SHOTS, CRYO STAQ CONFIGURATION

Benchmark No restructuring QisDAX Speedup

Bernstein-Vazirani algorithm 408104 358106 12.25%
Deutsch-Jozsa algorithm 594649 518917 12.74%
GHZ state 363063 346961 4.44%
Grover’s algorithm 1482584 1336579 9.85%
Simon’s algorithm 903399 531989 41.11%

Geometric Mean 12.29%

TABLE VI
PIPELINE RUNTIME [MS] WITH AND WITHOUT RESTRUCTURING, 106

SHOTS, IONQ ARIA CONFIGURATION

Benchmark No restructuring QisDAX Speedup

Bernstein-Vazirani algorithm 3908104 2428106 37.87%
Deutsch-Jozsa algorithm 5724649 3163917 44.73%
GHZ state 2823063 2286961 18.99%
Grover’s algorithm 11972584 7926579 33.79%
Simon’s algorithm 6923399 3701989 46.53%

Geometric Mean 34.74%

Using Tab. II and Tab. III, the overall runtime for a
pipeline leveraging QisDAX is determined, including time for
transpilation followed by circuit execution for a million shots.
The results in Tab. V and Tab. VI indicate an overall speedup
of ≈12% and ≈35% (geometric mean) with the CRYO STAQ
and IonQ Aria configurations, respectively. With a reduction
in circuit depth over a purely sequential approach by ≈36% on
average with a standard deviation of 0.05 (table omitted due to
space), QisDAX provides considerable speedup with efficient
utilization. QisDAX facilitates a trade-off between an increase
in circuit execution time and decoherence in noisy quantum
devices and a one-time transpilation cost. As the transpilation
time is constant, the speedup improves proportional to number
of shots. For repeated experiments, we may pre-transpile the
circuits ahead-of-time.

These benefits also scale with the available resources in a
device capable of parallelism. While our results assume a small
number of lasers and mirrors for our benchmarks, increasing
the available lasers and mirrors would further decrease overall
circuit depth by allowing more qubits to be active per layer.

VII. RELATED WORK

As quantum computing workloads expand towards practical
applications, we observe the emergence of multiple compet-
ing standards for implementation, both at a high abstraction
level [10], [26], [27] and for low level controls [5]. The con-
texts for higher level quantum programming tools are similar,
and efforts to enable interoperability have been forthcoming.

Quantastica [28], the closest related work, generates higher-
level programs adhering to different quantum APIs from
simpler circuit descriptions by providing proper API contexts
in a template-like manner, similar to QisDAX’s translation
from QisKit to DAX. However, QisDAX embeds critical
circuit analysis within transpilation process to delimit serial

and parallel scopes critical for the vertical stack, and enables
platform-aware optimizations with ability to execute on avail-
able quantum hardware.

Academic efforts towards open quantum computing have
leveraged the availability of an open hardware ecosystem [5].
Attempts at creating an open, platform agnostic reference
standard for quantum information have also been made [29].
Similar attempts for control hardware exist [30], with cross
platform demonstrations [31]. Orchestrating heterogeneous
systems as independent components in an application pipeline
has introduced a need for platform-agnostic quantum-classical
coupling [32] and verification systems [33].

Yet, these approaches still lack an open-source transpilation
tool. QisDAX provides such capability by transpiling Qiskit
programs into DAX code. Together with the underlying AR-
TIQ low-level controls, QisDAX provides the missing link that
allows the wealth of quantum programs available in Qiskit
to be automatically translated for non-IBM devices, as is
demonstrated for the ion-trap CRYO-STAQ device at Duke
University.

VIII. CONCLUSION

Interoperability between quantum computing stacks can be
facilitated by adopting and integrating modular, open-source
components. In this work, we have presented QisDAX, a
bridge between two open-source quantum computing frame-
works, Qiskit and DAX. QisDAX represents the first open-
source, end-to-end, full-stack pipeline for remote submission
of quantum programs for trapped ions in an academic setting.
Its modular architecture also allows QisDAX to be re-targeted
to any other control system, so that in the future it can support
a variety of backend implementations, not limited to trapped-
ion systems. QisDAX transpilation parallelizes gates wherever
possible, maintaining circuit fidelity and result artifacts with-
out developer overhead.

We demonstrate this transpilation procedure using backend
implementations for simulators and trapped-ion devices, both
local and remote. In doing so, we establish operational capabil-
ities with algorithms from the Qiskit library, which includes
parametrized quantum procedures as well as classical result
analysis. The modular architecture of QisDAX also allows us
to leverage advantages available only to the target system; i.e.,
we achieved parallel semantics that are trapped-ion specific
and not readily available via Qiskit.

Single-qubit timing data from a trapped-ion device shows
that the pipeline runtime overhead scales well with increasing
circuit depth. A number of benchmark algorithms, run on a
functional simulator, allow us to analyze the impact of the
parallelization process by measuring the mean transpilation
time and decrease in overall circuit depth. We use these results
to benchmark runtimes for two trapped-ion systems, CRYO-
STAQ and IonQ Aria. Though we incur a one-time transpila-
tion cost, we calculate speedups of 12% and 34% for CRYO-
STAQ and IonQ Aria, respectively, in the overall pipeline
runtime due to shorter circuit depth, reducing the impact of
decoherence and improving efficiency and throughput.



