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Abstract
Non-volatile, byte-addressable memory (NVM) has been
introduced by Intel in the form of NVDIMMs named Intel®
Optane™ DC PMM. This memory module has the ability to
persist the data stored in it without the need for power. This
expands the memory hierarchy into a hybrid memory
system due the differences in access latency and memory
bandwidth from DRAM, which has been the predominant
byte-addressable main memory technology. The Optane DC
memory modules have up to 8x the capacity of DDR4
DRAM modules which can expand the byte-address space
up to 6 TB per node. Many applications can now scale up
the their problem size given such a memory system. We
evaluate the capabilities of this DRAM-NVM hybrid
memory system and its impact on High Performance
Computing (HPC) applications. We characterize the Optane
DC in comparison to DDR4 DRAM with a STREAM-like
custom benchmark and measure the performance for HPC
mini-apps like VPIC, SNAP, LULESH and AMG under
different configurations of Optane DC PMMs. We find that
Optane-only executions are slower in terms of execution
time than DRAM-only and Memory-mode executions by a
minimum of 2 to 16% for VPIC and maximum of 6x for
LULESH.

CCS Concepts • Computer systems organization →
Heterogeneous (hybrid) systems; • Hardware →
Memory and dense storage; • Computing
methodologies → Massively parallel and
high-performance simulations;

Keywords NVM, Persistent Memory, Intel Optane DC,
Memory Allocation, Hybrid Memory, NUMA, SICM
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1 Introduction
Memory hierarchies have been constantly evolving since
computers were introduced and the von Neumann
architecture was adopted. Today, semiconductor memory is
dominated by dynamic random access memory (DRAM) as
its density is high while its cost is low [21]. DRAM is
volatile, prone to soft errors, and more power-consuming
due to the constant refreshing required to retain the stored
data. As processor clock frequencies were scaled up, static
random access memory (SRAM) was introduced as a
caching layer to bridge the latency gap. The memory
hierarchy kept expanding as multi-level caches were
introduced, high-bandwidth memories were added, and the
main memory sizes kept increasing. Data persistence, or
non-volatility, is a feature of data storage, which is the
secondary level of the current memory hierarchy. Most
non-volatile devices are not on the memory bus like DRAM,
but are much further away in terms of latency. The
difference in access latencies between DRAM and other
technologies used in storage made it cumbersome to scale
the capacity or add persistence to the primary memory
hierarchy.
Supercomputers are built with individual nodes, which

have their own memory hierarchy. The nodes are connected
to other nodes by high-speed interconnects, allowing for
direct memory access or remote direct memory access. The
combined memory of a cluster is greater than that of a
single node but requires complex software and additional
hardware and the scale comes with its own share of
problems. For example, Oak Ridge National Laboratory’s
Titan [30], a petaflop machine, which is now
decommissioned, is one of the fastest supercomputers on
the TOP500 November 2018 list [31]. Each node has 38 GB
of DRAM. As a cluster of 18,688 nodes connected over an
interconnect, Titan has 710 TB of DRAM. However, the
sheer number of DRAM modules used in the system causes
it to be susceptible to soft errors and hard faults.
Additionally, memory is one of the main components
contributing to the power consumption of Titan, which can
reach up to 8.2 MW at its peak. Due to the higher number of
DRAM modules that will be required to achieve exascale
memory requirements, the cost to build and operate a larger
machine with a similar memory architecture will increase
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significantly. This also increases the likelihood of failures
[8]. Thus, an exascale machine with a similar architecture
may require hardware innovations to address the challenge
of resiliency and power.
Over the past decade, memory technologies such as

phase change memory (PCM) and spin-transfer torque RAM
have been developed and are now used to make
byte-addressable non-volatile memory devices [1, 25].
Although they are slower, they have higher densities than
DRAM. This trade-off requires a detailed analysis to
evaluate the benefit of these new memory technologies.
Intel has been the first-to-market with their Intel® Optane™
DC Persistent Memory Module (PMM), which is based on
PCM technology. The Optane DC is plugged directly into
the memory bus via traditional DIMM slots. It has 8 times
higher density than DRAM and is cheaper per GB. The
Optane DC PMMs can be used to expand the capacity of
primary memory hierarchy with data persistence, or can be
used as a traditional NVM block device.
Using memories with higher density that of DRAM will

allow different design points for exascale computers. Fewer
nodes can be used to reach higher aggregate memory
capacities. Fewer nodes means fewer components, which in
turn can lower the cost to build the system, reduce the
overall power consumption of the system, and increase
resiliency. Additionally, the data persistence of these new
types of memory can also assist in the development of new
fault-tolerance mechanisms.
In this paper, we take a closer look at the Optane DC

PMMs, its underlying technology, its operation, the
different modes that it can operate in, and evaluate its
performance for HPC applications. We focus on evaluating
its use as main memory instead of part of the storage
system. We have characterized the performance of Optane
DC by using a custom benchmark inspired by the
STREAM [18, 19], which has access streams that are
frequently used in HPC applications. We have evaluated the
overall system performance with HPC applications like
VPIC [2], and proxy applications such as AMG [39],
LULESH [13] and SNAP [29]. In Section 2, we review
research related to persistent memory systems and their
evaluation. In Section 3, we go over the background of
non-volatile memory, and in Section 4 we focus on the
Optane DC memory architecture. In Sections 5 and 6, we
evaluate the performance of Optane DC. In Section 7, we
present potential future work and follow up with the
conclusion in Section 9.

2 Related Work
Due to the recent launch of Optane DC PMMs, there are
not many previous works that evaluate the performance
characteristics of the device.

