
Scalable Hierarchical Locking for Distributed Systems �

Nirmit Desai and Frank Mueller

Dept. of Computer Science, North Carolina State University, Raleigh, NC 27695

e-mail: mueller@cs.ncsu.edu, phone: +1.919.515.7889, fax: +1.919.515.7925

ABSTRACT

Middleware components are becoming increasingly important as applications share computational resources

in distributed environments, such as high-end clusters with ever larger number of processors, computational

grids and increasingly large server farms. One of the main challenges in such environments is to achieve

scalability of synchronization. In general, concurrency services arbitrate resource requests in distributed

systems. But concurrency protocols currently lack scalability. Adding such guarantees enables resource

sharing and computing with distributed objects in systems with a large number of nodes.

The objective of our work is to enhance middleware services to provide scalability of synchronization

and to support state replication in distributed systems. We have designed and implemented a middleware

protocol in support of these objectives. Its essence is a peer-to-peer protocol for multi-mode hierarchical

locking, which is applicable to transaction-style processing and distributed agreement. We demonstrate

high scalability combined with low response times in high-performance cluster environments. Our tech-

nical contribution is a novel, fully decentralized, hierarchical locking protocol to enhance concurrency in

distributed resource allocation following the specification of general concurrency services for large-scale

data and object repositories. Our experiments on an IBM SP show that the number of messages approaches

an asymptote at 15 nodes, from which point on the message overhead is in the order of 3-9 messages

per request, depending on system parameters. At the same time, response times increase linearly with a

proportional increase in requests and, consequently, higher concurrency levels. Specifically, in the range of

up to 80 nodes, response times under 10 msec are observed for critical sections that are one 25th the size

of non-critical code. The high degree of scalability and responsiveness of our protocol is due in large to a

high level of concurrency upon resolving requests combined with dynamic path compression for request

propagation paths. Our approach is not only applicable to CORBA, its principles are shown to provide
�

This work was supported in part by NSF CAREER grant CCR-0237570

benefits to general distributed concurrency services and transaction models. Besides its technical strengths,

our approach is intriguing due to its simplicity and its wide applicability, ranging from large-scale clusters

to server-style computing.

Keywords: Distributed mutual exclusion, middleware services, distributed resource allocation, concur-

rency services, hierarchical locking, peer-to-peer protocols, scalability, large-scale distributed computing,

distributed agreement, distributed transactions

1. INTRODUCTION

Distributed computing is rapidly becoming a commodity to share resources, such as objects, on a larger

and larger scale. In the past, applications relied on message passing, shared memory, remote procedure

calls and their object counterparts, such as remote method invocations, to exploit parallelism in distributed

environments or invoke remote services in a client-server paradigm. The problem with these approaches is

its reliance on access to a centralized facility and its limitations in scalability.

In contrast, recent trends aim at peer-to-peer computing with distributed objects. This paradigm is generally

supported by middleware to provide distributed services. This middleware provides a software layer

between the operating system and the applications that supports cooperative problem solving and provides

user transparency. This middleware constitutes the enabling technology for distributed object services, such

as resource arbitration in distributed systems.

Another relevant trend regarding our work relates to clusters and the Grid. High-end clusters and the Grid

have increased considerably in size over the past years. These clusters profit not only from advances in

processor design and interconnects but their main advantage is its mere size, currently ranging up to 8,000

processors with future projections over 10,000, e.g., for IBM’s Blue Gene Light and potentially even larger

systems in the Grid [1, 12]. We see a similar trend in commercial computing areas, such as server computing.

Servers are increasingly organized in ever larger server farms. This trend is in response to requirements

for high availability and faster response times. Multiple server farms may exist in geographically distant

locations so that accesses can be quickly delegated to a server in the requester’s vicinity.

One of the main challenges in such environments is to achieve scalability of synchronization. We address

the issues of scalability through middleware protocols. Though our protocol is compatible with existing

standards, such as CORBA, its model is applicable to any distributed resource allocation scheme. For

example, distributed agreement, originally designed for distributed database systems, has recently been

adopted for cluster computing [10, 11]. The use of transactions in such environments requires support for

hierarchical locking services to arbitrate between requests of different modes at multiple levels within the

shared / replicated data. Hierarchical locks have been studied in the context of database system with a

limited number of nodes [16, 22, 21, 19, 3].

The sheer size of clusters and server farms requires us to consider hierarchical locking again, but this time

under the aspect of scalability. The challenge in environments with a large number of nodes is to provide

short response times for lock requests through a protocol that scales well with the number of nodes.

The work presented in this paper provides a solution to this problem and extends our previous results [8,

9]. We present a hierarchical locking protocol that supports a high degree of concurrency for a number

of access modes. The protocol is aimed at global state replication in distributed systems. The underlying

protocol follows a peer-to-peer paradigm, which is applicable to transaction-style processing and distributed

agreement. The peer-to-peer paradigm ensures scalability by relying only on fully decentralized data

structures and symmetric algorithms. As a result, our protocol is highly scalable due to its O(log n)

message complexity for n nodes, it accommodates a large number of concurrent requests, provides progress

guarantees to prevent starvation and delivers short response times, even in large networks. Experimental

results on an IBM SP show overheads of 3-9 messages and response times lower than 10 msec up to 80

nodes depending on the ratio of non-critical code and critical sections.

In this paper, we first review a non-hierarchical locking protocol, which we compare against during later

experimentations. We then introduce our peer-to-peer hierarchical locking protocol, define its operations

through a set of rules and tables, and we provide several examples together with pseudo-code. Our work

is based on the semantics of concurrency services widely used in database systems and also defined in the

CORBA concurrency services. We modify the specification of CORBA concurrency services, which results

in a specialization of the services that does not affect its original properties (since it is a specialization).

New properties, such as fairness, are due to FIFO queuing within token owners. The primary objective

of this work is to demonstrate strengths of our approach for providing a scalable middleware protocol.

This is demonstrated by the rules, tables and examples describing the dynamics of the protocol. The

second emphasis is on extensive experiments on actual systems confirming our claims. Our experiments

are comprised of the aforementioned comparison with non-hierarchical locking on a Linux cluster on one

hand and results for scalability and latency evaluations on an IBM SP cluster on the other hand. We then

discuss related work and summarize our contributions.

2. MUTUAL EXCLUSION FOR DISTRIBUTED SYSTEMS

Concurrent requests to access shared resources in a distributed environment have to be arbitrated by means

of mutual exclusion, e.g., to provide hierarchical locking and support transaction processing. In the absence

of shared memory, mutual exclusion is realized via a series of messages passed between nodes that share

a certain resource. Several algorithms have been developed to provide mutual exclusion for distributed

systems [6]. They can be distinguished by their approaches as token-based and non-token-based. The

former may rely on broadcast protocols or may use logical structures with point-to-point communication.

Broadcast and non-token-based protocols generally suffer from limited scalability due to centralized control,

due to their message overhead or because of topological constraints. In contrast, token-based protocols

exploiting point-to-point connectivity may result in logarithmic message complexity with regard to the

number of nodes. In the following, a fully decentralized token-based protocol is introduced.

Token-based algorithms for mutual exclusion employ a single token representing the lock object, which

is passed between nodes within the system [28]. Possession of the token represents the right to enter the

critical region of the lock object. Requests that cannot be served right away are registered in a distributed

linked list originating at the token owner. Once a token becomes available, the owner passes it on to the

next requester within the distributed list. In addition, nodes form a logical tree pointing via probable owner

links toward the root. Initially, the root is the token owner. When requests are issued, they are guided by a

chain of probable owners to the current root. Each node on the propagation path sets its probable owner to

the requester, i.e., the tree is modified dynamically.

In Figure 1, the root
�

initially holds the token for mutual exclusion. A request by � is sent to � following

the probable owner (solid arcs). Node � forwards the request along the chain of probable owners to
�

and

sets its probable owner to � . When the request arrives at the root
�

, the probable owner and a next pointer

(dotted arc) are set to the requester � . The next request from � is sent to � . � forwards the request to �
following the probable owners and sets its probable owner to � . Node � sets its next pointer and probable

owner to � . When the token owner
�

returns from its critical section, the token is sent to the target node

that next points to. Hence,
�

passes the token to � and deletes the next pointer.

