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ABSTRACT
Portable parallel benchmarks are widely used and highly effective
for (a) the evaluation, analysis and procurement of high-performance
computing (HPC) systems and (b) quantifying the potential benefits
of porting applications for new hardware platforms. Yet, past tech-
niques to synthetically parametrized hand-coded HPC benchmarks
prove insufficient for today’s rapidly-evolving scientific codes particu-
larly when subject to multi-scale science modeling or when utilizing
domain-specific libraries.

To address these problems, this work contributes novel methods to
automatically generate highly portable and customizable communi-
cation benchmarks from HPC applications. We utilize ScalaTrace, a
lossless, yet scalable, parallel application tracing framework to collect
selected aspects of the run-time behavior of HPC applications, includ-
ing communication operations and execution time, while abstracting
away the details of the computation proper. We subsequently generate
benchmarks with identical run-time behavior from the collected traces.
A unique feature of our approach is that we generate benchmarks
in CONCEPTUAL, a domain-specific language that enables the ex-
pression of sophisticated communication patterns using a rich and
easily understandable grammar yet compiles to ordinary C+MPI.
Experimental results demonstrate that the generated benchmarks are
able to preserve the run-time behavior—including both the communi-
cation pattern and the execution time—of the original applications.
Such automated benchmark generation is particularly valuable for
proprietary, export-controlled, or classified application codes: when
supplied to a third party, our auto-generated benchmarks ensure per-
formance fidelity but without the risks associated with releasing the
original code. This ability to automatically generate performance-
accurate benchmarks from parallel applications is novel and without
any precedence, to our knowledge.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques; D.1.3
[Programming Techniques]: Concurrent Programming—Parallel
Programming; D.3.2 [Programming Languages]: Language Classi-
fications—Specialized application languages
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Measurement, Performance
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1. INTRODUCTION
Evaluating and analyzing the performance of high-performance

computing (HPC) systems generally involves running complete ap-
plications, computational kernels, or microbenchmarks. Complete
applications are the truest indicator of how well a system performs.
However, they may be time-consuming to port to a target machine’s
compilers, libraries, and operating system, and their size and intricacy
makes them time-consuming to modify, for example, to evaluate the
performance of different data decompositions or parallelism strategies.
Furthermore, with intense competition to be the first to scientific
discovery, computational scientists may be loath to risk granting their
rivals access to their application’s source code; or, the source code
may be more formally protected as a corporate trade secret or as an
export-controlled or classified piece of information. Computational
kernels address some of these issues by attempting to isolate an ap-
plication’s key algorithms (e.g., a conjugate-gradient solver). Their
relative simplicity reduces the porting effort, and they are generally
less encumbered than a complete application. While their performance
is somewhat indicative of how well an application will perform on
a target machine, isolated kernels overlook important performance
characteristics that apply when they are combined into a complete
application. Finally, microbenchmarks stress individual machine com-
ponents (e.g., memory, CPU, or network). While they are easy to port,
distribute, modify, and run, and they precisely report characteristics of
a target machine’s performance, they provide little information about
how an application might perform when the primitive operations they
measure are combined in complex ways in an application.

The research question we propose to answer in this paper is the
following: Is it possible to combine the best features of complete
applications, computational kernels, and microbenchmarks into a sin-
gle performance-evaluation methodology? That is, can one evaluate
how fast a target HPC system will run a given application without
having to migrate it and all of its dependencies to that system, with-
out ignoring the subtleties of how different pieces of an application
perform in context, without forsaking the ability to experiment with
alternative application structures, and without restricting access to the
tools needed to perform the evaluation?

Our approach is based on the insight that application performance is
largely a function of the sorts of primitive operations that microbench-
marks measure and that if these operations can be juxtaposed as they
appear in an application, the performance ought to be nearly identical.
We therefore propose generating application-specific performance
benchmarks. In fact, by “generating,” we imply a fully automatic



approach in which a parallel application can be treated as a black box
and mechanically converted into an easy-to-build, easy-to-modify,
and easy-to-run program with the same performance as the original
but absent the original’s data structures, numerical methods, and other
algorithms.

