
Symbiotic HW Cache and SW DTLB Prefetching
for DRAM/NVM Hybrid Memory
Onkar Patil1, Frank Mueller1, Latchesar Ionkov2, Jason Lee2, Michael Lang2

1North Carolina State University 2Los Alamos National Laboratory
opatil@ncsu.edu mueller@cs.ncsu.edu lionkov,jasonlee,mlang@lanl.gov

Abstract—The introduction of NVDIMM memory devices has
encouraged the use of DRAM/NVM based hybrid memory sys-
tems to increase the memory-per-core ratio in compute nodes and
obtain possible energy and cost benefits. However, Non-Volatile
Memory (NVM) is slower than DRAM in terms of read/write
latency. This difference in performance will adversely affect
memory-bound applications. Traditionally, data prefetching at
the hardware level has been used to increase the number of cache
hits to mitigate performance degradation. However, software
(SW) prefetching has not been used effectively to reduce the
effects of high memory access latencies. Also, the current cache
hierarchy and hardware (HW) prefetching are not optimized for
a hybrid memory system.

We hypothesize that HW and SW prefetching can complement
each other in placing data in caches and the Data Translation
Look-aside Buffer (DTLB) prior to their references, and by doing
so adaptively, highly varying access latencies in a DRAM/NVM
hybrid memory system are taken into account. This work
contributes an adaptive SW prefetch method based on the
characterization of read/write/unroll prefetch distances for NVM
and DRAM. Prefetch performance is characterized via custom
benchmarks based on STREAM2 specifications in a multicore
MPI runtime environment and compared to the performance
of the standard SW prefetch pass in GCC. Furthermore, the
effects of HW prefetching on kernels executing on hybrid
memory system are evaluated. Experimental results indicate
that SW prefetching targeted to populate the DTLB results in
up to 26% performance improvement when symbiotically used
in conjunction with HW prefetching, as opposed to only HW
prefetching. Based on our findings, changes to GCC’s prefetch-
loop-arrays compiler pass are proposed to take advantage of
DTLB prefetching in a hybrid memory system for kernels that
are frequently used in HPC applications.

Index Terms—Prefetching, NVDIMM, Optane DC, DRAM,
NVM, Hybrid Memory Architecture, HPC, DTLB

I. INTRODUCTION
Hybrid memory architectures are being increasingly adopted

in modern computing systems. Intel’s Knights Landing (KNL)
introduced High Bandwidth Memory (HBM) along with
traditional DRAM-based main memory [1]. General Purpose
Graphics Processing Units (GPGPU) are also equipped with
HBM [2]. Fujitsu is using a hybrid memory cube (HMC)
for its A64FX ARM based chips to deliver high bandwidth
memory access to all the compute cores [3]. Recently, Intel
launched their Phase Change Memory based Optane DC Per-
sistent Memory Modules (PMM), which are byte-addressable
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NVDIMMs used as non-volatile main memory (NVM) [4]. The
Aurora supercomputer [5], which will be launched in 2021,
will have support for Intel Optane DC PMMs. Hence, such a
DRAM/NVM based hybrid memory architecture will become
more prevalent in future HPC systems. One of the reasons why
memory architectures are becoming heterogeneous is because
each memory technology brings different characteristics to
the table with pros and cons [6]. HBM allows more data
to be moved to the processor with the same access latency
as DRAM, while NVM provides higher memory capacity
supporting application runs with larger problem sizes on fewer
systems (nodes), which can result in lower energy consumption
and cheaper acquisition costs.