ACKNOWLEDGMENT

The work was funded in part by the National Science
Foundation (NSF) projects STAQ Project (PHY-1818914),
EPiQC — an NSF Expeditions in computing (CCF-1832377),
NSF Quantum Leap Challenge Institute for Robust Quantum
Simulation (OMA-2120757), NSF CROSS — Cross-layer
Coordination and Optimization for Scalable and Sparse Tensor
Networks (CCF-2217020), the Office of the Director of Na-
tional Intelligence, Intelligence Advanced Research Projects
Activity through ARO Contract W911NF-16-1-0082, and the
U.S. Department of Energy, Office of Advanced Scientific
Computing Research QSCOUT program. Support is also
acknowledged from the U.S. Department of Energy, Office
of Science, National Quantum Information Science Research
Centers, Quantum Systems Accelerator. The following people
contributed to earlier versions of QisDAX: Alexander Allen,
Keith Mellendorf, and Quentin Sieredzki.

REFERENCES

[1] D. F. Chong, Frederic T. and M. Martonosi, “Programming languages
and compiler design for realistic quantum hardware,” Nature, vol. 549,
no. 7671, pp. 180–187, 2017.

[2] L. Riesebos, X. Fu, A. A. Moueddenne, L. Lao, S. Varsamopoulos,
I. Ashraf, J. Van Someren, N. Khammassi, C. G. Almudever, and
K. Bertels, “Quantum accelerated computer architectures,” in 2019 IEEE
International Symposium on Circuits and Systems (ISCAS). IEEE, 2019,
pp. 1–4.

[3] P. Murali, N. M. Linke, M. Martonosi, A. J. Abhari, N. H. Nguyen,
and C. H. Alderete, “Full-stack, real-system quantum computer studies:
Architectural comparisons and design insights,” in Proceedings of the
46th International Symposium on Computer Architecture, 2019, pp. 527–
540.

[4] S. Bourdeauducq, R. Jördens, P. Zotov, J. Britton, D. Slichter,
D. Leibrandt, D. Allcock, A. Hankin, F. Kermarrec, Y. Sionneau,
R. Srinivas, T. R. Tan, and J. Bohnet, “Artiq 1.0,” May 2016. [Online].
Available: https://doi.org/10.5281/zenodo.51303

[5] G. Kasprowicz, P. Kulik, M. Gaska, T. Przywozki, K. Pozniak, J. Jarosin-
ski, J. W. Britton, T. Harty, C. Balance, W. Zhang et al., “Artiq and
sinara: Open software and hardware stacks for quantum physics,” in
Quantum 2.0. Optica Publishing Group, 2020, pp. QTu8B–14.

[6] L. Riesebos, B. Bondurant, J. Whitlow, J. Kim, M. Kuzyk, T. Chen,
S. Phiri, Y. Wang, C. Fang, A. V. Horn, J. Kim, and K. R. Brown,
“Modular software for real-time quantum control systems,” in 2022
IEEE International Conference on Quantum Computing and Engineer-
ing (QCE), 2022, pp. 545–555.

[7] M. S. ANIS, H. Abraham, AduOffei et al., “Qiskit: An open-source
framework for quantum computing,” 2021.

[8] R. Wille, R. Van Meter, and Y. Naveh, “Ibm’s qiskit tool chain: Working
with and developing for real quantum computers,” in 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2019, pp. 1234–1240.

[9] “Qisdax, a qiskit to dax compiler (repository),” 2018. [Online].
Available: https://gitlab.com/fmuelle/qisdax/

[10]
[11] D. C. McKay, T. Alexander, L. Bello, M. J. Biercuk, L. Bishop, J. Chen,

J. M. Chow, A. D. Córcoles, D. Egger, S. Filipp, J. Gomez, M. Hush,
A. Javadi-Abhari, D. Moreda, P. Nation, B. Paulovicks, E. Winston, C. J.
Wood, J. Wootton, and J. M. Gambetta, “Qiskit backend specifications
for openqasm and openpulse experiments,” 2018.

[12] P. Griffin and R. Sampat, “Quantum computing for supply chain
finance,” in 2021 IEEE International Conference on Services Computing
(SCC), 2021, pp. 456–459.

[13] R. Semola, L. Moro, D. Bacciu, and E. Prati, “Deep reinforcement
learning quantum control on ibmq platforms and qiskit pulse,” in 2022
IEEE International Conference on Quantum Computing and Engineer-
ing (QCE), 2022, pp. 759–762.