We take as input an MPI-based [7] message-passing application.
To convert this into a benchmark, we utilize the approach illustrated
in Figure 1. We begin by tracing the application’s communication pat-
tern (including intervening computation time) using ScalaTrace [12].
The resulting trace is fed into the benchmark generator that is the
focus of this paper. The benchmark generator outputs a benchmark
written in CONCEPTUAL, a domain-specific language for specifying
communication patterns [15]. The CONCEPTUAL code can then
be compiled into ordinary C+MPI code for execution on a target
machine.

Figure 1: Our benchmark generation system
We utilize ScalaTrace [12] for communication trace collection be-

cause ScalaTrace represents the state of the art in parallel application
tracing. It benefits benchmark generation in two aspects. First, due
to its pattern-based compression techniques, ScalaTrace generates
application traces that are lossless in communication semantics yet
small and scalable in size. For example, ScalaTrace can represent all
processes performing the same operation (e.g., each MPI rank sending
a message to rank+4) as a single event, regardless of the number
of ranks. Because the application trace is the basis for benchmark
generation, this feature helps reduce the size of the generated code,
making it more manageable for subsequent hand-modification. In con-
trast, previous application tracing tools, such as Extrae/Paraver [16],
Tau [21], Open|SpeedShop [19], Vampir [11], and Kojak [25], are less
suitable for benchmark generation because their traces increase in
size with both the number of communication events and the number
of MPI ranks traced. Second, ScalaTrace is aware of the structure of
the original program. It utilizes the stack signature to distinguish dif-
ferent call sites. Its loop-compression techniques can detect the loop
structure of the source code. For example, if an iteration comprises a
hundred iterations, and each iteration sends five messages of one size
and ten of another, ScalaTrace represents that internally as a set of
nested loops rather than as 1500 individual messaging events. These
pattern-identification features help benchmark generation maintain
the program structure of the original application so that the gener-
ated code will be not only be semantically correct but also human
comprehensible and editable.

We use the domain-specific CONCEPTUAL language [15] instead
of a general-purpose language such as C or Fortran as the target
language for benchmark generation. (CONCEPTUAL does, however,
compile to C source code.) Because CONCEPTUAL is designed
specifically for the expression of communication patterns, benchmarks
generated in CONCEPTUAL are highly readable. CONCEPTUAL
code includes almost exclusively communication specifications. Mun-
dane benchmarking details such as error checking, memory allocation,
timer calibration, statistics calculation, MPI subcommunicator cre-
ation, and so forth are all handled implicitly, which reduces code
clutter.

We evaluated our benchmark generation approach with the NAS
Parallel Benchmark suite [3] and the Sweep3D code [10]. We per-

formed experiments to assess both the correctness and the timing
accuracy of the generated parallel benchmarks. Experimental results
show that the auto-generated benchmarks preserve the application’s
semantics, including the communication pattern, the message count
and volume, and the temporal ordering of communication events as
they appear in the original parallel applications. In addition, the total
execution times of the generated codes are very similar to those of the
original applications; the mean absolute percentage error across all
of our measurements is only 2.9%. Given these experimental results,
we conclude that the generated benchmarks are able to reproduce the
communication behavior and wall-clock timing characteristics of the
source applications.

The contributions of this work are (1) a demonstration and evalua-
tion of the feasibility of automatically converting parallel applications
into human-readable benchmark codes, (2) an algorithm for determin-
ing precisely when separately appearing collective-communication
calls in fact belong to the same logical operation, and (3) an approach
and algorithm for ensuring performance repeatability by introduc-
ing determinism into benchmarks generated from nondeterministic
applications.