Modern architectures use hardware (HW) prefetchers to
increase the amount of cache hits of applications and reduce
the effective latency of L1 and L2 cache misses. This can
improve overall application performance. HW prefetchers rely
on hardware to fetch data by tracking cache line addresses
accessed in the N most recently accessed 4KB pages for
each core and then predicting future access locations during
execution [7], [8]. The HW prefetchers are limited by the
4KB page boundary and so-called huge pages do not alleviate
this problem as the HW prefetcher is unaware of the larger
page boundary [9]. Also, the number of huge page Data
Translation Look-aside Buffer (DTLB) entries are very limited,
and their allocation requires specific API calls. Software (SW)
prefetching is performed by using the prefetch instructions that
are part of the instruction set architecture (ISA) on many
processors. Compilers perform SW prefetching by adding
prefetch instructions to the code after analyzing memory
access patterns statically, which increases the amount of cache
hits on the critical path. Each prefetch mechanism has its
own advantages and disadvantages. However, currently both
mechanisms are designed and fine-tuned for only DRAM-
based main memory, and SW prefetching is very conservatively
utilized. For instance, the “prefetch-loop-arrays” pass in GCC
[10] determines the read and write prefetch distances based on
mostly the L1 cache size, DRAM access latency and the 64-byte
cache line granularity used for DRAM on Intel architectures.
It is very rigid in terms of the heuristics it utilizes to decide
if prefetching is profitable or not and explicitly tries to avoid
clashing with the HW prefetcher.

SW DTLB prefetching was proposed almost three decades
ago [11] but is not implemented in any modern systems or
compiler frameworks. The DTLB is an address translation
cache that contains entries mapping page numbers to page



frames. DRAM/NVM based hybrid memory systems aim to
support larger datasets for applications, which means more
memory pages will be fetched by the CPU [9]. This will create
additional pressure on the DTLB because every DTLB-miss
is served by a page walk across a 4 or 5 level radix tree,
which can incur a high cost on performance at times. Further
performance degradation can occur if the page walk results in a
page fault and main memory has to be accessed to retrieve page
table indirections. NVM access latency can further add to this
problem. As we move towards hybrid memory architectures,
prefetch mechanisms need to adapt in order to mitigate the
performance degradation of applications.

High performance computing (HPC) applications frequently
use different solvers, e.g., Partial Differential Equations
(PDE), Fast Fourier Transform (FFT) and Conjugate Gradient
(CG) [12]. The solvers consist of kernels that perform heavy
compute and memory operations on large structured arrays.
They perform computations, e.g., using various stencil shapes,
which display strong spatial and temporal locality. It is critical
to take advantage of the locality of references for good
performance of the HPC applications on hybrid memory
systems. Upcoming HPC systems will have hybrid memory
devices that require a more effective prefetch methodology to
achieve good performance.

This paper analyzes the performance of a DRAM/NVM
based hybrid memory system for different HPC kernels. Com-
putational kernels are enhanced by SW prefetch instructions and
assessed in their relative effect on performance. The objective
here is to characterize the prefetch performance for hybrid
memory systems while executing HPC workloads so that the
current prefetch mechanisms can adapt to new and potentially
hybrid memory architectures.

Section II summarizes previous work on hybrid memory
systems and SW prefetching. Section III provides an overview
of the “prefetch-loop-arrays” pass in GCC and explores the
architecture of a hybrid memory system. Section IV presents
our experimental setup and the custom benchmark developed
in this work for evaluation. Section V presents and discusses
results and observations. Section VI proposes modifications
to the “prefetch-loop-arrays” pass to achieve SW adaptive
prefetching. Section VII summarizes our contributions.

II. RELATED WORK
A number of recent studies have been conducted recently

after the launch of Intel’s Optane DC PMMs. Yang et al. and
Izraelevitz et al. [13], [14] evaluated the read and write memory
access characteristics of Optane DC PMM for different file-
systems, database applications and performance benchmarks.
They found that Optane DC improves the performance of file
systems and database applications due to lower latencies than
storage devices. Patil et al. [15] characterized the performance
of a DRAM/NVM hybrid memory system for HPC applications.
They measured the bandwidth performance and energy char-
acteristics of HPC applications runs on Optane DC compared
to pure DRAM and DRAM as cache for Optane DC. Peng et
al. [16] evaluated Optane DC PMMs in all the configurations

available and also measured the performance of separating read
and write allocation on a DRAM/NVM memory system. All
the above works focus on evaluating the basic performance
characteristics of Optane DC under various execution contexts
and workloads. Our work primarily focuses of characterizing
the effects of prefetching and utilization of the cache in in a
byte-addressable DRAM/NVM hybrid memory address space
for HPC workloads.