[14] D. J. Egger, I. Hincks, H. Landa, M. Malekakhlagh, A. Parr,
D. Puzzuoli, B. Rosand, R. K. Rupesh, M. Treinish, K. Ueda,
and C. J. Wood, “Qiskit dynamics,” 2021. [Online]. Available:
https://github.com/Qiskit/qiskit-dynamics

[15] T. Q. N. developers and contributors, “Qiskit nature 0.6.0,” Apr. 2023,
Qiskit Nature has some code that is included under other licensing.
These files have been removed from the zip repository provided here
and are only available via Github. See https://github.com/Qiskit/qiskit-
nature#license for more details. [Online]. Available: https://doi.org/10.
5281/zenodo.7828768

[16] T. Alexander, N. Kanazawa, D. J. Egger, L. Capelluto, C. J. Wood,
A. Javadi-Abhari, and D. C. McKay, “Qiskit pulse: programming
quantum computers through the cloud with pulses,” Quantum Science
and Technology, vol. 5, no. 4, p. 044006, aug 2020. [Online]. Available:
https://dx.doi.org/10.1088/2058-9565/aba404

[17] A. S. Dalvi, F. Mazurek, L. Riesebos, J. Whitlow, S. Majumder,
and K. R. Brown, “Modular architecture for classical simulation of
quantum circuits,” in 2022 IEEE International Conference on Quantum
Computing and Engineering (QCE), 2022, pp. 810–812.

[18] L. Riesebos and K. R. Brown, “Functional simulation of real-time
quantum control software,” in 2022 IEEE International Conference on
Quantum Computing and Engineering (QCE), 2022, pp. 535–544.

[19] Y. Wang, S. Crain, C. Fang, B. Zhang, S. Huang, Q. Liang, P. H.
Leung, K. R. Brown, and J. Kim, “High-fidelity two-qubit gates us-
ing a microelectromechanical-system-based beam steering system for
individual qubit addressing,” Physical Review Letters, vol. 125, no. 15,
p. 150505, 2020.

[20] D. R. Simon, “On the power of quantum computation,” SIAM Journal
on Computing, vol. 26, no. 5, pp. 1474–1483, 1997. [Online]. Available:
https://doi.org/10.1137/S0097539796298637

[21] J. Kim, T. Chen, J. Whitlow, S. Phiri, B. Bondurant, M. Kuzyk, S. Crain,
K. Brown, and J. Kim, “Hardware design of a trapped-ion quantum
computer for software-tailored architecture for quantum co-design (staq)
project,” in Quantum 2.0. Optical Society of America, 2020, pp.
QM6A–2.

[22] D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum
computation,” Proceedings of the Royal Society of London. Series A:
Mathematical and Physical Sciences, vol. 439, no. 1907, pp. 553–558,
1992. [Online]. Available: https://royalsocietypublishing.org/doi/abs/10.
1098/rspa.1992.0167

[23] E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM
Journal on Computing, vol. 26, no. 5, pp. 1411–1473, 1997. [Online].
Available: https://doi.org/10.1137/S0097539796300921

[24] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing. New York, New York, USA: ACM, 1996,
pp. 212–219.

[25] IonQ, “Ionq aria: Practical performance,” https://ionq.com/resources/
ionq-aria-practical-performance, Jul. 24, 2022.

[26] C. Developers, “Cirq,” Dec. 2022, See full list of authors
on Github: https://github .com/quantumlib/Cirq/graphs/contributors.
[Online]. Available: https://doi.org/10.5281/zenodo.7465577

[27] Q# Language Specification, Microsoft. [Online].
Available: https://github.com/microsoft/qsharp-language/tree/main/
Specifications/Language#q-language

[28] Quantastica, “Quantastica/qconvert-js: Quantum programming lan-
guage converter.” [Online]. Available: https://github.com/quantastica/
qconvert-js

[29] A. Cross, A. Javadi-Abhari, T. Alexander, N. D. Beaudrap, L. S.
Bishop, S. Heidel, C. A. Ryan, P. Sivarajah, J. Smolin, J. M.
Gambetta, and B. R. Johnson, “OpenQASM 3: A broader and
deeper quantum assembly language,” ACM Transactions on Quantum
Computing, vol. 3, no. 3, pp. 1–50, sep 2022. [Online]. Available:
https://doi.org/10.1145/3505636

[30] D. C. McKay, T. Alexander, L. Bello, M. J. Biercuk, L. Bishop,
J. Chen, J. M. Chow, A. D. Córcoles, D. Egger, S. Filipp, J. Gomez,
M. Hush, A. Javadi-Abhari, D. Moreda, P. Nation, B. Paulovicks,
E. Winston, C. J. Wood, J. Wootton, and J. M. Gambetta, “Qiskit
backend specifications for OpenQASM and OpenPulse experiments,”
preprint arXiv:1809.03452, 2018.

[31] “Amazon braket python sdk,” GitHub, 10 2022. [Online]. Available:
https://github.com/aws/amazon-braket-sdk-python



[32] T. M. Mintz, A. J. Mccaskey, E. F. Dumitrescu, S. V. Moore, S. Powers,
and P. Lougovski, “Qcor: A language extension specification for the
heterogeneous quantum-classical model of computation,” 2019.

[33] A. Adams, E. Pinto, J. Young, C. Herold, A. McCaskey, E. Dumitrescu,
and T. M. Conte, “Enabling a programming environment for an experi-
mental ion trap quantum testbed,” 2021.