This algorithm has an average message overhead of ������	�
��� since requests are relayed through a dynami-

cally adjusted tree, which results in path compression with regard to future request propagation. It is fully

decentralized, which ensures scalability for large numbers of nodes. The model assures that requests are

ordered FIFO. Our contribution in prior work was to alleviate shortcomings in priority support [24, 25]. In

this work, we develop a novel protocol for hierarchical locking building on our past results and demonstrate

CA

T

DB

A C

T

DB

C

T

D

A

B

Request from A Request from C Token to A

CA

T

DB

Figure 1: Non-hierarchical Example

its suitability to deliver short latencies and low message overhead in cluster environments.

3. A PEER-TO-PEER HIERARCHICAL LOCKING PROTOCOL

This section introduces a novel locking protocol. This protocol strictly follows a peer-to-peer paradigm

in that all data structures are fully decentralized and each node runs a symmetric instance of the protocol.

These operational characteristics combined with a O(log n) message complexity ensure scalability and are

demonstrated to also yield low response times. The protocol distinguishes a number of access modes in

support of concurrency services for distributed computing. In the following, we refer to the Concurrency

Services of CORBA, which follows the de facto standard hierarchical locking model widely used in database

systems, as the underlying model without restricting the generality of our proposed protocol [17].

3.1 Compatibility between Lock Modes

The main objective of our approach is to ensure a high degree of concurrency for the distributed mutual

exclusion protocol. We allow multiple nodes to share access to a resource if possible by supporting a set of

five access modes compatible with common access requirements of database systems and distributed object

systems.

As in Naimi’s protocol, nodes form a logical tree structure by maintaining their local parent pointers. But

our protocol does not require next pointers. The root node of the tree holds the token and is referred to as

the token node. All other nodes are non-token nodes. We support the following access modes. First, we

distinguish read (R) locks and write (W) locks with shared and exclusive access, respectively. Second, we

support upgrade (U) locks, which represent an exclusive read lock that is followed by an upgrade request

for a write lock. Upgrade locks ensure data consistency between a read followed by an update value that

was derived from the read value. Third, we provide intent locks for reading (IR) and writing (IW).

Intent locks are motivated by hierarchical locking paradigms, which allow the distinction between lock

modes on the structural data representation, e.g., when a database, multiple tables within the database and

entries within tables are associated with distinct locks [16, 22]. For example, an entity may first acquire an

intent write lock on a database and then disjoint write (or upgrade) locks on the next lower granularity. Since

the low-level locks are assumed to be disjoint, hierarchical locks greatly enhance parallelism by allowing

simultaneous access for such threads. In general, lock requests may proceed in parallel if modes for a lock

are compatible.

The compatibility between these basic lock modes defines which modes may be used in parallel by different

requesters. Conversely, incompatibility of locks modes indicates a need for serialization of two requests.

Let � be a resource and ��� be the lock associated with it. Table 1 shows the rules for granting ��� in

different modes according to the specification of concurrency services [17]. Column one specifies the

presently held lock modes for ��� and the remaining columns represent the type of mode requests received

for ��� .

To define our protocol, we derive several rules for locking and specify if concurrent access modes are

permissible through a set of tables. These tables not only demonstrate the elegance of the protocol, but they

also facilitate its implementation.

Rule 1: Modes ��� and �
	 are said to be compatible with each other if and only if they are not in conflict

according to Table 1.

Mode �� Mode ���
IR R U IW W

No lock – �
Intent Read – IR X

Read – R X X
Upgrade – U X X X

Intent Write – IW X X X
Write – W X X X X X

Table 1: Incompatibility of Lock Modes (Conflicts Indicated as X)

Definition 1: Lock � is said to be stronger than lock � if the former constrains the degree of concurrency

over the latter. In other words, � is compatible with fewer other modes than � is. The order of lock

strengths is defined by the following inequations:

����� � � � ��������� ���
(1)

A higher degree of strength implies a potentially lower level of concurrency between multiple requests. For

example, a write lock allows less concurrency than a read lock, so W is stronger than R. Table 1 depicts

lock modes in increasing order of lock strength – with the exception of upgrade and intent writes that,

conceptually, share the same degree of concurrency. In the following, we distinguish cases when a node

holds a lock vs. when a node owns a lock.

Definition 2: Node � is said to hold the lock � � in mode � � if � is inside a critical section protected by

the lock, i.e., after � has acquired the lock and before it releases it.

Definition 3: Node � is said to own the lock � � in mode ��� if ��� is the strongest mode being held by

any node in the tree rooted in node � .

3.2 Local Queues, Intent Locks and Copysets

In our protocol for hierarchical locking, we employ a token-based approach. A novel aspect of our

protocols is the handling of requests. While Naimi’s protocol constructs a single, distributed FIFO queue,

our protocol combines multiple local queues for logging incompatible requests. These local queues are

logically equivalent to a single distributed FIFO, as will be seen later.

Another novelty is our handling of intent locks for token-based protocols. To distinguish different levels

of lock granularities (hierarchical locks) and, at the same time, to maximize the degree of concurrency, we

support intent lock modes. For example, a node wishing to read an attribute of an object will request an

intent read (IR) lock on the object itself and, once acquired, it will request a read (R) lock on the attribute

it wants to read without releasing IR. Note that the resources being requested in the above requests are at

different levels of granularities – the object contains the attribute. Each of these resource requests can only

be granted in accordance with lock compatibility requirements.

Compatible requests can be served concurrently by the first receiver of the request with a sufficient access

mode. Concurrent locks are recorded, together with their access level, as so-called copysets of child nodes

whose requests have been granted. This is a generalization of Li/Hudak’s more restrictive copysets [23].

Definition 4: Copyset of a node is a set of nodes holding a common lock at the same time with any parent

node owning the lock in a mode stronger than the mode granted to its children.

In the following, we refer to a token owner and its children to establish the relation of a copyset.

3.3 Request Granting

The next rule governs the dispatching of the lock requests.

Rule 2: A node sends a request for the lock in mode ��� to its parent if and only if the node owns the lock

in mode � � where � � � � � (and � � may be
�

), or � � and � � are incompatible. In all other cases,

only the local copyset is updated and critical section is entered without sending any messages.

Furthermore, lock requests are granted under the following conditions.

Rule 3:

1. A non-token node holding � � in mode ��� can grant a request for ��� in mode � � if ��� and � �
are compatible and � � � � � .

2. The token node owning ��� in mode ��� can grant a request for ��� in mode � � if ��� and � � are

compatible.

The operational specification for our protocol further requires that

in case 1: the requester becomes a child of the node;

in case 2: if modes are compatible and if � � � �
� , the token is transferred to the requester. Thus, the

requester becomes the new token node and parent of the original token node. If � � � � � , the

requester receives a granted copy from the token node and becomes a child of the token node. (See

Rule 4 for the case when � � and � � are incompatible.)

Table 2 depicts legal modes for granting another mode according to this rule, indicated by the absence of

an � . For the token node, compatibility represents a necessary and sufficient condition. Hence, access is

subject to Rule 1 in conjunction with Table 1.

Non-token Owned Requested Mode ���
Mode ��� IR R U IW W

No lock – � X X X X X
Intention Read – IR X X X X

Read – R X X X
Upgrade – U X X X

Intention Write – IW X X X
Write – W X X X X X

Table 2: Granting New Lock Requests by Children

In the following, we denote the tuple (� ��� � � � �
) corresponding to the owned, held and pending mode

for each node, respectively. Shaded nodes are holding a lock and constitute the copyset, which indicates

the degree of concurrency achieved at that state. A dotted, directed arc from � to � indicates that the

parent/child relation is only known to the source � but not yet to the sink � . Solid arcs indicate mutual

awareness. The token is depicted as a solid circle inside a node.

Example: Consider the initial state as shown in Figure 2(a). When � requires the lock in
� � , it checks Rule

2 to decide if sending a request is necessary. As � � � � ��� � � �
� , it sends the request to its parent,

node � . � receives the request, checks Rule 3.2 and responds to the request by sending a grant message.