Several works have been conducted on utilizing SW prefetch-
ing in order to improve performance on traditional DRAM
based memory systems. Callahan et al. [17] were the first to
introduce SW prefetching as non-blocking prefetch instruction
to eliminate cache miss latency. Mowry et. al [18] introduced
and evaluated compiler based SW prefetching that worked in
coordination with the HW prefetcher. Bala et al. [11] introduced
SW prefetching for DTLB to decrease both the number and
cost of kernel DTLB misses. Margaritov et al. [9] proposed a
HW-based DTLB prefetch mechanism to reduce the address
translation times in modern processor systems. Badawy et
al. [19] evaluated the use of SW prefetching and locality
optimizations for various HPC workloads for DRAM-based
memory systems and found that for some cases SW prefetching
has more benefits.

Fuchs et al. [20] designed a HW prefetcher for code block
working sets that predicted the future memory accesses of
stencil based codes. Swamy et al. [21] introduced a hardware/-
software framework to support efficient helper threading on het-
erogeneous manycores, where the helper thread would perform
SW prefetching to achieve higher sequential performance for
memory-intensive workloads. Zhao et al. [22] used a dynamic
approach to pool memory allocations together and fine tuned
the data prefetching based on the access patterns observed in
the profiler. Islam et al. [8] evaluated hardware prefetching in a
flat-addressable heterogeneous memory comprising HBM and
phase change memory (PCM), where a large buffer was placed
in HBM to hide the access latency of PCM. Meswani et al. [7]
explored various schemes to manage the heterogeneous memory
architectures and then refined the mechanisms to address a
variety of HW and SW prefetch implementation challenges.
Lee et al. [23] evaluated both SW and HW prefetching for
various workloads and suggested techniques for cooperative
HW/SW prefetching. We aim to utilize DTLB- and cache line-
based software prefetching in order to adapt to the upcoming
hybrid memory systems with fast and slow access memory
devices while improving the performance of HPC workloads.

III. ARCHITECTURE

A. GCC prefetch-loop-arrays compiler pass
Mowry et al. [18] designed the GCC compiler pass to

optimize HPC workloads with SW prefetch hints that work in
coordination with the HW prefetcher. This section analyzes
the operational characteristics of their prefetch algorithm. The
algorithm aims to be fine tuned for DRAM-based memory
systems. All constants and heuristics are fixed to values that
conform with DRAM specifications, which differ from system
to system. The algorithm works on a per loop basis:



1) Gather all memory references in the loop and convert
them into a base + step ∗ iter + delta form. Classify
them as read or write references and form groups of
references based on base + step to identify different
access patterns.

2) Calculate the profitability for each memory reference
using a heuristic-based cost model that takes into account
the total number of instructions, memory references,
the miss rate, trip count, prefetch-ahead distance, unroll
factor, the maximum prefetch-slots and temporal locality.

3) Determine the references that can be prefetched based on
maximum prefetch-slots and prefetch-modulo (relative
to the loop iterator).

4) Unroll the loops to satisfy prefetch-modulo and prefetch-
before constraints in prologue size, but without loop
peeling.

5) Emit the prefetch instructions.

The cost model used to determine the profitability of
prefetching for different memory reference groups is as follows:

• First determine the prefetch-modulo and prefetch-before
for every memory reference using the step and delta val-
ues. Their temporal locality is determined data dependence
analysis on the memory references.

• The prefetch-ahead is determined by using the ratio of
fetch time

iteration time indicating how far ahead to prefetch. Both
these values are unavailable at compile time. Instead,
target-specific constants are used to make an “educated
guess”.

• The acceptable miss rate is calculated based on the
references that have the same base + step ∗ iter but
different delta. If delta exceeds cache line size then
it is determined to be a miss. If the probability of this
miss is less than 0.95, then prefetching is considered to
be unprofitable.

• It determines if the loop has enough iterations to justify
prefetching ahead using the trip-count-to-ahead-ratio with
a cut-off threshold of 4 (i.e., no prefetching below this
threshold).

• It also calculates the ratio between total instruction count
memory references

to determine if the loop has enough CPU instructions to
overlap the cache misses. If the ratio is smaller than the
machine specific threshold, no prefetching is done.