We foresee our work benefiting application developers, communica-
tion researchers, and HPC system procurers. Application developers
can benefit in multiple ways. First, they can quickly gauge what
application performance is likely to be on a target machine before
exerting the effort to port their applications to that machine. Second,
they can use the generated benchmarks for performance debugging,
as the benchmarks can separate communication from computation
to help isolate observed performance anomalies. Third, application
developers can examine the impact of alternative application imple-
mentations such as different data decompositions (causing different
communication patterns) or the use of computational accelerators
(reducing computation time without directly affecting communica-
tion time). Communication researchers can benefit by being able to
study the impact of novel messaging techniques without incurring
the burden of needing to build complex applications with myriad
dependencies and without requiring access to codes that are not freely
distributable. Finally, people tasked with procuring HPC systems ben-
efit by being able to instruct vendors to deliver specified performance
on a given application without having to provide those vendors with
the application itself.

This paper is structured as follows. Section 2 contrasts our ap-
proach to others’ related efforts. Section 3 introduces ScalaTrace
and the CONCEPTUAL language with respect to their abilities to
support benchmark generation. The salient features of our benchmark-
generation approach are detailed in Section 4. Section 5 empirically
confirms the correctness and accuracy of the benchmarks we generate
and presents sample usage of our framework. Finally, Section 7 draws
some conclusions from our findings.

2. RELATED WORK
The following characteristics of our benchmark-generation ap-

proach make it unique:

• The size of the benchmarks we generate increases sublinearly in
the number of processes and in the number of communication
operations.

• We exploit run-time information rather than limit ourselves to
information available at compile time.

• We preserve all communication performed by the original
application.

We utilize ScalaTrace to collect the communication trace of par-
allel applications. With a set of sophisticated domain-specific trace-
compression techniques, ScalaTrace is able to generate traces that



preserve the original source-code structure while ensuring scalability
in trace size. Other tools for acquiring communication traces such as
Vampir [4], Extrae/Paraver [16], and tools based on the Open Trace
Format [9] lack structure-aware compression. As a result, the size
of a trace file grows linearly with the number of MPI calls and the
number of MPI processes, and so too would the size of any benchmark
generated from such a trace, making it inconvenient for processing
long-running applications executing on large-scale machines. This
lack of scalability is addressed in part by call-graph compression
techniques [8] but still falls short of our structural compression, which
extends to any event parameters. Casas et al. utilize techniques of
signal processing to detect internal structures of Paraver traces and
extract meaningful parts of the trace files [5]. While this approach
could facilitate trace analysis, it is lossy and thus not suitable for
benchmark generation.

Xu et al.’s work on constructing coordinated performance skeletons
to estimate application execution time in new hardware environ-
ments [27, 28] exhibits many similarities with our work. However, a
key aspect of performance skeletons is that they filter out “local” com-
munication (communication outside the dominant pattern). As a result,
the generated code does not fully reproduce the original application,
which may cause subtle but important performance characteristics
to be overlooked. Because our benchmark generation framework is
based on lossless application traces it is able to generate benchmarks
with identical communication behavior to the original application. In
addition, we generate benchmarks in CONCEPTUAL instead of C so
that the generated benchmarks are more human-readable and editable.

Program slicing, statically reducing a program to a minimal form
that preserves key properties of the original, offers an alternative
approach to generating benchmarks from application traces. Ertvelde
et al. utilize program slicing to generate benchmarks that preserve an
application’s performance characteristics while hiding its functional
semantics [6]. This work focuses on resembling the branch and mem-
ory access behaviors for sequential applications and may therefore
complement our benchmark generator for parallel applications. Shao
et al. designed a compiler framework to identify communication pat-
terns for MPI-based parallel applications through static analysis [20],
and Zhai et al. built program slices that contain only the variables
and code sections related to MPI events and subsequently executed
these program slices to acquire communication traces [29]. Program
slicing and static benchmark generation in general have a number of
shortcomings relative to our run-time, trace-based approach: Their
reliance on inter-procedural analysis requires that all source code—
the application’s and all its dependencies—be available; they lack
run-time timing information; they cannot accurately handle loops with
data-dependent trip counts (“while not converged do. . . ”); and they
produce benchmarks that are neither human-readable nor editable.