In [10], Izraelevitz et al. evaluated the read and write
characteristics of the Optane DC PMM. They evaluated the
performance of Optane DC on all the modes available using
the SPEC2017 benchmark suite. They found that
applications experience a 15-61% slowdown with NVM-only
allocations when compared to DRAM-only allocations.
They also compared the performance of different
filesystems and database applications like Mongo DB and
MySQL by using Optane DC as persistent storage and
persistent memory respectively. They found that Optane
DC boosts the performance of filesystems and database
applications due to lower latencies than storage devices. We
are evaluating Optane DC for different streams that we
encounter in different HPC applications and focus on using
Optane DC as an extended address space for the same.
Gill et al. [7] used the Optane DC PMM to evaluate
shared-memory graph frameworks like Galois on real world
web-crawls. They found that Optane DC PMM yields
performance and cost benefit for massive graph analytics
when compared to a distributed graph frameworks on
existing production clusters. Our work focuses on HPC
problems that are mostly stencil codes and matrix
operations. Psaropoulos et al. [24] worked on hiding the
latency difference between Optane DC and DRAM for
database applications by interleaving the execution of
parallel work in index joins and tuple reconstruction using
coroutines. They accelerated end-to-end query runtimes on
both NVM and DRAM by up to 1.7x and 2.6x, respectively.
Van Renen et al. [33] performed performance evaluations of
Optane DC in terms of bandwidth and latency and
developed guidelines for efficient usage of Optane DC and
two tuned I/O primitives, namely log writing and block
flushing. Their work is primarily based on the App-direct
mode (modes are explains in Section 4) and is aimed to
improve the performance of file-systems. Wu et al. [37]
studied the I/O performance of an early version of Optane
DC, which was 3D-Xpoint with NFS and PVFS [14] as the
filesystems. It operated similar to the current App Direct
Mode in Optane DC.
There has been a lot of work in providing software

support for byte-addressable non-volatile memories.
Volos et al. [35] created a simple interface for programming
with persistent memory called Mnemosyne. It allows
programmers to allocate global persistent and dynamic data
structures and also primitives to modify the data structures.
Coburn et al. [4] implemented a lightweight, persistent
object system called NV-heaps. It provides transactional
semantics that prevent errors and a persistence model for
heap objects. Chakrabarti et al. [3] proposed a system with
durability semantics for a lock-based code called Atlas. It
automatically maintains a globally consistent state in the
presence of failures. Dulloor et al. [6] implemented a POSIX
file system, PMFS, that exploits persistent memory’s
byte-addressability to avoid overheads of block-oriented
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Figure 1. Memory cells of DRAM and PCM

storage and enable direct persistent memory access by
applications with memory-mapped I/O. Yang et al. [38]
implemented and evaluated the performance of a
non-volatile B+-Tree called NV-Tree and a key-value store
based on it for NVDIMM-based servers. Shull et al. [27]
proposed a user-friendly NVM framework for Java that
ensures consistent stores for crash-recovery operations.
Various ways have been proposed to use NVM for HPC

systems. Vetter et al. [34] evaluate the potential for NVM
systems for extreme-scale HPC. They look at various
persistence devices for integration of NVM in HPC and also
look at integrating the functionalities of NVM.
Kannan et al. [12] optimized checkpoints for HPC
application using NVM as a virtual memory and provide
frequent, low overhead checkpoints. Patil et al. [23]
proposed a novel programming technique for stencil codes
that guarantees fault tolerance against two hard failures on
a shared non-volatile memory pool. Li et al. [16] proposed a
fault tolerance process model based on NVRAM, which
provides an elegant way for the applications to tolerate
system crashes. Wang et al. [36] proposed a novel approach
for exploiting NVM as a secondary memory partition so
that applications can explicitly allocate and manipulate
memory regions therein. It had a library that enabled access
to a distributed NVM storage system.

3 Background
The memory hierarchy in modern architectures is complex
and deep [21]. Register memory is closest to the processor,
which is used to load and store operators, operands and
instructions. It is implemented using flip-fops or an array

of SRAM cells. It is the fastest memory, very expensive and
consumes a lot of chip space and power. Most modern CPUs
have 16 to 32 registers, which can hold 32 or 64 bits each.
The access time for register memory is less than 1 ns. As
computer programs require a lot more memory than there is
on registers, we use a cheaper and higher density memory
than registers as our main memory.
Main memory is comprised of arrays of DRAM cells as

shown in Fig. 1a. It is a semiconductor-based memory
technology that stores one bit of data in a capacitor within
an integrated circuit. It is a rectangular array of cells that
store a charge and are made of a capacitor and transistor
per data bit. The number of cells define the capacity of a
DRAM chip. There are positive and negative bit lines that
connect all the cells in a column. A pair of cross connected
inverters between the bit lines, called a sense amplifier, are
used to stabilize the charges stored in the cells. DRAM has
to be constantly refreshed to maintain its state due to the
charge leak in the cells [9]. The JEDEC standard [11]
specifies that each row has to be refreshed every 64 ms or
less. Due to this constant need of refreshing the charges,
this memory uses much more energy. The access time to
DRAM using the DDR4 protocol is approximately 50-100 ns.
Access to DRAM is 10-15x slower than register access time,
which can lead to many CPU stalls. Processors use SRAM
caches as buffers to hide this latency. SRAM uses latches to
store each bit. They are volatile and lose their state when
the memory is not powered. It is termed as static because it
does not require refreshes. Modern memory architectures
have leveraged multi-level caches to reduce the effective
latency between the main memory and the processor. The
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access time to SRAM cache is on an average 1-10 ns
depending on the level of cache. SRAM is more expensive in
chip space and power than DRAM.
This memory hierarchy has evolved and become more

complex over multiple decades. It has grown in size and also
become faster due to the scaling of DRAM capacity and
frequency over the last 2 decades. But DRAM scaling has
been approximately 33% slower than core count scaling
over the same period of time. Also, due to the increased
number of memory cells and higher refresh rates, DRAM
energy consumption has increased [17, 20, 26]. Even though
DRAM capacity has increased, due to higher densities, these
memories have become less reliable [8]. Extreme scale
problems in HPC, machine learning, graph analytics, and
other fields can exhaust in-node memory capacity and
processing. [34]. Using NVM as a supplement to DRAM, in
order to increase the size of main memory in a compute
node, has been considered to be a viable option [15]. Of all
the NVM technologies, PCM has evolved best in terms of
engineering [15]. PCM is a resistive memory whereas
DRAM is a charge memory. As shown in Fig. 1b, PCM has
bit-line, which is a metal connected to a phase-changing
material via a heater. When a current pulse is passed
through the bit-line, a phase is set in the phase-change
material and stored there until another current pulse is
passed. The phase is read by detecting the resistance of the
material through the access line. The phase-change material
retains its phase for more than 10 years at ambient
temperature [15]. This property gives PCM its
non-volatility. PCM is expected to scale down to 9 nm
whereas scaling DRAM smaller than 40-35 nm is
challenging [20].