• It also calculates the prefetch-cost via the ratio of
total prefetch count

total instructions count . If this cost is too high, then no
prefetching is performed.

• The ratio of prefetch mod
unroll factor is calculated with a threshold

value of 4, below which no prefetching occurs.

Some of these thresholds are overly strict even by DRAM
standards. If the same prefetching parameters were used for
NVM memory accesses, the algorithm would fail to gauge the
most efficient prefetch configuration or not perform prefetching
at all. Although the algorithm acknowledges different types
of streams/access patterns in a kernel, it does not consider
varying thresholds. Hence, it cannot adapt to different memory
access patterns or memory technologies. Also, all parameters

are defined based on cache and cache line sizes. No DTLB
prefetching is considered.
B. DRAM-NVM hybrid memory architecture platform

The system used in experiments is a single HPE Proliant
DL360 node with 2 CPU sockets equipped with Intel’s Xeon
8260 (code-named Cascade Lake). Each chip has 24 cores with
a clock frequency of 2.4 GHz. Each core has 2 processing
units under hyperthreading for a total of 96 CPUs. Each core
has a 32 KB private L1 instruction cache, a 32 KB private
data cache, and a private 1 MB L2 cache. There is a 35.75
MB L3 cache shared between all cores. It has a DTLB cache
with 64 entries, which is 4-way set associative.

Each socket has 12 DIMM slots. 6 of the slots are occupied
by 16 GB DDR4 DRAM modules and the other 6 slots are
occupied by 128 GB Optane DC modules for a total of 192
GB DRAM and 1.5 TB NVM. The node has 4 memory
controllers in total, two are connected to 6 DRAM DIMMs
each, and the other two, known as iMC, are connected to
6 NVDIMMs each. The processor uses the standard DDR4
protocol on the regular DRAM memory controller and the
DDR-T protocol for Optane DC on the i-memory controller
(iMC). Using this proprietary extension of the protocol, the
Optane DC achieves asynchronous command/data timing and
variable-latency memory transactions. Optane DC has an on-
DIMM Apache Pass controller that handles memory access
requests and the processing required on NVDIMM. The on-
DIMM controller internally translates the addresses of all
access requests for wear-leveling and bad-block management. It
maintains an address indirection table on-DIMM that translates
the DIMM’s physical addresses to an internal device address.
The table is also backed up on DRAM.

Accessing data on Optane DC occurs after the translation.
The controller translates 64 byte load/stores into 256 byte
accesses due to the higher cache line access granularity of
Optane DC, which causes write amplification [14]. Optane
DC PMM can operate in different modes (1) as an uncached
byte-addressable memory (Flat mode), (2) as DRAM cached
main memory (Memory mode), or (3) as a block storage device
(App-Direct mode). All modes (except for Flat) are provided
by Intel. Flat is a custom mode introduced by patching the OS
kernel to identify all DIMMs as DRAM, thereby creating a true
hybrid memory address space. All experiments are performed
on the Flat-mode.

IV. EXPERIMENTAL SETUP

The aim of this experiment is to characterize the performance
of SW prefetching for different prefetch distances under
temporal and non-temporal prefetching with allocations on
DRAM and NVM separately. We switch HW prefetching
on and off for all experiments to evaluate its effect, which
requires a reboot after toggling on/off three BIOS setting: HW
Prefetch, Adjacent Sector Prefetch, and DCU Stream Prefetch.
We compare the SW prefetch performance with and without
“prefetch-loop-arrays” compiler optimization of GCC 9.3.0
while using the O3 flag for all compilations. The symbiotic
SW prefetching runs are compiled with “no-unroll-loops” in
order to measure the effect of varying unroll distances.



We developed a custom benchmark that allows us to measure
the prefetch performance for different kernels frequently occur-
ring in HPC applications. These kernels include a write-only
(Wr-only) stream, single-write-multiple-read stream (1W4R),
and 3-, 5-, 7-, 9- and 27-point stencil streams. The Wr-only
stream kernel consists of 5 sequential write streams of linear
arrays. The 1W4R kernel has one write stream and four
read streams, which are also accessed sequentially. All stencil
kernels consist of a write stream and a read stream of a 3-
dimensional (3D) dataset of linearly laid out arrays accessed
in row-major order using three nested for loops.