3. BACKGROUND
Our benchmark generation approach utilizes the ScalaTrace in-

frastructure [12] to extract the communication behavior of the target
application. Based on the application trace, we generate benchmarks
in CONCEPTUAL [15], a high-level domain-specific language (with
an associated compiler and run-time system) designed for testing
the correctness and performance of communication networks. This
section introduces the features of ScalaTrace and CONCEPTUAL
that enable our benchmark generation methodology.

3.1 ScalaTrace
ScalaTrace is chosen as the trace collection framework because

it generates near constant-size communication traces for a parallel
applications regardless of the number of nodes while preserving struc-
tural information and temporal ordering. This is important because

for(i=0; i<1000; i++){

MPI_Irecv(LEFT, ...);

MPI_Isend(RIGHT, ...);

MPI_Waitall(...);

}

Figure 2: Sample code for RSD and PRSD generation
it makes the size of the generated benchmarks reasonably small and
independent of node count.

ScalaTrace achieves near constant-sized traces through pattern-
based compression. It uses extended regular section descriptors
(RSDs) to record the participating nodes and parameter values of
multiple calls to a single MPI routine in the source code across loop
iterations and nodes in a compressed manner. Power-RSDs (PRSDs)
recursively specify RSDs nested in loops. For example, the program
fragment shown in Figure 2 establishes a ring-style communication
across N nodes. The three RSDs,

RSD1: {〈rank〉, MPI_Irecv, LEFT}
RSD2: {〈rank〉, MPI_Isend, RIGHT}
RSD3: {〈rank〉, MPI_Waitall}

denote the MPI_Send, MPI_Receive, and MPI_Waitall operations in a
single loop iteration, where 〈rank〉 takes on each value from 0 to N−1
in turn. ScalaTrace then detects the loop structure and outputs the
single PRSD, {1000, RSD1, RSD2, RSD3}, to concisely denote a
single, 1000-iteration loop. Note that the intra-node loop compression
is done on-the-fly to reduce memory overhead and compression time.
Finally, the local traces are combined into a single global trace upon
application completion (i.e., within the PMPI interposition wrapper
for MPI_Finalize). This inter-node compression detects similarities
among the per-node traces and merges the RSDs by combining their
lists of participating nodes. For example, in Figure 2, because each
MPI routine is called with the same parameters on each node, the
RSDs within the PRSD are consequently merged across nodes as

RSD1: {0,1, . . . ,N−1, MPI_Irecv, LEFT}
RSD2: {0,1, . . . ,N−1, MPI_Isend, RIGHT}
RSD3: {0,1, . . . ,N−1, MPI_Waitall}

Besides communication tracing, ScalaTrace also stores application
computation times in a scalable way [17]. Computation is defined as
the time between consecutive MPI calls. Rather than store individ-
ual computation-time measurements, ScalaTrace compresses into a
histogram the time taken by all instances of a particular computation
(identified by its unique call path) across all loop iterations and all
nodes. By grouping computation times in this manner, ScalaTrace
achieves good compression while still addressing the time variations
that are expected on different call paths. For example, the time spent
in computation prior to the first statement of a loop generally differs
significantly from the time spent in the first iteration, which generally
differs significantly from the times spent in subsequent iterations.

3.2 CONCEPTUAL
CONCEPTUAL is a tool designed to facilitate rapid generation of

network benchmarks. CONCEPTUAL includes a compiler for a high-
level specification language and an accompanying run-time library.
CONCEPTUAL programs are understandable even to non-experts
because of its English-like grammar. For example, the following is a
complete CONCEPTUAL benchmark program corresponding to the
code snippet presented in Figure 2:

FOR 1000 REPETITIONS {

ALL TASKS RESET THEIR COUNTERS THEN

ALL TASKS t ASYNCHRONOUSLY SEND A 1 KILOBYTE

MESSAGE TO TASK t+1 THEN

ALL TASKS AWAIT COMPLETION THEN

ALL TASKS LOG THE MEDIAN OF elapsed_usecs



AS "Time (us)".