� becomes a child of � according to the operational specification. In (b) when � requires the lock in � ,

it checks Rule 2 and sends the request to its parent, node � . � receives the request, checks Rule 3.2 and

grants the request by transferring the token to � (for � , � � � � �). � becomes the new token node and

� becomes a child of � . (c) shows the final state of the nodes.

B(0,0,0)

A(IR,IR,0)

C(0,0,0) D(0,0,0)

{E,IR}

D(0,0,0)C(0,0,0)

A(IR,IR,0)

E(0,0,IR) E(IR,IR,0)

{B,R}

B(0,0,R)

B(R,R,0)

C(0,0,0) D(0,0,0)

E(IR,IR,0)

A(IR,IR,0)

(a) E Requests IR (b) B Requests R (c) Final state

Figure 2: Request Granting Example

3.4 Request Queuing/Forwarding

When a node issues a request that cannot be granted right away due to mode incompatibility, the following

rule applies.

Rule 4:

1. If a non-token node cannot grant a request, it will either forward the request to its parent or queue the

request locally based on the present state of a pending request of the node according to Table 3.

2. If the token node cannot grant a request, it will queue the request locally regardless of the state of its

pending request.

Rule 4 is supplemented by the following operational specification: Locally queued requests are considered

for granting when the pending request comes through or a release message is received.

In Table 3, local queuing and forwarding are indicated as Q and F, respectively. The aim here is to queue

Non-token Pending Requested Mode � �
Mode ��� IR R U IW W

No pending – � F F F F F
Intention Read – IR Q F F F F

Read – R F Q F F F
Upgrade – U F F Q Q Q

Intention Write – IW F F F Q F
Write – W Q Q Q Q Q

Table 3: Queue / Forward Decision

as many requests as possible to suppress message passing overhead without compromising FIFO ordering.

Example: In Figure 3(a), � sends a request for
� � to its parent � (after checking Rule 2). When � receives

the request (as it cannot grant it due to Rule 3.1), it derives from Table 3 that it can queue the request locally

or not (according to Rule 4.1). As � does not have any pending requests, � 	 � � , so � has to forward

the request to its parent node � , as shown in (b). � receives the requests and sends a grant as discussed

above. In (c), � and
�

concurrently make requests sent to their respective parents, nodes � and � . When

� receives
�

’s request (as it cannot grant it due to Rule 3.1), it derives from Table 3 that it can queue the
�

’s request locally since � has a pending request (Rule 4.1). On the other hand, when � receives � ’s

request (as it cannot grant it due to Rule 3.2), it locally queues the request (Rule 4.2), as shown in (d). These

queued requests are eventually granted when � releases
� �

, as specified by Rule 5 (see below).

Figure 4 depicts the pseudo-code of the above described rules for lock request handling. RequestLock()

represents the user API whereas other operations are handlers invoked in response to message reception.

(Ignore the details regarding frozen modes for now). Some macros like compatible(), grantable() and

tokenable(), refer to the corresponding tables and return TRUE or FALSE, depending on the corresponding

table entries. A pseudo-procedure Check requests on queue() takes care of handling the locally queued

requests as described in Rules 4 and 5.

3.5 Lock Release

The following rule governs the handling of lock releases. For this rule, let us consider parent nodes that

have knowledge of only the owned modes of their immediate children.

Rule 5:

D(0,0,0)C(0,0,IR)

{C,IR}

(a) C Requests IR

C(0,0,IR) D(0,0,0)

{C,IR}

B(0,0,0) B(0,0,0)

A(IW,IW,0) A(IW,IW,0)

(b) B Forwards {C,IR}

A(IW,IW,0)

{B,R}

{D,R}

D Requests R

B(0,0,R)

D(0,0,R)

C(IR,IR,0)

(c) B Requests R,

A(IW,IW,0)

C(IR,IR,0)

(d) Final state

B(0,0,R)

{D,R}

{B,R}

D(0,0,R)

Figure 3: Request Queuing/Forwarding Example

1. When the token node releases a lock or receives release from one of its children, it considers the locally

queued requests for granting under constraints of Rule 3.

2. When a non-token node � releases a lock or receives a release in some mode � � , it will send a release

message to its parent only if the owned mode of � is changed (weakened) due to this release.

The first part of this rule is similar to Naimi’s protocol in that queued locks are served upon a release. If a

root node has received release notifications from its children and if the root node is no longer engaged in a

critical section, it will send the token to the first requester in its local queue. In addition, the local queue is

piggybacked to ensure that other requests will be considered by the token recipient.

The second part of the above rule ensures that release messages are only sent towards the root of the copyset

if necessary, i.e., when modes change. Upon receipt of a release message, the parent may safely assume that

neither the child nor its children (or grandchildren) are holding the lock in the released mode. Nonetheless,

the child may still own the lock in some weaker mode, which is included in the message to allow the parent

to update the log of modes for its children. Overall, this protocol reduces the number of messages compared

to a more eager variant with immediate notification upon lock releases. In our approach, one message

suffices, irrespective of the number of grandchildren.

Example: Consider Figure 5(a) as the initial configuration. Here, � is waiting for the
� �

request to be

granted, which is queued locally by � . Suppose � releases the lock in � . According to Rule 5.2, it will

not notify its parent about the release as the owned mode of � is still � due to
�

(one of its children)

�����������
	���������������
���

Self �� Token Node
	 ���"!

�#� � �%$ � �'& compatible
� ���)(� � � &

Frozen Modes
	 ���"!

[Rule 2]
Acquire Lock
Copyset * Copyset + ����,+#�-�
[Rule 2]��� � � �

Send Request to Parent�"+.�
�
�#�

compatible
� ���)(� � � &

Frozen Modes
	 ���"!

[Rule 3(2)]
Acquire Lock
Copyset * Copyset + � ��,+#�-�
[Rule 4(2)]

Queue * Queue + � ����/*�� �
Update Frozen Modes [Tab 4]
Send Freeze to Children if required (a)

����� � ��0 ��123�4�,!5�6�
Parent * NULL
Copyset * Copyset + � ��87�* � � (� � *:9
Children * Children + Sender if required [Rule 2] (b)
Merge Queues (c)
Check requests on queue [Rule 4]

����� � ��0 �";=<�>3!4	��6�
Parent * Sender [Rule 3.1]
Copyset * Copyset + ���� 7 * � �?(� 	 *:9
Frozen Modes * Frozen Modes + Parent Frozen
Check requests on queue [Rule 4]

@
Freeze is sent to the child only if the child is potential granter of

the mode to be frozen and the mode is not already frozenA
The sender of the token might still be owning some mode; If

so, the sender is added to the children set of the new token node.
Otherwise not.B

The queue at the old token node is passed to the new token node
along with the token. The new token node itself may have a local
queue, too. These queues are merged preserving FIFO ordering
as discussed in [24].

CD>3!�EF+��"�����������
	G��� � �
�#�

Self �� Token node
	����,!

�#�
grantable

� ���)(� � �3	����,! [Rule 3.1, Tab 2]
Children * Children + Requester
Copyset * Copyset + � �
Send grant to Requester�"+.�
� �#�

can be queued
� � ��(� � �3	����,! [Rule 4.1, Tab 3]

Queue * Queue + � ��"+.�
�
[Rule 4.1, Tab 3]

Send Request to Parent�"+.�
�
�#�

tokenable
� ���H(� � �3	����,! [Rule 3.2, Tab 1]���

Requester I Children
	����,!