The stencil codes are implemented as Jacobi iterative
kernels, which are common in Computational Fluid Dynamics
(CFD) applications, Partial Differential Equations (PDEs), and
pointular automata [24]. Some examples of stencil code-based
HPC applications are Vector Particle In Cell (VPIC) [25]–[27]
and Algebraic Multi-grid (AMG) [28], which are compute-
and memory-bound applications, respectively. The 3-, 5- and
7-point stencils use the Von Neumann neighborhood whereas
the 9- and 27-point stencils use the Moore neighborhood [29].
The 3-point stencil is a one-dimensional (1D) stencil, where for
every iteration the previous element and the next element are
read along with the current one. The 5-point stencil is a two-
dimensional (2D) stencil, where along with adjacent elements
in the same row of the current element, adjacent elements in the
same column of the current element are also read. The 7-point
stencil is a 3D stencil, where along with the adjacent elements
in the same row and column of the current element, adjacent
elements in the next and previous plane are read. The 9-point
stencil is a 2D stencil including diagonal elements beyond
the 5-point stencil. Similarly, 27-point stencil is a 3D stencil
with diagonals on every dimensional pair beyond the 7-point
stencil. These stencils comprise one or more read streams, plus
a write stream accessed sequentially. Each stream is 4 GB in
size and is allocated separately on each NUMA node using
numa alloc onnode() for every run.

We manually unroll and peel the kernels. Each kernel has a
prologue and an epilogue loop. The prologue loop prefetches
each element of the stream sequentially until up to given read
or write prefetch distance. The main compute kernel is unrolled
up to the unroll distance and the next elements are prefetched
after unrolling is complete. The main loop stops when there
are no more elements to prefetch and the remaining iterations
are completed in the epilogue loop. Due to the variability
in the read and write distances, the prologue and epilogue
loops are split and separated by conditional statements to avoid
over-prefetching and segmentation faults.

We use the GCC builtin prefetch() function to prefetch the
desired cache line at every iteration [30], which automatically
calls the corresponding intrinsic for a given instruction set
architecture. We change the read and write prefetch distance
explicitly from 32 bytes to 16,384 bytes using nested loops that
encompass all the kernels. The upper bound of the prefetch
distance is kept at 16,384 bytes to avoid L1 cache contention at
higher distances. We change the parameters of the prefetch call
to perform non-temporal and temporal prefetching for linear

and stencil read streams, respectively. We use non-temporal
prefetching for all write streams. For non-temporal prefetching,
the data is fetched into a non-temporal cache structure to
avoid cache pollution; whereas for temporal prefetching the
data is prefetch into L2 cache or higher [31], [32]. We also
vary the unroll distance in another nested loop from 4 to
64. We limit the unroll distance to 64 to restrict additional
pressure on available CPU registers. We perform cache line
prefetching with distances from 32 to 2,048 and perform DTLB
page prefetching from distances from 4,096 to 16,384. This
is enabled by adding a conditional statement to the prefetch
statement block, which prefetches only after certain number
of iterations have elapsed nearing the page boundary. DTLB
caching causes the address translation to be stored in the 4-
tier DTLB cache, which reduces future page faults that are
expensive in terms of CPU cycles [33].

We refer to our technique as “symbiotic prefetching” from
here on. We execute the benchmark on 48 processes running
individually on each core launched by MPI, but without
imposing communication via message passing, i.e., just to
provide realistic workloads in separate address spaces with
contention on shared resources (last-level cache, DRAM/NVM).
We divide the stream size equally between all processes and
allocate them separately. We pin all processes to the cores
and then calculate the data bandwidth for DRAM and NVM
allocations using the ratio of total memory of all data structures
accessed and wall clock time measured for each kernel. Each
measurement is averaged over 10 runs, where a standard
deviation of 4%-6% is observed for all kernels. To obtain cache
performance metrics, we use the LIKWID Marker API [34] to
measure metrics for every individual kernel obtained from HW
performance counters. The performance counters are obtained
for the configuration that delivers highest performance benefit
and then reported relative to measurements of the same kernel
without any prefetching as a baseline. We also perform the
same comparison for the kernels when they are compiled using
“prefetch-loop-arrays”. We term this as compiler prefetching
from here on.