However, PCM has its own challenges and shortcomings.
It has a higher write latency than that of DRAM due to the
thermal activation required to change the phase-change
material. PCM also suffers from wear due to thermal
expansion and contractions of the contacts between the
bit-line and phase-change material. The write-durability of
PCM memory cell is approximately 108, which means
frequent device replacements are required that can add to
the cost [15]. Despite these disadvantages, PCM provides
the capability of scaling the main memory capacity required
to match core count scaling. Intel’s Optane DC PMMs are
based on PCM technology.

4 Architecture
The system that we use for our experiments is a single node
provided by the Intel Corporation. As described in Table 1,
this node has 2 CPU sockets that are equipped with Intel’s
Xeon® 8260L (codenamed Cascade Lake). Each chip has 24
cores with a clock frequency of 2.4 GHz. Each core has 2
processing units for a total of 96 CPUs. Each core has a 32 KB
private L1 instruction cache, a 32 KB private data cache, and

L1 
cache

L2 cache

L3 cache

DRAM NVRAM

Memory Controller i-Memory Controller

DDR-TDDR4

Figure 2. Memory architecture of Intel’s Optane DC Node
Table 1. Experiment Platforms

Specifications Optane Node
Model name Intel(R) Xeon(R) 8260L @ 2.40GHz
Architecture x86_64
CPUs 96
Sockets 2
Cores per socket 24
NUMA nodes 4
L1d cache 32 KB
L1i cache 32 KB
L2 cache 1 MB
L3 cache 35.3 MB
Memory Controllers 4
Channels/controller 6
DIMM protocol DDR4
DRAM size 192 GB
NVDIMM protocol DDR-T
NVRAM size 1.5 TB
Operating System Fedora 27

a private 1 MB L2 cache. There is a 36 MB L3 cache shared
between all cores. Each socket has 12 DIMM slots. 6 of the
slots are occupied by 16 GB DDR4 DRAM modules and the
other 6 slots are occupied by 128 GB Optane DC modules.
That totals up to 192 GB of DRAM and 1.5 TB of non-volatile
memory. The node has 4 memory controllers in total. Two
of the memory controllers are connected to 6 DRAM DIMMs
each, and the other two, known as iMC, are connected to 6
NVDIMMs each.
As shown in Figure 2, the processor communicates

differently with Optane DC DIMMs than with DRAM. For
DRAM, it uses the standard DDR4 protocol via the regular
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memory controller whereas for Optane DC it uses the
DDR-T protocol via the i-memory controller (iMC). Using
this proprietary add-on protocol to the DDR4 protocol, the
Optane DC achieves asynchronous command/data timing
and variable-latency memory transactions. To communicate
with the iMC, the module controller in Optane DC PMM
uses a request/grant scheme. The direction and timing of
the data bus on which Optane DC resides is controlled by
the processor. The processor sends a command packet per
request to the Optane DC memory controller. The modules
use 256 byte cache line access granularity which is larger
than the 64 byte cache line access granularity used in
DRAM.[10]. Intel’s asynchronous DRAM refresh (ADR)
guarantees the CPU stores that reach it, will survive a
power failure. The stores are flushed to NVDIMMs in less
than 100 µs, which is the hold-up time. The iMC falls in the
ADR domain but the caches do not. So, the stores will be
persistent only after they reach iMC for which it uses a
72-bit data bus and transfers data in cache line granularity
for CPU loads and stores. Optane DC has an on-DIMM
Apache Pass controller that handles memory access
requests and the processing required on NVDIMM. The
on-DIMM controller internally translates the addresses of
all access requests for wear-levelling and bad-block
management. It maintains an address indirection table
on-DIMM that translates the DIMM’s physical addresses to
an internal device address. The table is also backed up on
DRAM. Accessing data on Optane DC occurs after the
translation. The controller translates 64 byte load/stores
into 256 byte accesses due to the higher cache line access
granularity of Optane DC which causes write amplification
[10].
The Optane DC operates in three different modes. With

a minor Linux kernel modification, we have configured the
Optane DC to operate in a fourth mode. The configurations
are described below.

4.1 Memory Mode
In Memory Mode, the Optane DC modules act as volatile
main memory. DRAM acts as a direct-mapped cache for
Optane DC with a block size of 4 KB and is managed by
the CPU’s memory controller. DRAM is no longer directly
accessible, but allows for cache hits to be as fast as a DRAM
access. Cache misses, however, can take as long as a DRAM
cache miss plus an Optane DC access.

4.2 App Direct Mode
In AppDirect Mode, the Optane DCmodules act as persistent
memory devices that are separate frommainmemory. DRAM
is used as main memory. However, the Optane DC DIMMs
are used through the block device entries that are created in
the kernel. Once filesystems are installed on each device, the
Optane DCmodules are used as filesystemswith significantly
shorter access times than that of regular storage devices.

4.3 Mixed Mode
The Optane DC modules can also be partitioned to use part
of the memory for persistent memory while the other part is
used as volatile main memory. DRAM is still used as a cache
for main memory rather than exposed as it would be in full
App Direct Mode.

4.4 DRAM-NVM Hybrid Mode (Flat Mode)
Accessing both DRAM and Optane DC at the same time
under a unified byte-addressable address space is not possible
under the previous configurations. In [10], Izraelevitz et al.
ran experiments with their Optane DC modules not being
cached by the system’s DRAM bymodifying the Linux kernel
to recognize the Optane DC modules as RAM instead of
persistent memory. We applied the changes to our node’s
kernel and set the DIMMs to App Direct mode, allowing us
to see the Optane DC modules on NUMA nodes in addition
to the DRAM NUMA nodes, which results in a combined
main memory of the DRAM capacity plus the Optane DC
capacity rather than only one or the other.