Children * Children - Requester
Parent * Requester
Send Token to Requester�"+.�
� �#�

grantable
� � � (� � �3	����,! [Rule 3.2, Tab 2]

Children * Children + Requester
Copyset * Copyset + ���
Send Grant to Requester�"+.�
�
[Rule 4.2]

Queue * Queue + � �
Update Frozen Modes [Tab 4]
Send Freeze to Children if required (

@
)

J ������� <��"�����"�K	�� L! �����,���M�6�
N � � +#�

Queue �� EMPTY� � * Queue.head�#�
tokenable

� ���H(� � �3	����,! [Rule 3.2, Tab 1]���
Requester I Children

	����,!
Children * Children - Requester

Parent * Requester
Send Token to Requester�"+.�
� �#�

grantable
� � � (� � �3	����,! [Rule 3.2, Table 2]

Children * Children + Requester
Copyset * Copyset + ���
Send Grant to Requester�"+.�
�
Update Frozen Modes [Tab 4]
exit loop

Figure 4: Pseudocode for Request Handling

still owning the lock in mode � . However, the held mode of � is changed to
�

. As shown in (b), when
�

releases � , it sends a release message to its parent (� here) because the owned mode of
�

is changed

to
�

from � (which is weakened). When � receives this release, none of � ’s children now own a mode

stronger than
�

. Hence, the owned mode of � is changed to
�

. � sends the release to its parent (� here)

due to Rule 5.2. In (c), � also releases � and, because it is not aware of the change in owned mode of � ,

its owned mode is still � . Only when the release arrives at � does � know about the changed mode of � ,

which triggers a change in � ’s owned mode from � to
�

. As shown in (d), this in turn triggers the transfer

of token to � (according to Rule 5.1).

Figure 6 depicts the pseudo-code of the lock release handling. RequestUnlock() is a user API.

B(R,R,0)

D(R,R,0)C(0,0,IW)

B(R,0,0)

C(0,0,IW)

RELEASE

D(0,0,0)

{C,IW} {C,IW} {C,IW}

C(0,0,IW)

B(0,0,0)

D(0,0,0)

RELEASE

B(0,0,0)

D(0,0,0)C(IW,IW,0)

(c) A Releases R(b) D Releases R(a) B Releases R (d) Final state

A(R,0,0)A(R,R,0)A(R,R,0) A(0,0,0)

Figure 5: Lock Release Example
�����������
	��=! +�����F� �

Copyset * Copyset - � 7� 7 * 9���
Changed Mode of Self

	����"!
[Rule 5]

Send Release to Parent
Check request on queue [Rule 5]

C >3!�EF+#��� �"+#�G>M�
�3� � � (��� � [Rule 5]
Update Children for change in ��� of Child
Update Copyset for change in ��� of Child���

Changed Mode of Self
	����"!

Send Release to Parent
Check requests on queue

Figure 6: Pseudocode for Lock Release Handling

3.6 Fairness and Absence of Starvation

The objective of providing a high degree of concurrency conflicts with common concurrency guarantees.

For example, the reader-writing problem for databases is subject to starvation if new readers are accepted as

long as at least one reader is active. Queued write requests, which are incompatible, would never be served

if readers arrived fast enough. Consider the queuing of our protocol. Grants in response to a request may

be unfair in the sense that the FIFO policy of serving requests could be violated. In essence, a newly issued

request compatible with an existing lock mode could bypass already queued requests, which were deemed

incompatible. Such a behavior is not only undesirable, it may lead to starvation due to the described race.

Consider a request by
�

for mode
�

in the state of Figure 7(a). (Ignore freeze messages and frozen modes

for now).
� � � will reach � according to the rules described above, and � will queue it according to Rule

4, as shown in (b). Once � and � release their locks for � and
� � , respectively, the token will be forwarded

to
�

due to Rule 3, as depicted in Figure 7(c). While
�

waits for � � � � � to advance, � may grant other

� � � � requests from other nodes according to Rule 3. As mentioned before, accepting
� � � � requests

potentially violates the FIFO policy since � � � � � arrived first. After
�

is received, we should be waiting

for release of
� � � � modes since they are not compatible with

�
. This prevents � from granting the

pending � � � � � request. If, however, subsequent
� � � � requests are granted, the

�
request may starve.

B(IR,0,0)

(D,W)

A(R,R,0)

D(0,0,W)

FREEZE(IR)

IR

IR,R,U

FREEZE(IR)

(b) A sends Freeze

IR

C(IR,IR,0) E(0,0,0)

A(0,0,0)

D(W,W,0)

(c) A,B,C Release R,IR,IR

C(0,0,0) E(0,0,0)

B(0,0,0)

D(0,0,0)

B(IR,0,0)

C(IR,IR,0) E(0,0,0)

A(R,R,0)

(a) D requests W

Figure 7: Frozen Modes Example

We ensure fairness in terms of FIFO queuing and, thereby, avoid starvation by freezing certain protocol

states upon reception of incompatible requests. For example, the token node � , after receiving
�

, will not

grant any other requests compatible with the waiting request (
�

in this case). Other modes (
� � � � and

�

in this case) are said to be frozen when certain requests (
�

in this case) are received, depending on the

mode owned by the token node (� in this case).

Rule 6: A node may only grant a request if the requested mode is not frozen.

In order to extend fairness beyond the token holder, mode freezing is transitively extended to the copyset

where required by modes. This ensures that potential granters of any mode incompatible with the requested

mode will no longer grant such requests. We ensure transitive freezing by the operational specification for

this rule, which states that the token node notify children about the frozen modes. The pseudo-code of this

freezing mechanism is augmented to almost all the other routines where requests are granted (Routines in

Figure 4 and Figure 10). Figure 8 depicts the pseudo-code for the freeze message handler.

This rule supplements Rules 2 and 3. Table 4 depicts an enumeration of frozen modes for all combinations.

C >3!�EF+#����<��G��� �M�6� �E�������� �����
	���
Frozen Modes * Frozen Modes + Modes
Send Freeze to Children if required (

@
)

Figure 8: Pseudocode for Freezing Mechanism

For example, if the token node is owning a lock in R and a W request is received and queued locally (as

depicted in Figure 7(b)) then IR, R and U are the modes to be frozen at the token node.

Token Node owning Requested Mode
Mode ��� IR R U IW W

No lock – �
Intention Read – IR IR, R, U, IW

Read – R R, U IR, R, U
Upgrade – U R IR, R

Intention Write – IW IW IW IR, IW
Write – W

Table 4: Rules for Freezing Lock Modes at the Token Node

The rationale behind the construction of the Table 4 can be formalized by the following invariants:

Invariant 1: Let ����� be the set of modes to be frozen at token node when the token node owning lock ���
in mode � ��� receives a request for � � in mode � � . Then,

� ����� ���������
 �"! �$#%!'& �)(� ����� � ��� �+*,# 	.-/(�0!1& �)(� ����� � ��� ��2'354 	 �76 �98�4:#<; � ��� � � � � (2)

Invariant 2: Let ���0= be the set of modes to be sent with the freeze message to a child owning ��� in ���0= .

Then,

� ���1� ���0=�� ����� �>���?3
@�.! �$#�!1& �A(� ���7= � ��� � (3)

The predicate grantable(� � , �
�) indicates if � � and � � satisfy Rule 3.1. tokenable(� � , �
�) indicates

if ��� and � � satisfy Rule 3.2 and the token needs to be transferred. Similarly, conflicts(��� , �
) returns

true if the compatibility matrix of Table 1 indicates a conflict between ��� and �
	 . Sets �>��� and �>�0=
calculated by invariants 1 and 2 are unified with a set BC� 	ED (� � 	"F (G; recording the state for each of the six

modes mentioned in Inequation 1 at each node. In the basic protocol, the only values each of the elements

in BH� 	"D@(� � 	"F (�; can take are B� �JI �LK and K � � B� �LI �LK . Rule 6 uses this information and

approves a grant/token for requested mode ��� if the set BH� 	"D@(� � 	"F (�; has K � � B� �LI �LK as the

state value of the element corresponding to ��� .

Through this freezing mechanism, ultimately, all children and grandchildren will release the modes, and a

release message will arrive at the token node for each of its immediate children. Thus, the FIFO policy is

preserved.

3.7 Upgrade Request

Upgrade locks facilitate the prevention of potential deadlocks by very simple means if the resulting reduction

in the concurrency level is acceptable [17]. Upgrade locks conflict with each other (and lower strength

modes), which ensures exclusive access rights for reading. This policy supports data consistency between

a read in update (U) mode and a consecutive upgrade request for write (W) mode, which is commonly used

when the written data depends on the prior read.This is reflected in the following rule.

Rule 7: Upon an attempt to upgrade to W, the token owner atomically changes its mode from U to W

(without releasing the lock in U).