V. RESULTS
This section discusses the results of experiments and present

observations. Prefetch performance is depicted as percentage
changes over different compilation options. We depict per-
centage changes in data bandwidth observed with symbiotic
prefetching (sp) as a heat map over a 3D graph relative
to the baseline bandwidth observed when compiled with no
prefetching (np). The x-axis depicts the write prefetch distance
in bytes, the y-axis the read prefetch distance in bytes, and the
z-axis the unroll distance in number of iterations. The heatmap
colors represent percentage changes in bandwidth relative to
the baseline. We plot the graphs for DRAM (left) and NVM
(right) separately.

We only present heatmaps for the 7-point stencil in Figures 1
and 2 due to space limits, but we report and discuss the
results (data bandwidth and performance metrics) for all kernels
as all have similar graphs, albeit with different best values
(subject of a forthcoming technical report). Figure 1 depicts
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Fig. 1: Performance of 7-pt stencil (3D) stream with Temporal prefetching relative to no HW prefetching as a baseline

results of symbiotic and compiler prefetching for the 7-point
stencil kernel without HW prefetching. Figure 1a and 1b depict
performance changes under symbiotic prefetching for DRAM
and NVM, respectively, where an arrow indicates the highest
benefit configuration (write, read, unroll distances).

Observation 1: For DRAM, bandwidth increases for larger
read prefetch distances (x-axis) but abruptly drops close to the
largest write prefetch distances (y-axis) and is best for a small
unroll distance (z-axis).

Observation 2: For NVM, the bandwidth decreases toward
higher write and read prefetch distances (x+y axes) and, in
contrast to DRAM, is best for largest unroll distance (z-axis).

Observation 3: For DRAM, symbiotic prefetching results in
slightly higher L1-DTLB load misses, and even slightly more
for compiler prefetching. For NVM, L1-DTLB load misses are
significantly higher by a factor of 11x (1100%) under symbiotic
prefetching compared to no SW prefetching — where compiler
prefetching actually reduces the L1-DTLB load misses for
NVM. Symbiotic prefetching also reduces the L1-DTLB store
misses for NVM whereas compiler prefetching increases them.

Given the structure of a 3D 7-point stencil, a total of 5 read
streams and 1 write stream exist. Hence, performance of the
kernel critically depends on the availability of read data in the
cache. As the stencil moves across the data set, there is reuse
of all neighboring read data points. Hence, it is prefetched
as temporal data into the L2 and L1 caches. The write data
points do not have reuse, and are hence prefetched as non-
temporal data into a separate cache structure. However, if the
latency of the memory accesses is large then a high unroll
distance is required to reduce CPU stall cycles. The dependence
on unroll distance is reflected in the NVM heatmap where
the performance benefits from higher unroll distances, which
increases temporal reuse of read data and overlaps prefetch
latency of the write stream with computation. Nonetheless, a
short unroll distance is sufficient for faster DRAM memory
accesses under DTLB prefetching for the read streams. The
pages for read data are quickly cached into the DTLB, which
increases the reuse within read streams by reducing page walks

and page faults. Further, short unroll distances are sufficient to
overlap with prefetches spaced according to the write stream.
This is also reflected in hardware counter metrics, where a
reduction in L2, L3 and L1-DTLB store misses is observed for
symbiotic prefetching on DRAM, which is the source of the
performance benefit. For NVM, the L1-DTLB load misses are
high due to a smaller read prefetch distance, and the reduction
in store misses provides the main performance benefit. Cache
and memory bandwidths increase as a result of reduced L1-
DTLB misses.