Table 2. Optane DC operation modes

Operation mode Functionality

Memory mode

Optane DC PMMs act as volatile,
byte-addressable main memory.
DRAM acts as a cache for Optane
DC and is not visible to the user

App Direct
mode

Optane DC PMMs act as persistent
storage separate from the primary
memory hierarchy. Managed by

file systems installed on it.
DRAM acts as main memory

Mixed mode

Part of Optane DC PMMs can be
used as main memory and the
remaining part can be used as
persistent storage. DRAM acts

as cache for Optane DC

Flat mode
DRAM and Optane DC PMMs

are part of the same address space
and can be used as heap memory

5 Experiments
Our aim is to evaluate Optane DC as an address space
extender for main memory in HPC systems. We used an
HPC application (VPIC), three HPC proxy-apps (AMG,
LULESH, and SNAP) and a custom benchmark to evaluate
the performance of Optane DC. We modified these
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applications1 so we can allocate all the data either on the
DRAM, or on Optane DC. We then compared the statistics
we collected for both configurations. We performed a
preliminary performance characterization using a custom
STREAM-like benchmark that evaluates the performance of
different types of kernels encountered in HPC applications.
Memory bandwidth information was collected for every
stream used in a kernel that was parallelized using
OpenMP [5]. The streams used in the benchmarks are
representative of most of the streams found in HPC
applications. We focus on different access patterns of data
structures like sequential, strided, and random access. We
also collect bandwidth numbers for matrix accesses and
operations, for example, row-major access and stencil
operations. We have a test where we bypass the L3 cache by
accessing elements that are apart by number of elements
that fit in L3 cache.
Our experiments ran on the Optane DC node described

in Section 4 and Table 1. We set the Optane DC modules
in Memory Mode and the DRAM-NVM Hybrid Mode (Flat
Mode), and compared the performance of all the applications
for each mode. In Flat mode, we allocated memory on NVM
and DRAM for different runs. In memory mode, memory
was only allocated on NVM as DRAM was used as cache for
NVM.

We performed strong and weak scaling for all of the HPC
mini-apps and measured the total execution times, memory
bandwidth, power consumption, last-level cache misses and
double-precision floating point operations per second. We
used LIKWID [32] to collect performance counters. For our
custom benchmark, we collected only the memory
bandwidth for different kernels that we test.

Keeping in mind that we had Optane DC PMMs on only a
single node, our experiments were not conducted on large
number of processes or memory sizes. We ensured that our
problem sizes were big enough to not fit into the last-level
cache and so we can get a fair depiction of the performance
of the different memories. Our problem sizes lie in a
small/medium range as recommended by the authors of the
mini-apps. We did not scale the number of processes to
more than 48, i.e., half the number of processing units to
avoid oversubscribing of resources. This was done in order
to get correct performance numbers from the hardware
performance counters. For the custom benchmark, we
averaged the bandwidth measurements over 10 runs for
every kernel which had a standard deviation up to 8%. For
the HPC mini-apps, we average all measurements over 4
runs with a standard deviation of 11% for execution time.
We describe the applications we use for our experiments
below.
1In order to have the applications allocate their data on Optane DC or
DRAM only, we modified the applications to use the Simple Interface for
Complex Memory (SICM) [28] library, a NUMA-aware arena allocator for
heterogeneous memory.

5.1 AMG
AMG is a parallel algebraic multi-grid solver for linear
systems arising from problems on unstructured grids [39]. It
was developed at Lawrence Livermore National Laboratory
(LLNL). It is an SPMD code that uses MPI and OpenMP
threading within MPI tasks. AMG is a highly synchronous
code. The communication and computation patterns exhibit
the surface-to-volume relationship common to many
parallel scientific codes. We use the default Laplace type
problem on a cube with a 27-point stencil.

5.2 LULESH
LULESH [13] is a highly simplified application, hard-coded
to only solve a simple Sedov blast problem with analytic
answers. It is C++ based applications. It was developed at
LLNL as a part of co-design efforts for exascale
computations. LULESH approximates the hydrodynamics
equations discretely by partitioning the spatial problem
domain into a collection of volumetric elements defined by
a mesh. It uses MPI and OpenMP for parallelization and is
also memory bound.

5.3 VPIC
Vector Particle-In-Cell (VPIC) [2] is a simulation code
developed at Los Alamos National Laboratory (LANL). It is
an application that models kinetic plasmas in 1 to 3
dimensions. It uses MPI and OpenMP for parallelism. The
code is comprised of kernels that compute multiple data
streams at the same time and operate on entire data
structures. The data structures scale based on the input
decks and hence make VPIC memory bound.

5.4 SNAP
SNAP [29] is based on the PARTISN code from LANL. SNAP
mimics the computational workload, memory requirements,
and communication patterns of PARTISN. The equation it
solves has been composed to use the same number of
operations, uses the same data layout, and loads elements of
the arrays in approximately the same order. SNAP uses MPI
to scale for HPC. We use the SNAP-C code. It is also a
memory-bound application but is more bound by
bandwidth than latency.

6 Results
6.1 Performance evaluation of different streams on

Optane DC
We evaluate the performance of various streams executed
on Optane DC compared to DRAM. We perform strong
scaling on the streams by increasing the OpenMP threads
from 1 to 96 for different runs. We pinned the threads using
numactl -C to specific processing units and then
allocated the streams on every NUMA node to evaluate the
effect of NUMA distances on memory bandwidth. We
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(a) Write-only stream bandwidth on the Optane node
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(b) 1 write+4 read stream bandwidth on the Optane node
Figure 3. Bandwidth measurement of Write-only and 1-write+4-read sequential access streams

1

10

100

1000

10000

100000

1 8 16 24 32 40 48 56 64 72 80 88 96

Ba
nd

w
id
th

(M
B/
s)