Example: As depicted in Figure 9(a), � owns
�

and requests an upgrade to
�

. Note the pending mode

of � reflecting this situation. As this request ��� � � � is waiting, freeze messages are sent to the children

according to Rule 6. During this period, � does not release
�

(atomic upgrade) but waits for a release

message to arrive from � . Ultimately when � releases
� � , release messages are triggered. � , according

to Rule 5, changes its owned mode from
�

to
�

and can now perform writes on the same data. Figure 10

is the pseudo-code of the RequestUpgrade() user API.

B(IR,0,0)

IR

FREEZE(IR)

(a) A requests Upgrade

A(U,U,W)

IR,R

FREEZE(IR)

IR

C(IR,IR,0) E(0,0,0)

B(0,0,0)

C(0,0,0) E(0,0,0)

A(W,W,0)

(b) Upgrade complete

Figure 9: Request Upgrade Example

In summary, lock, unlock and upgrade operations provide the user API. The remaining operations are

triggered by the protocol in response to messages, i.e., for receiving request, grant, token, release, freeze

and update messages. In each case, the protocol actions are directly derived from corresponding rules and

tables, as indicated in the algorithm. This greatly facilitates the implementation since it reduces a seemingly

complex protocol to a small set of rules defined over lookup tables in practice.

�����������
	������3<�>ME��M�6�
[Rule 7]���

Copyset * 9 	����"!
Release U
Acquire W�"+.�
�
� � *��
Update Frozen Modes [Tab 4]
Send Freeze to Children if required (

@
)

Figure 10: Pseudocode for Request Upgrade

Rules 2, 3 and 4 (the only rules governing the granting of requests) coupled with Rule 1 ensure correct

mutual exclusion by enforcing compatibility. Rules 4 and 5 together ensure that each request is eventually

served in the FIFO order, thus avoiding deadlocks and starvation.

The rules above are designed to solve a fundamental problem in distributed systems, viz. lack of global

knowledge. A node has no knowledge about the modes in which other nodes are holding the lock. By

virtue of our protocol, any parent node owns the strongest of all the modes held/owned in the tree rooted at

that node (inequality test in Rule 3). The token node owns the strongest lock mode of all other held/owned

modes. As stronger modes have lesser compatibility, while granting a request at node � , it is safe to test the

compatibility with the owned mode of � only (meaning A does not have to check with any of its children

or parents about their owned modes) , i.e., local knowledge is sufficient to ensure correctness.

4. EXPERIMENTS AND ANALYSIS

Our experiments are designed to assess the capabilities of the protocol in multiple respects.

First, we evaluate the performance of our protocol relative to the protocol by Naimi et al. [28], which has

the best known average case message complexity of ������	�
 ��� .1 Second, we analyze the effect of protocol

overhead on response times, i.e., we detail the properties leading to closed formulas for bounding the

response time of requests. The objective of this analysis is to determine the parameters that affect response

time. Third, we investigate the message overhead in detail by message types to provide an understanding

of the dynamics of the protocol and reason about the sources of overhead.

In addition to empirical evaluation and analysis, the following experiments also demonstrate the feasibility

and applicability of the protocol for different application areas 2. This is orthogonal to the aforementioned

objectives and is elaborated in the respective contexts in the discussion below. The experimental setup and

� We could not find other protocols for distributed mutual exclusion with hierarchical locking models that follow a peer-to-peer
paradigm. Current CORBA implementations, e.g., TAO [2], do not support hierarchical locking. A comparison with centralized
protocols did not seem fair due to the inefficiency of client-server approaches when scalability is to be assessed.� Although fault-tolerance is an important property for such protocols, in this paper we restrict ourselves to the basic protocol.
However, fault-tolerance can be ensured by extensions such as [26].

the protocol parameters are designed to match a unique set of applications in each case.

In each of the following experiments, nodes in the system execute an instance of an application (multi-

airlines reservation) on top of the protocol. The data representing ticket prices are stored in a distributed

table and shared amongst all the nodes. In case of our protocol, each entry of the data is associated with

a lock. In addition, the entire table is associated with another lock (higher level of granularity). Each

application instance (each node) will request the locks iteratively. The critical section time, the non-critical

code time and the network latency experienced by messages (if applicable) were randomized with different

mean values, depending on the type of experiment. The mode of lock requests was randomized so that

the IR, R, U, IW and W requests are 80%, 10%, 4%, 5% and 1% of the total requests, respectively. This

request distribution should reflect the typical frequency of request types for such applications in practice

where read requests to a hierarchical database dominate writes. In addition, we subsequently show that

changing the request distribution does not affect the asymptotic behavior of the protocol. To observe the

scalability behavior, the number of nodes participating in the system is increased from 3 to 120, and the

aforementioned experiment is repeated for each configuration.

4.1 Comparison between Hierarchical and Non-Hierarchical Locking

A first set of experiments focuses on the comparison of our hierarchical protocol with its non-hierarchical

counterpart [28]. Experiments were conducted on Red Hat 7.3 Linux machines with 16 AMD Athlon XP

1800+ processors connected by a full-duplex FastEther TCP/IP switched LAN allowing disjoint point-to-

point communications. Once the number of simulated nodes exceeds the number of physically available

nodes, multiple processes share a physical node, where a process represents a simulated node. (The second

set of experiments on the IBM SP will remove this restriction.) The critical section time, the non-critical

code time and the network latency experienced by messages were randomized with mean values of 15 msec,

150 msec and 150 msec, respectively. Randomization occurs with a uniform distribution within a range of
�������������

for these metrics.

Our protocol requests locks at both table and entry levels. In contrast, Naimi’s protocol only acquires the

lock at the entry level as it cannot distinguish different locking granularities. To access the entire table,

our protocol will acquire a single lock associated with the table in the mode requested. We compare this

overhead to two variants of Naimi’s protocol at the application level. The first variant performs the same

work in terms of functionality but requires a larger number of lock requests to do so. The second variant is

Naimi’s pure protocol with fewer number of lock requests, which, on a functional level, is not equivalent

since it provides access to fewer entries. (Instead of sharing a table, only a single entry is shared here.) The

second variant serves as the reference for comparison. Figure 11 shows all three ways of organizing data

and locks. For example, when the entire table is accessed, our protocol utilizes a single non-intention lock

Figure 11: Data Structures for Hierarchical and Non-hierarchical Locking

on the table while Naimi’s same work version acquires a lock on each individual table entry. Naimi’s pure

version, in contrast, acquires a single lock. When an individual entry of the table is accessed, our protocol

has to acquire an intention lock on the table and the non-intention lock on the specific entry while both

variants of Naimi acquire only a single lock.

Figure 12 assesses the scalability in terms of the average number of messages being sent for each lock

request. We make several interesting observations. First, the message overhead of our protocol is lower

than that of Naimi’s variants. The lower overhead compared with same work is not surprising since more

locks are acquired in a sequential fashion leading to long next queues. If we compare with the pure version,

our protocol performs slightly more lock operations but incurs a lower message overhead. This demonstrates

the strengths of our approach: Not only do we provide additional functionality for hierarchical locking, we

also do so approximately at 20% fewer messages. Hence, protocol overhead for mode distinction is offset

by savings due to local queuing and, most significantly, by allowing children to grant requests.

� �

� �

� �

� �

� �

� �

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100 110 120

Number of Nodes

M
es

sa
ge

 O
ve

rh
ea

d

Naimi - Same work

Naimi - Pure

Our Protocol

Figure 12: Scalability of Message Overhead

The second observation regards the asymptotic behavior of our protocol. After an initial increase, our

protocol results in roughly 3.25 messages per request, even if more and more nodes are issuing requests.

The depicted logarithmic behavior makes the protocol highly suitable for large networked environments. In

contrast, Naimi’s same work is superlinear in terms of message complexity, i.e., when providing the same

functionality. The multi-granular nature of our protocol combined with the message saving optimizations

are the prime causes of this difference, which represents a major contribution of our work.