}

Note in the above that no variable or function declarations are required;
no buffer allocation is required; no MPI_Request or MPI_Status
objects need to be defined; no MPI communicators need to be queried
for rank and size; no files need to be opened and written to; no
statistics-calculating routines need to be implemented; no error codes
need to be checked; no matching receive needs to be posted for each
send (but can be if the programmer requires more precise control over
posting order); and no special cases for the first and last task (rank)
need to be specified. Nevertheless, CONCEPTUAL is able to express
sophisticated communication patterns utilizing a variety of collective
and point-to-point communication primitives, looping constructs, and
conditional operations. When executed, the generated code produces
log files that contain a wealth of information about the measured
communication performance, code build characteristics, execution
environment, and other information needed to yield reproducible
performance measurements [14].

The aforementioned features make CONCEPTUAL an ideal lan-
guage for benchmark generation. In the following section, we present
our approach to producing CONCEPTUAL output from ScalaTrace
input.

4. BENCHMARK GENERATION

4.1 Overview
The process of automatic code generation from traces is the process

of traversing the parallel application trace, interpreting the RSDs and
PRSDs, and generating the corresponding CONCEPTUAL program.
We designed a trace traversal framework that walks through the trace
and invokes a language-dependent code generator for each RSD and
PRSD. A code generator is a pluggable function that conforms to
a predefined interface. By implementing a generator for a different
target language, we can easily generate code for languages other than
CONCEPTUAL as well.

Most of the conversion from RSDs and PRSDs to CONCEPTUAL
code is straightforward. An RSD representing point-to-point commu-
nication (blocking or nonblocking) is converted to a CONCEPTUAL
SEND or RECEIVE statement; computation time encoded in an RSD is
converted to a CONCEPTUAL COMPUTE statement; and a PRSD is
converted to a CONCEPTUAL FOR EACH loop. Behavior that differs
across loop iterations (message destinations, compute times, etc.) is
implemented with a CONCEPTUAL IF statement conditioned on a
loop variable. There are a few subtleties involved in the mapping from
ScalaTrace to CONCEPTUAL; Section 4.2 discusses these.

Our view, however, is that a naive conversion from a trace to bench-
mark code has two important shortcomings. First, one of our goals
is for the generated benchmark code to be readable, so a human can
easily examine, understand, and modify the code. Our second goal
is for the performance reported by the benchmark program to be
reproducible, to make it a more suitable vehicle for experimentation.
In short, we want it to be possible to reason about a generated bench-
mark’s behavior and performance. However, achieving the goals of
readability and reproducibility is a challenging research problem and
is the subject of this section.

One difficulty in improving benchmark readability is the elimina-
tion of constructs whose behavior cannot statically be determined.
Consider the following snippet of C code:

if (rank == 0)

MPI_Reduce(〈argument list〉);
else

MPI_Reduce(〈the same argument list〉);

It is not possible to know if those two MPI_Reduce() calls are
part of the same collective operation without knowing the complete,
run-time control flow of the program—on each rank individually—
that led to the execution of the code shown above. The chal-
lenge is how to merge per-rank collective operations found in a
trace into a single collective operation whose participants can be
identified statically. An example of such an operation expressed
in CONCEPTUAL is “TASKS xyz SUCH THAT 3 DIVIDES xyz

REDUCE A DOUBLEWORD TO TASK 0”; no further information is re-
quired to know that tasks 0, 3, 6, 9, . . . are the participants in that
reduction operation. Section 4.3 presents our algorithm for matching
collective operations specified separately on each node.