OMP threads

Local DRAM BW
Remote DRAM BW

Local NVM BW
Remote NVM BW

(a) Multiple stream kernel bandwidth on the Optane node
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(b) Strided stream bandwidth on the Optane node
Figure 4. Bandwidth measurement of Multiple 1-write+4-read sequential access and Fixed stride access stream
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(a) Random stream bandwidth on the Optane node
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(b) LLC bypass stream bandwidth on the Optane node
Figure 5. Bandwidth measurement of Random and LLC bypass stride access stream
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(a) Row major matrix stream bandwidth on the Optane node
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(b) Column major matrix stream bandwidth on the Optane node
Figure 6. Bandwidth measurement of Row-major and Column-major matrix access stream

collected the effective bandwidth for all processing units
and their local and remote NUMA node combinations and
averaged the bandwidth results over 10 runs with a
standard deviation of 7%. Every stream or data structure

used in the experiment was 1 GB in size. All the plots have
bandwidth on the Y axis which is depicted on a log scale
and the number of threads on X axis.
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(a) Row+column major matrix stream bandwidth on Optane node
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(b) 9-cell stencil stream bandwidth on the Optane node
Figure 7. Bandwidth measurement of Row-Column matrix and 9 point stencil stream

Fig. 3a depicts results for strong scaling of the write-only
stream. The average bandwidth for local NUMA nodes
peaks at 48 threads and then it plateaus. The bandwidth of
remote NUMA nodes also increases with the number of
OpenMP threads and peaks at 24 threads after which it
plateaus as well. This effect is caused by oversubscribing of
resources beyond 48 threads which causes the memory
controller queues to overflow. This can lead to serialization
of loads and stores due to back pressure and nullifies the
benefit of bank parallelism. We observe that the NUMA
distances affect bandwidth of NVM up to 22% and up to 16%
for DRAM in case of strong scaling for the write only
stream. Fig. 3b shows results for the kernel with a single
write and four read stream. The same effect is observed as
for the write-only stream but the relative bandwidth for
each run is more than 3x the bandwidth of the write-only
stream. This effect is observed for both DRAM and NVM,
but DRAM achieves 8x higher bandwidth than NVM before
oversubscribing. The difference between DRAM and NVM
bandwidth worsens beyond 48 threads where they start to
plateau. Such sequentially accessed streams are used mostly
during initialization or problem generation phases of HPC
applications. The above results indicate that utilization of
local DRAM nodes in this phase is critical while not
oversubscribing to compute resources.
Fig. 4a provides results for a kernel with multiple single

write plus 4 read streams. The performance is similar to
what is observed for the single write and four read stream
but the effective bandwidth is slightly lower. The bandwidth
for DRAM is 30% lesser than the single write and four read
stream and 50% lesser for NVM. Such streams don’t need a
lot of parallelism to achieve maximum bandwidth however
the access latency of the memory device will affect the
performance. Fig. 4b depicts results for a kernel with a fixed
stride access for increasing OpenMP threads. The stride is
bigger than the cache line size. For this stream the NUMA
distances have no effect on the memory bandwidth, except
for fewer than 24 threads for DRAM. NVM scales similarly
to the previous streams but achieves higher memory
bandwidth. The memory bandwidth of DRAM keeps
increasing with the number of threads until it peaks at 48

threads for NVM. This indicates that NVM bandwidth may
be constrained by the core count irrespective of the access
pattern. This stream achieves up to 8x the bandwidth of
write-only stream for DRAM and 10x the bandwidth of the
same for NVM. Fig. 5a shows results from a randomly
accessed single write plus 4 read stream, which achieves the
lowest effective bandwidth of all streams. The random
accesses are determined by an indirection array that is
initialized by the rand() function that generates the order of
indices to access. The memory bandwidth for local DRAM
and NVM nodes is up to 40% higher till 48 threads after
which it plateaus and is unaffected by NUMA distances.
This effect is observed because of not allowing the HW
prefetcher to take advantage of any temporal locality.
Hence, effective bandwidth is so low. Fig. 5b illustrates
results for a single write plus 4 read stream forced to bypass
the L3 cache for every access. In this stream, we observe
that the bandwidth achieved by DRAM is up to 5x higher
than NVM till 48 threads. The bandwidth remains plateaus
for all NUMA nodes beyond that. This result indicates that
if we take the caches out of the picture, the effective
bandwidth achieved by Optane DC is not affected as much
as DRAM despite the higher access latencies. Such streams
with varying access patterns are common in the
computation phase of HPC applications. It becomes
essential to identify the access patterns of each linear
stream at every stage of the program and place the stream
in the most effective memory node given the amount of
compute resources subscribed to.

Fig. 6a depicts results from a stream that accesses a single
write and two read matrices in row-major order. The scaling
pattern is similar to the write-only stream but the effective
bandwidth is almost 10x the bandwidth for DRAM and up
to 40x the bandwidth for NVM when compared to the same.
This high bandwidth may be observed due to the large
cache size and prefetching which take advantage of the
spatial locality. Again, such a stream is a common
occurence during the initialization phase of HPC
applications and it can benefit from being placed in local
DRAM memory. Fig. 6b assesses a stream accessing a single
write and two read matrices in column-major order. Here,
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the NVM bandwidth remains steady with the increase in
threads with a slight advantage for local NVM nodes.
However, for DRAM, NUMA distances do not make a big
difference and the bandwidth keeps increasing with the
increasing number of threads. The bandwidth is 3x lower
for DRAM and 8x lower for NVM than the row-major
stream for most threads, except for the 2 highest thread
counts, where DRAM bandwidth jumps up to 86 GB/s.
Fig. 7a shows results for a kernel that accesses a single write
plus two read matrices stream, all in row-major except for
the last read stream in column-major order. It achieves 4x
higher memory bandwidth than the row major stream for
both DRAM and NVM. It achieves such high bandwidth due
to spatial locality and prefetching in the cache. The scaling
pattern is similar to the row major access stream but
achieves substantially higher bandwidth for both memories.
Lower thread counts give advantage to local NUMA node
but beyond 48 threads, there is no difference. Fig. 7b depicts
results for a 9-point stencil kernel, which scales similarly
Fig. 7a but with approximately 40x the bandwidth for all
thread counts and memories. This stream achieves the
highest bandwidth of all the streams due to a lot of spatial
and temporal locality in the cache. THe bandwidth observed
is effectively the bandwidth of the cache. Such matrix
streams occur during the computation phase of a HPC
application. Although NUMA distances do influence the
effective bandwidth of these streams, the memory device
used affects the bandwidth significantly with increasing
number of threads. Also the effective use of cache locality
can help in achieving higher performance for both memory
devices.
Taking all the results into account, we can infer that the

higher latency of Optane DC and the lack of optimal cache
support causes it to not perform as well as DRAM. We
observe that with effective caching and prefetching, Optane
DC can deliver much better performance than what is
observed in our evaluation. However, these results give a
fair idea of which workloads can benefit from NVM and
gives a quantification of the performance impact by using
NVM in place of DRAM.