Figure 13 compares the request latency behavior, i.e., the time elapsed between issuing a request and

entering the critical section in response to a grant message. As stated above, in this family of applications,

the network latency experienced by the messages might be higher than the network latency on our LAN

testbed. We overcome this limitation by resorting to network latency simulation. In case of our protocol,

the latency is averaged over all types of requests (viz. IR, R, U, IW and W). The average request latency for

the same functionality increases superlinearly in case of Naimi’s protocol compared to the linear behavior

of our protocol. To avoid deadlocks, Naimi’s protocol has to acquire locks in a predefined order, which

adds a significant amount of overhead resulting in this behavior. The linearly increasing behavior of our

protocol is the result of increasing interference with other nodes’ requests as number of nodes increases.

Hence, a request has to wait for a linearly increasing number of interfering critical sections. (A more

detailed analysis of these trends will be discussed later.) Naimi’s pure protocol has identical asymptotic

behavior for the same reason. Our protocol has a better constant factor than that of Naimi’s base protocol

for a single lock. This is due to savings in lock requests granted by children as well as lock acquisitions that

are resolved locally without sending messages when modes are changed in the presence of a prior owned

mode (as described in Rule 2), which is compatible.

� �

� �

� �

� �

� �

� �

� �

� �

0

30

60

90

120

150

180

210

240

0 10 20 30 40 50 60 70 80 90 100 110 120

Number of Nodes

La
te

nc
y

F
ac

to
r

Naimi - Same work
Naimi - Pure
Our Protocol

Figure 13: Request Latency (as a factor of point-to-point latency)

Let us return to the issue of linear response time behavior of our protocol. As the message overhead behavior

is logarithmic and as each message being exchanged contributes to the response time for the request, one

would expect the response time behavior to be logarithmic as well. However, while the message overhead

behavior can be used to study the behavior of the protocol, it may not represent the request latency accurately.

This is due to the fact that the request latency time has two components: The network delay experienced by

each of the messages sent and the queuing delay incurred due to the request being locally queued at other

nodes. While the former can be accurately estimated by the message overhead, the latter is not included

in the message overhead. This means that response time behavior can be identical (in ideal case) or worse

than message overhead behavior. It is therefore crucial to study the second component of the response time.

The following experiments focus on assessing this behavior.

4.2 Effects of Concurrency Level and Response Time

A second set of experiments focuses on the effect of concurrency levels on the response time behavior, and

at the same time, assesses scalability in high-performance clusters. Experiments were conducted on an IBM

SP with 180 nodes, each of them comprised of a 4-way SMP with 375 MHz Power3-II CPUs connected via

a Colony SPSwitch, an IBM proprietary low-latency interconnect utilized through user-level MPI. Results

were obtained for nodes in single-CPU configuration to eliminate noise from application mixes sharing

nodes. This limited us to experiments of up to 120 nodes due to administrative constraints. (In the presence

of node sharing, we observed large perturbations of our results due to increased network latencies and

memory contention.)

In the context of our protocol, the concurrency level refers to the number of simultaneously active requests

in the entire system. Quantitatively, the concurrency level can be defined as

� 	 �04 �AK � � K��
� �"8 #�8�4 ! � � (�4:#�8 	 � � 8�� (
K 	 ��� �"8 #�8�4 ! � � 	"F (� 8�� ((4)

where K is the number of nodes in the system. Below, we describe experiments under different concurrency

levels to study its impact on response time behavior.

Variable Concurrency Level

In these experiments, we kept the critical section time constant at a mean value of 15 msec and varied the

length of non-critical code. Results are reported for ratios of one, five, ten and 25 for non-critical code

time relative to the critical section time. Both metrics are randomized around these mean values to trigger

different request orders and tree configurations in consecutive phases. Randomization occurs with a uniform

distribution within a range of
�������������

for both the metrics. These experiments are designed to assess

the protocol’s properties for clusters with native network latencies, i.e., we did not resort to simulation of

network latency as in the previous experiments.

Figure 14 depicts the average number of messages incurred by requests for different constant ratios as

the number of nodes in the system is increased. We observe an asymptotic overhead of 3.5, 5, 6.5 and

around 9 messages for rations one, five, ten and 25, respectively. These results show that message overhead

varies between architectures due to interconnect properties when compared with ratio ten results of 3.25

messages for the Linux cluster (critical section time 15 msec, non-critical code time 150 msec). Higher

ratios result in lower concurrency level and longer propagation paths, which explains the increased message

overhead. Most significantly, the message overhead shows a logarithmic behavior with a low asymptote,

which confirms our claim for high scalability in the case of high-performance clusters.

� �

� �

� �

� �

� �

0

2

4

6

8

10

0 20 40 60 80 100 120
Number of Nodes

M
es

sa
ge

 O
ve

rh
ea

d

Ratio = 25
Ratio = 10
Ratio = 5
Ratio = 1

Figure 14: Message Overhead for Varying Non-Critial/Critical Ratios

Figure 15 depicts the average request latency in msec for different ratios as the number of nodes are varied for

each ratio. One purpose of this experiment is to demonstrate the effect of the ratio of non-critical code time

and critical section time, even though some critical sections cannot be parallelized and are subsequently

subject to Ahmdahl’s Law. Barring the initial curve, response time is clearly linear as we increase the

number of nodes for each ratio. Though lower ratios (higher concurrency) result in much longer response

times than that of higher ratios (lower concurrency), the asymptotic behavior is linear for all ratios. While

the ratios (concurrency levels) are highly dependent on the type of applications, this result illustrates that,

regardless of the application and concurrency level, the response time will be linear. It is also important to

understand that, though the ratio is kept constant as we increase the number of nodes, the concurrency level

changes due to the factor K in Equation 4.

Another interesting observation is that the curves are initially superlinear with any given ratio. Each curve

� �
� �
� �
� �
� �
� �
� �
� �

0

40

80

120

160

200

240

280

320

0 20 40 60 80 100 120

Number of Nodes

R
eq

ue
st

 L
at

en
cy

 (
m

se
c)

Ratio = 25
Ratio = 10
Ratio = 5
Ratio = 1

Figure 15: Absolute Request Latency
becomes linear after some point. Specifically, the number of nodes at which the curves become linear is

smaller for lower ratios (higher concurrency). To understand this behavior and to answer the questions

raised so far about the linear response time behavior, we model the system as follows:

As the number of nodes in the system increases, the average number of simultaneous requests also increases.

This causes more conflicts between incompatible request types, thereby increasing the queuing delay.

However, the tree height increases logarithmically, and so does the propagation path of requests making

the message overhead logarithmic. Hence, with an increase in the number of nodes, an increased queuing

delay is added while message overhead increases logarithmically. Ultimately, the response time increases

superlinearly and, consequently, the queuing delay should increase superlinearly as well.

Without restricting generality, consider a point in time during the execution of the protocol. The probability

of a request of mode � being active at such a point of time is K	� � � � , where K is the number of nodes in

the system, and � � � � is the probability of an � request given by the request distribution discussed before.

This is due to the fact that request types are randomized, and each node has an independent randomized

stream. Hence, the probability of each of the modes of the requests increases linearly with the number of

nodes in the system. Let 4 �AK � be the function representing the number of conflicts present in the system at

this point in time. By the compatibility matrix of Table 1, we infer:

 ���=� � =���
 ���=��� � � ��� =���
 ���D������� � ��� =���
 ���=����� � ���
=���
 ���=��� ��� ��� =���
 ���D������� � ��� =���
 ���D����� � ��� �
=���
 ���=��� ��� � ��� =���
 ���=����� � ��� =���
 ���=�����!� �"�
=���
 ���=��� � � ��� �
=���
 ���=��� ��� ��� =���
 ���=��� ��� ��� =���
 ���=������� � ���
=���
 ���=��� � � ��� �
=���
 ���=��� � � ��� =���
 ���=������� � ��� =���
 ���=����� � ��� �
=���
 ���=��� ��� � ��� =���
 ���=����� � ���

The probabilities of each request type, i.e., � � � � � , � � � � , � � � � , � � � � � and � � � � depend on the application.

For our experiments, these probabilities are 0.80, 0.10, 0.04, 0.05 and 0.01, respectively, as stated before.