Let us also consider Figure 3a in this context, which depicts
the performance of all prefetching methods relative to no
prefetching as a baseline per kernel; and Figure 3b, which
depicts the performance comparison of HW prefetching relative
to no HW prefetching as a baseline. The y-axis depicts the
percentage change in data bandwidth and the x-axis lists all
benchmark kernels for both figures. For the 7-point stencil,
compiler prefetching is not able to provide any performance
benefit as seen in Figure 3a whereas symbiotic prefetching on
the other hand provides a 12% and 19% performance benefit
for DRAM and NVM, respectively, over no prefetching. This
is also reflected in the hardware counters, where compiler
prefetching shows the smallest changes over these metrics.
This results from tight bounds plus low margins on heuristics
and greater dependence on HW prefetching, where its absence
harms performance.

Inference 1: The prefetching configurations show diametric
behavior for the same kernel when its streams are allocated
on DRAM and NVM. SW prefetching provides benefits for both
DRAM and NVM without relying on or being complemented
by the HW prefetcher.

Figure 2 depicts the results for symbiotic and compiler
prefetching for the 7-point stencil kernel with HW prefetching,
with the same subfigures as before.

Observation 4: For DRAM, the bandwidth increases toward
lower write and also slightly toward higher read prefetch
distances, and it slightly increases for smaller unroll distances.

Observation 5: For NVM, the data bandwidth increases as
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Fig. 2: Performance of 7-pt stencil (3D) stream with L2 Temporal prefetching relative to HW prefetching as a baseline
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Fig. 3: Performance Comparison between all prefetching methods (sp = symbiotic prefetching, cp = Compiler prefetching, np =
no prefetching, hwp = HW prefetching)

we move higher on all three axes.

Observation 6: L1-DTLB load misses for DRAM increase
under symbiotic prefetching but decrease under compiler
prefetching. L1-DTLB store misses are reduced by symbiotic
prefetching, whereas compiler prefetching increases it. A
similar but more profound value change is observed for NVM.

As symbiotic prefetching operates independently of HW
prefetching, hardware counters change according to bandwidth
trends of Figures 2a and 2b. The increase in darkness
on the heatmap indicates that HW and SW prefetching
together are able to provide the best performance benefit. For
DRAM, additional HW prefetching does not significantly affect
symbiotic prefetching but complements its performance by
enabling higher read prefetch and unroll distances to better
take advantage of temporal locality for this 7-point stencil
kernel. Every dispatched load operation by the HW prefetcher

is first dispatched to the L1 cache and DTLB. Upon an L1
miss, it is relayed to lower caches, which can incur up to 80
cycles to be fetched. However, a TLB miss can result in a
page walk or page fault accounting for thousands of cycles.
However, due to the DTLB prefetching, the dispatched load
encounters a TLB hit most of the time reducing the overhead
of page walks and page faults.

Nonetheless, the addition of HW prefetching provides
benefits (see Figure 3a). NVM is also assisted by HW
prefetching with larger prefetch and unroll distances for
symbiotic prefetching compared to no HW prefetching. SW
read prefetching affects the DTLB cache, which results in
fewer L1-DTLB load misses relative to the baseline (only HW
prefetching). Here, HW prefetching serves the temporal locality
of the access pattern. This frees up the SW prefetcher, which
is now utilized to reduce TLB misses. Hence, the performance



benefit of symbiotic plus HW prefetching results in twice
the performance gain compared to no HW prefetching for
NVM (see Figure 3a). Compiler prefetching cannot improve
performance by much without DTLB prefetching; it is DTLB
prefetching that provides the main source of improvement (see
heatmaps of DRAM and NVM).

Inference 2: SW prefetching improves DTLB performance in
a manner symbiotic to HW prefetching driving cache benefits
for the kernel for both DRAM and NVM.

Any requests of the HW prefetcher benefit upper caches
while symbiotic prefetching effectively becomes DTLB
prefetching and results in reduced L1-DTLB load misses.
Although this is observed for NVM, symbiotic prefetching
is not able to increase the L1-DTLB load misses for DRAM,
as the latter (DRAM) does not benefit in performance. Due to
fewer read streams, HW prefetch requests populate the DTLB
cache quickly enough that symbiotic prefetching becomes
redundant. The heatmaps of all the kernels show a similar
behavior with subtle differences owing to the number of read
and write streams present in the kernel. The SW prefetch
configurations indicated by the arrows that deliver the highest
performance benefit for each kernel are summarized in Table I.
The table reinforces the inference that SW prefetching should be
utilized alongside HW prefetching to combine DTLB caching
and data caching due to the symbiosis between former and
latter prefetch techniques, respectively. But configurations have
to be adapted to the underlying memory technology (DRAM
vs. NVM) and specific access patterns.