6.2 HPC Benchmark evaluation
For benchmarks, we plot the application bandwidth and
execution time measurements together in a single graph to
observe their correlation. Similarly, we plot the energy
consumption and execution time measurements together.
We also plot the cycles/instruction (CPI) and L3 miss ratio
together. We plot these graphs for both strong and weak
scaling experiments. For bandwidth and execution time
graphs, we plot execution time on the left-hand side y-axis
in seconds and depicted as lines. The bandwidth is plotted
on the right-hand side y-axis in megabytes/seconds (MB/s)
and depicted as a bar chart. For energy consumption and
execution time graphs, we again plot our execution time on

the left-hand side y-axis as lines. The energy is plotted on
the right-hand side y-axis in Joules (J) as a bar chart. For
CPIs and L3 miss ratio graphs, we plot the CPIs on the
left-hand side y-axis as lines. The L3 miss ratio is plotted on
the right-hand side y-axis as a bar chart. Both CPIs and L3
miss ratio have no unit. Bandwidth is plotted on a
logarithmic scale whereas all other measurements are
plotted on a linear scale. The x-axis depicts the number of
MPI processes for a given execution.

6.2.1 AMG results
Fig. 8a and Fig. 8b depict the graphs for strong and weak
scaling of AMG, respectively. For strong scaling, we scale
the processes from 1 to 8 using MPI and keep the data size
constant by reducing the size per processor from 256 to 128.
For weak scaling, we again scale the processes from 1 to 8
and keep the size per processor same at 256 as we scale the
data size proportionally. We observe that memory
bandwidth for Optane-only execution is 2 to 3 orders of
magnitude lower than DRAM-only and Memory-mode
executions. This results in more than 2x higher execution
times for Optane-only execution. This result is observed for
both strong and weak scaling cases. The observed
bandwidth remains fairly constant for both strong and weak
scaling across all number of processes for DRAM-only and
Memory-mode executions but rises for Optane-only
execution. The lower bandwidth for Optane-only execution
is a result of the higher access latency of Optane DC. The
Memory-mode execution matches the performance of
DRAM-only execution because it uses DRAM as a cache.
The problem sizes for this experiment are small enough to
fit into DRAM. Hence, there is minimal difference between
the performance of DRAM-only and Memory-mode
executions. Fig. 9a and Fig. 9b depict the energy
consumption and execution time of all three executions of
AMG for strong and weak scaling. We observe that the
energy consumption of Optane-only execution is 2x higher
than DRAM-only and Memory-mode executions. This is
due to its higher execution time even though the power
consumed by Optane-only execution is lower than the other
executions. Fig. 10a and Fig. 10b depict the L3 cache misses
and Cycles/Instruction(CPI) for strong and weak scaling of
AMG for all 3 executions. In strong scaling, we observe that
the CPIs for Optane-only execution are higher for low
number of processes. For higher number of processes they
are almost equal to the other 2 executions. However, the L3
cache misses increase rapidly with the number of processes.
This also explains the difference in execution times of
Optane-only execution and other 2 executions. The increase
in L3 cache misses in Optane-only execution is observed
under weak scaling as well but the CPIs are consistently
higher than the CPIs for the other 2 executions. AMG is a
memory bound application that is heavily affected by
memory access speeds. Hence, the Optane-only executions
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(a) AMG Bandwidth Strong Scaling
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(b) AMG Bandwidth Weak Scaling
Figure 8. Bandwidth measurement for AMG
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(a) AMG Memory Energy Consumption Strong Scaling
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(b) AMG Memory Energy Consumption Weak Scaling
Figure 9. Memory energy consumption for AMG
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(a) AMG L3 Miss Ratio and CPI Strong Scaling
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(b) AMG L3 Miss Ratio and CPI Weak Scaling
Figure 10. L3 miss ratio and CPI for AMG

suffer from heavy performance degradation in terms of
execution time and energy consumption. Such applications
that require faster access speeds will suffer from a
NVM-only approach.

6.2.2 LULESH results
Fig. 11a and Fig. 11b depict the graphs for strong and weak
scaling of LULESH, respectively. We increase the number of
processors from 1 to 27 using MPI, as LULESH accepts only
cubes of natural numbers as a valid configuration. For
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(a) LULESH Bandwidth Strong Scaling
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(b) LULESH Bandwidth Weak Scaling
Figure 11. Bandwidth measurement for LULESH
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(a) LULESH Memory Energy Consumption Strong Scaling
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(b) LULESH Memory Energy Consumption Weak Scaling
Figure 12.Memory energy consumption for LULESH
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(a) LULESH L3 Miss Ratio and CPI Strong Scaling