Hence, the probabilities are constant while � 	 �04 �AK ��� K . By simplifying 4 �AK � , we derive

4 �AK � � ��� K 	�� ��� K 	�� ��	 K 	�� ��� K 	�� ��� K 	 (5)

where � � are constant factors. Equation 5 indicates that 4 �AK �H�
	 �AK 	 � . The queue length at nodes

will follow the 4 �AK � trend adding a superlinear trend to the logarithmic message overhead. However, the

maximum queue length at any node is still limited by K , the number of nodes, in the worst case. This means

that, at values of K satisfying 4 �AK ��� K 	 , we see the superlinear behavior but after that, it becomes linear as

4 �AK � is bounded by K and K is linearly increasing. This is evident in the results above. Another important

point is that the asymptotic behavior of the response time is independent of the request distribution, as seen

by the simplification given by Equation 5.

Constant Concurrency Level

The previous section explained the linear behavior (in the asymptotic case) of the response time dependent

on the concurrency level � 	 �04 �AK � . Hence, if � 	 �04 �AK � was kept constant, 4 �AK � were constant as well

and the response time behavior would scale logarithmically. To verify this hypothesis, we designed our

experiments to keep � 	 �04 �AK � constant. We modeled this effect by increasing the number of nodes, K , to

K �� . This elongates the non-critical code time from K � � to K � �
� ���
� and allows us to maintain the

concurrency at a predefined constant level. Conceptually, the number of active requests at any point of time

is constant regardless of the number of nodes in the system.3

Figure 16 shows the response time behavior obtained for two different constant concurrency levels, both of

which result in linear lac-ency factors. This behavior can be explained by considering the message overhead

� �
� �
� �
� �
� �
� �
� �
� �

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90

Number of Nodes

La
te

nc
y

F
ac

to
r

Conc=5
Conc=10

Figure 16: Response Time for Constant Concurrency
�
We realize that this is not a realistic scenario. However, the purpose of the experiment is to help us assess the response time

behavior.

behavior shown in Figure 17. By maintaining the constant concurrency level, the logarithmic behavior of

message overhead ceases to persist. This behavior is due to the fact that, even though the conflicts between

� �

� �

� �

� �

� �

� �

� �

� �
� �

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

0
1
2
3
4
5
6
7
8
9

10

0 10 20 30 40 50 60 70 80 90

Number of Nodes

M
es

sa
ge

 O
ve

rh
ea

d

Conc=5
Conc=10

Figure 17: Message Overhead for Constant Concurrency

requests are kept constant, the potential number of granters of the requests in the tree (copyset) also remains

constant regardless of the number of nodes in the tree. As a result, longer propagation paths are traversed

before requests reach the root and a grant message is sent. With linearly increasing numbers of nodes, this

overhead is observed resulting in (close to) linear message overhead. This can be verified by the breakdown

of the message overheads shown in Figure 18. While all other types of messages demonstrate logarithmic

� �

� �

� �

� �

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90

Number of Nodes

M
es

sa
ge

 O
ve

rh
ea

d

Transfer Token Token Grant Request
Freeze Release

Figure 18: Breakdown of Message Overhead

behavior, the request propagation message increases linearly with an increase in number of nodes. Since

the message overhead is one of the factors affecting response time, the response time behavior is also linear

in spite of constant queue length.

In conclusion, the analysis of the response time allows us to predict the worst-case response time for the

requests and provides bounds that can be exploited by QoS guarantees.

4.3 Message Overhead Breakdown

Figures 19, 20, 21, 22 and 23 depict the change in message overhead for the message types request, grant,

transfer token, release and freeze, respectively. In each case, changes are shown for varying number of

nodes and different ratios. Explanations about each of these figures illustrate the behavior of the protocol

and its properties.

Figure 19: Request Messages

Request messages increase with the number of nodes and with higher rations, as seen in Figure 19.

These increases are primarily due to longer propagation paths of requests. For a larger number of nodes,

propagation paths increase due to initial request forwarding. With higher ratios, this effect becomes even

more significant since propagation path length increases with longer non-critical code fragments. This is

the single largest contributor to message overhead (up to seven messages).

Figure 20: Grant Messages

A similar trend is shown for token grant messages in Figure 20. The more contention, the more concurrent

requests can be resolved by allowing children within a copyset to grant requests. The overall contribution

is below one message.

Figure 21: Token Transfer Messages

The token transfers in Figure 21 increase at high ratios when concurrency is low, i.e., during low contention,

the root is unlikely to be able to grant a copy . Hence, requests are likely to be resolved by transferring the

token. Similarly, contention increases with the number of nodes, which increases the possibilities of copy

grants, thereby lowering the transfer of tokens. The total contribution of token transfers remains relatively

low (below one message on the average).

Figure 22: Release Messages

Release messages in Figure 22 show the inverse behavior of token transfers. At low contention (high ratios

and few nodes), few release messages are generated since the copy set remains small. This number increases

with the number of nodes and even more dramatically with lower ratios. Its total contribution is still below

one message on the average.

Figure 23: Freeze Messages

Freeze messages (Figure 23) occur predominantly for low ratios implying high contention. The trend is less

pronounced for increases in the number of nodes. In general, the share of freeze messages is insignificant

(below 0.3 messages). This demonstrates that the price of avoiding starvation is small compared to the

overall functionality of the protocol.

Overall, we demonstrated the scalability of our hierarchical locking protocol through its logarithmic message

overhead. We observed low latencies in the order of single-digit milliseconds to resolve requests with

(realistically) high ratios. This makes our protocol highly suitable for its usage in conjunction with

transactions, e.g., in large server farms as well as in large-scale clusters that require redundant computing.

5. RELATED WORK

A number of algorithms exist to solve the problem of mutual exclusion in a distributed environment. Chang

[6] and Johnson [18] give an overview and compare the performance of such algorithms. Goscinski [15]

proposed a prioritized algorithm based on broadcast requests using a token-passing approach. Chang [5]

developed extensions to various algorithms for priority handling that use broadcast messages [35, 32] or

fixed logical structures with token passing [30]. Our protocol differs from Chang’s extensions of [35]

and [30] by not requiring broadcasts or shared memory at all and lower average message complexity,

respectively, as detailed below. Fu and Tzeng’s mutual exclusion scheme assumes support for shared

memory multiprocessors [13]. In contrast, we provide a solution for mutual exclusion in distributed

systems where no shared resources exist and communication is realized through message passing. Chang,

Singhal and Liu [7] use a dynamic tree similar to Naimi et al. [27, 28]. In fact, the only difference between

the algorithms seems to be that the root of the tree is piggybacked in the former approach while the latter

(and older one) does not use piggybacking. Due to the similarity, we simply refer to the older algorithm

in this paper. Other mutual exclusion algorithms (without token passing) employ global logical clocks and

timestamps [20]. These algorithms can be readily extended to transmit priorities together with timestamps.

However, all of the above algorithms, except Raymond’s and Naimi’s, have an average message complexity

larger than ������	�
 ��� for a request. Finally, Raymond’s algorithm uses a fixed logical structure while we

use a dynamic one, which results in dynamic path compression. Furthermore, Raymond needs an average

of ������	�
 ��� messages to send the token to a requester, where our algorithm only requires one message.

The modified version of Raymond’s algorithm by Fu et al. [14] is, in its essence, similar to our local

queues but with just one entry. The above algorithms use synchronous message passing with the exception

of Raymond’s algorithm. In contrast, our algorithm operates asynchronously. It has even been adapted to

allow multiple requests per node to provide more concurrency within a multi-threaded environment [24].

None of the above algorithms have been studied with regard to their applicability to concurrency services,

to the best of our knowledge.

Hierarchical locks and protocols for concurrency services have been studied in the context of database

system [16, 22, 21, 19, 3]. Most concurrency services rely on a centralized approach with a coordinator

to arbitrate resource requests or a combination of middle-tier and sink servers [31, 4]. These approaches

do not dynamically adapt to resource requests while our protocol does. Our work is unique in this sense.

Efforts on predictable ORB behavior have mostly focused on priority support for CORBA’s interaction with

message passing and thread-level concurrency [29] applicable to real-time database systems [33, 34]. In

contrast, we make scalability a first-class property of protocols that implement CORBA-like services, such

as hierarchical locking defined through the concurrency services. The applicability of our work reaches

from large clusters to server-style computing.