Observation 7: We observe that symbiotic prefetching
by itself provides more performance benefit than compiler
prefetching for DRAM and NVM over all kernels. The highest
performance benefit is observed when symbiotic prefetching
is used in conjunction with HW prefetching from 4 to 26%.
The performance for NVM degrades when combined with
HW prefetching for all kernels, except for 1W4R. But notably,
symbiotic prefetching mitigates this degradation (except for
the rather simplistic Wr-only and 1W4R kernels). In contrast,
compiler prefetching remains ineffective, i.e., any degraded
performance cannot be reduced. The HW prefetcher degrades
the performance of linear array streams on DRAM, and SW
prefetching is unable to mitigate this problem.

Inference 3: HW prefetching only serves short-distance
read prefetches that have high temporal locality, which are
typical signatures of 1D or 2D stencil kernels. HW prefetching
also needs to be adaptive to access patterns in order avoid
performance degradation. Here, SW prefetching comes to the
rescue as it mitigates these performance degradations on NVM.

VI. ADAPTIVE SW PREFETCHING AS A COMPILER PASS
Based on our observations and inferences, we propose the

following changes to the “prefetch-loop-arrays” compiler pass
in GCC:

• To adapt to a hybrid memory, compilers should become
memory allocation-aware. This can be accomplished by
overloading malloc() where the programmer along with the
size can also specify the desired memory device and the

NUMA nodes need to be mapped to the correct memory
device to complete the allocation.

• The pass already identifies different streams and their
access patterns in any given loop. Hence, classifying
specific workloads is feasible and should be incorporated.

• Instead of a single set of constants and threshold values to
guide heuristics and the cost model, a static table for each
memory technology should be maintained with specific
constants/thresholds per access pattern. Our contributions
in this work lay the foundation to automatically derive
these constants and thresholds in a calibration run, which
then allows the derivation of values similar to Table I.
Once access pattern and memory type of streams have
been determined, the compiler pass can readily decide on
prefetches given the specific constants/thresholds.

• Condition check for non-temporal locality should be re-
moved, and non-temporal prefetches should be supported.
Checking of the HW prefetcher stride needs to be lifted
to allow for both symbiotic SW and HW prefetching.

• The acceptable miss rates need to be lowered for large
distances to accommodate DTLB prefetching. Similarly,
many thresholds (trip-count-to-ahead-ratio, prefetch-mod-
to-unroll-factor-ratio, memory-ref-count-reasonable and
insn-to-prefetch-ratio-too-small also) need to be higher
for symbiotic prefetching to allow DTLB prefetching in
software — as well as support for higher unroll distances
that are adaptive for slow and fast memories.

• With predictable access patterns, priority ordering of
prefetches based on lowest prefetch-modulo can be re-
placed by the (more easily) predicted performance benefit.

• Finally, loop peeling is required when emitting prefetch
instructions at the end of the pass.

The changes are beyond the scope of this work, but only
become feasible due to the contributions of our memory-hybrid,
adaptive and symbiotic prefetching.

VII. CONCLUSION

Our work provides novel insight that the existing rigid
and conservative approach to SW prefetching leaves ample
performance potential on the table for HPC workloads. We
show that existing HW prefetchers are neither optimized for
NVM memory nor for non-temporal workloads. We contribute
HW and SW prefetch methods that are more adaptive and show
that they succeed in extracting symbiotic performance while
being sensitive to hybrid memory systems. Our DTLB-based
symbiotic SW prefetching improves the performance of HPC
kernels from 4 to 26% for data streams allocated on both
DRAM and NVM, and our SW prefetching complements HW
prefetching rather than competing with it. We also present a
simple design to modify an existing SW prefetch compiler pass
to implement our prefetch configurations with the potential
to automatically improve performance for HPC workloads on
future hybrid memory systems.
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