0
10
20
30
40
50
60

1 8 27
0
0.5
1
1.5
2
2.5
3
3.5

Cy
cl
es
/in

st
ru
ct
io
n

L3
M
iss

ra
tio

MPI Processes

DRAM L3 misses
Optane L3 misses

Memory-mode L3 misses

DRAM CPI
Optane CPI

Memory-mode CPI

(b) LULESH L3 Miss Ratio and CPI Weak Scaling
Figure 13. L3 miss ratio and CPI for LULESH

strong scaling, we keep the problem size constant at 125000
data points and increase the number of processors. We
observe that when LULESH is running only on Optane DC
in flat mode, it has a 50% higher execution time than
DRAM-only and Memory-mode configurations for a single

process and 8 processes. For 27 processes, the execution
time is approximately 6x higher. This effect is observed
because the memory bandwidth is almost an order of
magnitude lower than DRAM-only and Memory-mode
executions. The difference in execution time is more
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amplified in weak scaling for 27 processes due to lower
bandwidth. In weak scaling, we keep the number of data
points per process constant at 15,625. The low bandwidth
on Optane-only execution is due to the high access latency
of Optane DC. We do not observe this effect in
Memory-mode because of the DRAM caching in
Memory-mode. Hence, there is no difference in execution
time for DRAM-only and Memory-mode execution as the
access latency would be the same. In flat mode, Intel’s ADR
is at work to guarantee persistence of data, which can be
hampering performance and the write amplification might
increase access latencies, too. The memory bandwidth in
weak scaling is similar to strong scaling except for single
process execution in strong scaling, where Optane DC has 2
orders of magnitude lower bandwidth. Fig. 12a and 12b
depict the memory energy consumption of LULESH in each
mode for strong and weak scaling, respectively. We observe
that the energy consumption for Optane DC is up to 60%
higher than DRAM-only and Memory-mode executions.
This is in direct correlation to the execution time because
the power consumption for Optane DC is up to 30% less
than DRAM. For smaller problem sizes under weak scaling
with fewer threads the energy consumption of Optane DC
is similar to the other executions. A trade-off between
capacity, problem size and performance needs to be
achieved to keep the application execution within desired
energy budgets. Fig. 13a and Fig. 13b depict the L3 cache
miss ratio and CPIs for LULESH strong and weak scaling,
respectively. For strong scaling, the L3 cache misses
increase with the number of processes but they are lower
for Optane-only execution on 27 nodes. In weak scaling, the
CPIs are 3x higher compared to DRAM-only and the L3
cache misses are significantly higher. These add to the
execution time, explaining the difference in execution time
for weak scaling of LULESH. Applications like LULESH are
dependent on memory bandwidth for performance. These
applications can reduce their energy consumption with
NVM when they are running smaller problem sizes and
fewer threads.

6.2.3 VPIC results
Fig. 14a and Fig. 14b depict the execution time and memory
bandwidth for strong and weak scaling of VPIC. We use the
’lpi’ input deck provided by the authors of the benchmark
for our experiments. For strong scaling, we increase the
number of processes from 1 to 8 using MPI and keep the
problem size the same by changing the ’nppc’ value from
2048 to 256. The ’nppc’ variable in the input deck
determines the number of particles/cell for each species in
the plasma. We observe that NVM-only execution of VPIC
is 2 to 16% slower than DRAM-only and Memory-mode
executions. For weak scaling, we keep the problem size per
process same by keeping the ’nppc’ value at 512. This
slowdown is caused by the lower bandwidth observed for

Optane-only execution. Optane-only memory bandwidth is
at least an order of magnitude lower than DRAM-only and
Memory-mode bandwidth for larger number of processes in
case of strong scaling. For weak-scaling, the memory
bandwidth of Optane-only execution is similar to
DRAM-only execution and Memory-mode execution and
hence there is no difference in execution times either.
Fig. 15a and Fig. 15b depict that the memory energy
consumption for VPIC strong and weak scaling,
respectively. The Optane-only execution’s energy
consumption remains constant with strong scaling of VPIC
similar to the DRAM energy consumption. However under
weak scaling, Optane-only execution’s energy consumption
rises at slower rate than the other 2 executions. As the
execution times are similar for all execution under weak
scaling, the energy consumed by all three executions is also
similar. Fig. 16a and Fig. 16b depict the L3 cache miss ratio
and CPIs for strong scaling and weak scaling of VPIC. Even
though the cache misses increase with strong scaling for
Optane DC execution, the CPIs remain lower than
DRAM-only execution. The cache miss ratio for
Memory-mode execution rises at a slower rate than
NVM-only and DRAM-only execution. In weak scaling,
Optane-only execution results in fewer L3 cache misses
than DRAM-only and Memory-mode execution but higher
CPIs. This keeps the execution times of Optane-only
execution low for weak scaling. VPIC optimizes its cache
hits, as seen in the results, to achieve higher performance
and hence there is minimal difference in execution times of
all three executions even though there is a significant
difference in bandwidth. Such applications can benefit from
Optane DC by reducing energy consumption while not
compromising on performance.

6.2.4 SNAP results
Fig. 17a and Fig. 17b depict the memory bandwidth and
execution time for strong and weak scaling of SNAP in
Optane-only, DRAM-only, and Memory-mode executions.
We use MPI to scale the number of processes from 1 to 8.
We use the C-version of SNAP that is compiled with mpicc.
Here, we observe that the execution times in strong scaling
vary only slightly for all the three executions. Optane DC
memory bandwidth increases with increasing number of
processes and is the highest out of all three executions for 8
processes. This is reflected in the execution times of all 3
executions. However, for weak scaling the execution time
increases for Optane-only execution when we scale up to 8
processes. We also observe that the memory bandwidth for
Optane-only execution does not increase with weak scaling.
This explains the 2x higher execution time for Optane-only
execution compared to DRAM-only and Memory-mode
execution. Fig. 18a and Fig. 18b depict the energy
consumption of SNAP execution in Optane-only,
DRAM-only, and Memory-mode executions. The energy
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(a) VPIC Bandwidth Strong Scaling
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(b) VPIC Bandwidth Weak Scaling
Figure 14. Bandwidth measurement for VPIC
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(a) VPIC Memory Energy Consumption Strong Scaling
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(b) VPIC Memory Energy Consumption Weak Scaling
Figure 15.Memory energy consumption for VPIC
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(a) VPIC L3 Miss Ratio and CPI Strong Scaling
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(b) VPIC L3 Miss Ratio and CPI Weak Scaling
Figure 16. L3 miss ratio and CPI for VPIC

consumption remain fairly constant across all three
executions for both strong and weak scaling. As the
execution times are similar for these executions the energy
consumption of Optane-only execution is the least amongst
the 3 executions, when the number of processes are 4.