6. CONCLUSION

We presented a novel peer-to-peer protocol for multi-mode hierarchical locking, which is applicable to

transaction-style processing and middleware services. We demonstrate high scalability combined with

lower response times in high-performance cluster environments. A first set of experiments shows that our

protocol overhead is lower than that of a competitive non-hierarchical locking protocol. These benefits are

due to several enhancements leading to fewer messages while assuring a higher degree of concurrency. A

second set of experiments on an IBM SP shows that the number of messages approaches an asymptote at

15 nodes for ratios up to 10, from which point on the message overhead is in the order of 3-6 messages per

request. Higher ratios of 25, i.e., longer non-critical code fragments for constant size critical sections, result

in higher message overheads approaching an interpolated asymptote around 9 messages at a node sizes up to

120. At the same time, response times increase linearly at high ratios and nearly linearly at lower ratios with

a proportional increase in requests and, consequently, higher concurrency levels. In practice, non-critical

fragments are substantially larger than critical sections, i.e., higher ratios are the rule. For higher ratios, our

approach yields particularly low response time, e.g. for a ratio of 25, response times below 10 msec are

observed for critical sections in the range of up to 80 nodes. Our results include detailed assessments of the

overhead of the protocol by message type, by concurrency level and ratios of non-critical and critical code

sections.

Overall, the high degree of scalability and responsiveness of our protocol is due in large to a high level

of concurrency upon resolving requests combined with dynamic path compression for request propaga-

tion paths. Besides its technical strengths, our approach is intriguing due to its simplicity and its wide

applicability, ranging from large-scale clusters to server-style computing.

7. REFERENCES

[1] Top 500 list. http://www.top500.org/, June 2002.

[2] DOC Group at Washington University. Tao: The ace orb.

http://www.cs.wustl.edu/ schmidt/TAO.html.

[3] B. R. Badrinath and Krithi Ramamritham. Performance evaluation of semantics-based multilevel

concurrency control protocols. SIGMOD Record (ACM Special Interest Group on Management of

Data), 19(2):163–172, June 1990.

[4] Darrell Brunsch, Carlos O’Ryan, and Douglas C. Schmidt. Designing an efficient and scalable

server-side asynchrony model for CORBA. In Cindy Norris and James B. Fenwick Jr., editors,

Proceeding of the Workshop on Optimization of Middleware and Distributed Systems (OM-01),

volume 36, 6 of ACM SIGPLAN Notices, pages 223–229, New York, June 18 2001. ACM Press.

[5] Y. Chang. Design of mutual exclusion algorithms for real-time distributed systems. J. Information

Science and Engineering, 10(4):527–548, December 1994.

[6] Y. Chang. A simulation study on distributed mutual exclusion. J. Parallel Distrib. Comput.,

33(2):107–121, March 1996.

[7] Y. Chang, M. Singhal, and M. Liu. An improved O(log(n)) mutual exclusion algorithm for distributed

processing. In Int. Conference on Parallel Processing, volume 3, pages 295–302, 1990.

[8] N. Desai and F. Mueller. A log(n) multi-mode locking protocol for distributed systems. In

International Parallel and Distributed Processing Symposium, page (accepted), April 2003.

[9] N. Desai and F. Mueller. Scalable distributed conucrrency services for hierarchical locking. In

International Conference on Distributed Computing Systems, page (accepted), May 2003.

[10] D. Dolev and D. Malik. The transis approach to high availability cluster communication.

Communications of the ACM, 39(4):64–70, April 1996.

[11] C. Engelmann, S. Scott, and G. Geist. Distributed peer-to-peer control in harness. In ICCS, 2002.

[12] Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New Computing Infrastructure.

Morgan Kaufmann, San Francisco, CA, 1999.

[13] S. Fu and N. Tzeng. A circular list-based mutual exclusion scheme for large shared-memory

multiprocessors. In IEEE Transactions on Parallel and Distributed Systems, pages 628–639, 1997.

[14] S. Fu, N. Tzeng, and Z. Li. Empirical evaluation of distributed mutual exclusion algorithms. In

International Parallel Processing Symposium, pages 255–259, 1997.

[15] A. Goscinski. Two algorithms for mutual exclusion in real-time distributed computer systems. J.

Parallel Distrib. Comput., 9(1):77–82, May 1990.

[16] Jim Gray, Raymond A. Lorie, Gianfranco R. Putzolu, and Irving L. Traiger. Granularity of locks in a

large shared data base. In Douglas S. Kerr, editor, Proceedings of the International Conference on

Very Large Data Bases, pages 428–451, Framingham, Massachusetts, 22–24 September 1975. ACM.

[17] Object Management Group. Concurrency service specification.

http://www.omg.org/tech-nology/docu-ments/formal/con-currency service.htm, April 2000.

[18] T. Johnson. A performance comparison of fast distributed mutual exclusion algorithms. In Proc. 1995

Int. Conf. on Parallel Processing, pages 258–264, 1995.

[19] U. Kelter. Synchronizing shared abstract data types with intention locks. Technical report, University

of Osnabrueck, 1985.

[20] L. Lamport. Time, clocks and ordering of events in distributed systems. Comm. ACM,

21(7):558–565, July 1978.

[21] John Lee and Alan Fekete. Multi-granularity locking for nested transactions: A proof using a

possibilities mapping. Acta Informatica, 33(2):131–152, 1996.

[22] Suh-Yin Lee and Ruey-Long Liou. A multi-granularity locking model for concurrency control in

object-oriented database systems. TKDE, 8(1):144–156, 1996.

[23] K. Li and P. Hudak. Memory coherence in shared virtual memory systems. ACM Trans. Comput.

Systems, 7(4):321–359, November 1989.

[24] F. Mueller. Prioritized token-based mutual exclusion for distributed systems. In International Parallel

Processing Symposium, pages 791–795, 1998.

[25] F. Mueller. Priority inheritance and ceilings for distributed mutual exclusion. In IEEE Real-Time

Systems Symposium, pages 340–349, December 1999.

[26] F. Mueller. Fault tolerance for token-based synchronization protocols. In Workshop on Fault-Tolerant

Parallel and Distributed Systems, April 2001.

[27] M. Naimi and M. Trehel. An improvement of the log(n) distributed algorithm for mutual exclusion.

In Int. Conference on Distributed Computing Systems, 1987.

[28] M. Naimi, M. Trehel, and A. Arnold. A log(N) distributed mutual exclusion algorithm based on path

reversal. J. Parallel Distrib. Comput., 34(1):1–13, April 1996.

[29] Carlos O’Ryan, Douglas C. Schmidt, Fred Kuhns, Marina Spivak, Jeff Parsons, Irfan Pyarali, and

David L. Levine. Evaluating policies and mechanisms to support distributed real-time applications

with CORBA. Concurrency and Computation: Practice and Experience, 13(7):507–541, June 2001.

[30] K. Raymond. A tree-based algorithm for distributed mutual exclusion. ACM Trans. Comput. Systems,

7(1):61–77, February 1989.

[31] Douglas C. Schmidt, David L. Levine, and Sumedh Mungee. The design of the TAO real-time object

request broker. Computer Communications, 21(4), April 1998.

[32] M. Singhal. A heuristically-aided algorithm for mutual exclusion in distributed systems. IEEE Trans.

Computers, 38(5):651–662, May 1989.

[33] Rajendran M. Sivasankaran, John A. Stankovic, Donald F. Towsley, Bhaskar Purimetla, and Krithi

Ramamritham. Priority assignment in real-time active databases. VLDB Journal: Very Large Data

Bases, 5(1):19–34, January 1996.

[34] John A. Stankovic and Sang H. Son. Architecture and object model for distributed object-oriented

real-time databases. In Proceedings of the 1st International Symposium on Object-Oriented

Real-Time Distributed Computing (ISORC), April 1998.

[35] I. Suzuki and T. Kasami. A distributed mutual exclusion algorithm. ACM Trans. Comput. Systems,

18(12):94–101, December 1993.