Under weak scaling, Memory-mode consumes the least
power overall but due to larger execution times it consumes
the maximum energy. Fig. 19a and Fig. 19b depict the plot of
L3 cache miss ratios and CPIs for strong and weak scaling
of SNAP. We observe that CPIs differ significantly for
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(a) SNAP Bandwidth Strong Scaling
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(b) SNAP Bandwidth Weak Scaling
Figure 17. Bandwidth measurement for SNAP
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(a) SNAP Memory Energy Consumption Strong Scaling
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(b) SNAP Memory Energy Consumption Weak Scaling
Figure 18.Memory energy consumption for SNAP
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(a) SNAP L3 Miss Ratio and CPI Strong Scaling
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(b) SNAP L3 Miss Ratio and CPI Weak Scaling
Figure 19. L3 miss ratio and CPI for SNAP

strong scaling at higher number of processes, where
Optane-only execution experiences the least CPIs. The L3
cache misses actually rise with increasing number of
processors for all three executions. The L3 cache misses
scale with increasing number of processes for weak scaling,

too. However, the changes in CPIs for higher number
processes are erratic. The C-version of SNAP was created to
take advantage of the vector operations in the Intel
microarchitecture and is highly optimized to take advantage
of the cache hierarchy and prefetching methods. Due to this,
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the performance degradation is minimal with SNAP, which
results in reduction in energy consumption on the low
power Optane DC memory.

7 Future Work
Intel’s Optane DC PMM opens up a range of possibilities for
use of NVM in various applications. We plan to explore the
use of NVDIMMs in optimizing HPC applications. The
different modes in which you can operate Optane DC
PMMs have potential to optimize many HPC applications.
With our performance characterizations, we plan to develop
allocation policies for NVM for different configurations.
This will help accommodate large problems with fewer
compute nodes and operate under a required compute and
energy budget. There are many variable components to
Optane DC that need to be characterized as well to take full
advantage of the technology, for example, its variable
latency and power consumption. We plan to study the
longevity and varying latencies of NVDIMMs when used
with HPC workloads and their susceptibility to faults and
failures. This will help improve the resiliency of the
supercomputers that would use NVDIMMs.
In addition to the massive memory capacity, NVDIMMs

have data persistence, which can help develop novel
resiliency techniques. They can be used to store lightweight
checkpoints and restart processes that fail. We plan to
explore the possibility of building a fast and lightweight
checkpoint/restart mechanism for exascale supercomputers
[22]. It can also be used to maintain metadata of large-scale
systems and help in lookup operations. The data stored on
NVDIMMs can be used to detect and correct soft errors by
using checksums for increasing reliability. We will explore
the use of NVDIMMs to increase the reliability of
computations. We also plan to investigate the kernel and
user-level support required for efficient use of NVDIMMs.
Compiler-based analysis and profiling information can help
optimize the use NVDIMMs for various applications. We
will also assess support for other memory technologies that
can be incorporated into the DRAM-NVM hybrid memory
hierarchy.

8 Timeline
In this section, we have laid out a plan for the remaining
time till the completion of Ph.D. Our work is going to focus
on developing and providing software support for hybrid
memory architectures.
• We will check the feasibility of DRAM-NVM hybrid
memories to support large problems on fewer nodes.
For this task, we will set up an experiment where we
will compare a DRAM-NVM hybrid memory system
with a small set of nodes equipped with a high
bandwidth interconnect and an equivalent amount of
DRAM memory. We will run large problem sizes for

HPC benchmarks on these systems and then compare
their performance in terms execution time and energy
along with other metrics. We expect this research to
result into a conference paper. (1-2 months)

• We want to explore the effects of different caching
and prefetching methods on HPC applications while
using a hybrid memory architecture. We will evaluate
how the current caching and prefetching methods
affect the performance of HPC applications while
using NVM and then develop solutions that can
improve the performance of HPC applications. We
expect this work to also result into a conference
publication. (2-3 months)

• We also want to explore and evaluate allocation
policies for hybrid memory architectures that
optimize HPC performance. Based on the
performance characterization of DRAM and NVM in
a hybrid memory system, we want to develop data
allocation and movement policies that can achieve
close to peak performance of HPC applications. (2-3
months)

• We want to develop compiler support for hybrid
memory architectures where we can automate the
data allocation and data movement policies statically
and optimize HPC applications in order to relieve the
programmer from changing applications for hybrid
memory systems. We expect that the combination of
this work and above mentioned work to result into a
conference publication with the possibility of a
journal extension. (2-3 months)

Here is also a list of publications that I have till date apart
from this paper.
• (Technical poster) Exploring Use-cases for
Non-Volatile Memories in support of HPC Resilience
(SC 2017) O. Patil, S. Hukerikar, F. Mueller, C.
Englemann

• (Workshop paper) Persistent Regions that Survive
NVM Media Failure (NVM 2017) O. Patil, M. Kuscu, T.
Tran, C. Johnson, J. Tucek, H. Kuno

• (Conference paper) Efficient & Predictable Group
Communication Messaging over Manycore NoCs (ISC
2016) K. Yagna, O. Patil, F. Mueller

• (Conference paper) End-to-end Resilience for HPC
Applications (ISC 2019) A. Rezai, H. Khetawat, O. Patil,
F. Mueller, P. Hargrove, E. Roman

9 Conclusion
In this paper, we performed characterization of a hybrid
memory system comprising of a slower NVM device and a
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faster DRAM device. We conclude that using a slower
byte-addressable memory device hampers the performance
of memory-bound HPC applications due to higher access
latencies and lower memory bandwidth. However, using the
DRAM as a cache for the slower NVM device maintains the
performance of HPC applications observed on DRAM-only
memory systems while increasing the memory capacity of
the system, which needs to be further verified on large
problem sizes. Although using NVM as main memory
directly hampers the performance, it has the potential to
reduce the energy consumption of HPC applications with
reasonable trade-offs. Optane DC PMMs enables us to close
the gap between core count and memory capacity scaling.
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