An MPI feature that hinders performance reproducibility is nonde-
terminism. MPI supports “wildcard receives” (MPI_ANY_SOURCE),
which can receive messages from any sender. While this feature
can lead to correctness issues [23], and we do address this, we are
concerned primarily with the different performance that can result
from different messages matching a set of wildcard receives. Consider,
for example, the following use of the MPI_Recv receive operation:

MPI_Recv(..., MPI_ANY_SOURCE, ..., status);

if (status.MPI_SOURCE == 0)

〈Do some long-running computation.〉
else

〈Do some short-running computation.〉
MPI_Recv(..., MPI_ANY_SOURCE, ..., status);

Depending on the sender’s MPI rank (status.MPI_SOURCE), the
preceding code can take either a long time or a short time to run. Be-
cause the sender whose message matches the MPI_Recv can vary from
run to run, the execution time of the preceding code also varies from
run to run. While this behavior may be reasonable for an application,
we deem it inappropriate for a benchmark program. As benchmarks
are commonly used to evaluate system performance, small changes in
a target machine’s hardware or system software should not result in
arbitrarily large changes in a benchmark’s execution time. Section 4.4
presents our algorithm for removing performance nondeterminism
caused by wildcard receives in the input trace.

4.2 Engineering Details
CONCEPTUAL is not designed to exactly represent MPI features.

In fact, the CONCEPTUAL compiler can compile the same source
program to C+MPI, C+Unix sockets, or to any other language/
communication library combination for which a compiler backend
exists. Consequently, CONCEPTUAL contains collectives that MPI
lacks (e.g., arbitrary many-to-many reductions with non-overlapping
source and destination task sets), and MPI contains collectives that
CONCEPTUAL lacks (e.g., scatters of different-sized messages to
different destinations). We therefore had to “impedance match” the
benchmark generator’s MPI-centric input to CONCEPTUAL output.
Our approach is to replace each unsupported MPI collective with one
or more CONCEPTUAL collectives that represent a similar commu-
nication pattern (i.e., data fan in or fan out) and data volume. Table 1
presents the substitutions we made.

MPI has a notion of a “communicator,” which is a subset of the
available ranks, renumbered and possibly reordered. Every MPI
communication operation takes a communicator as an argument and
uses it to specify the participants in the operation. A disturbing
consequence of communicators is that a line in the application source
code that seems to be sending a message to, say, rank 3 may in fact be
sending a message to rank 8 in the primordial MPI_COMM_WORLD
communicator. To make the generated benchmarks more readable we
keep track of the mapping of every rank within every communicator
to an “absolute” rank within MPI_COMM_WORLD and express all



Table 1: Mapping of MPI collectives to CONCEPTUAL
MPI collective CONCEPTUAL implementation

Allgather REDUCE + MULTICAST

Allgatherv REDUCE with averaged message size +
MULTICAST

Alltoallv MULTICAST with averaged message size
Gather REDUCE

Gatherv REDUCE with averaged message size
Reduce_scatter n many-to-one REDUCEs with different message

sizes and roots, where n is the communicator size
Scatter MULTICAST

Scatterv MULTICAST with averaged message size

generated computation and communication operations in terms of
these absolute ranks.

4.3 Combining Per-Node Collectives
As discussed in Section 4.1, MPI allows multiple statements in

the source code to represent a single, common collective operation.
Because ScalaTrace differentiates call sites by call-stack signatures,
this use of collectives generates distinct RSDs in the trace. To improve
benchmark readability, before generating CONCEPTUAL code we
want to combine these separate RSDs, each representing a subset of
the collective’s participants, into a single RSD that represents the
complete set of participants. Figure 3 illustrates the intention, using
C+MPI (with the omission of most MPI arguments) instead of RSDs
for clarity. Figure 3(a) presents the initial communication pattern,
in which each of ranks 0 and 1 invoke MPI_Barrier from a different
source-code line. Assuming these are found to be the same collective,
we want to hoist the MPI_Barrier outside of all conditionals on the
rank, as shown in Figure 3(b).

if(rank == 0) {

MPI_Isend(1);

MPI_Barrier();

}

if(rank == 1) {

MPI_Barrier(1);

MPI_Irecv(0);

}

MPI_Wait();

(a) C+MPI program

if(rank == 0)

MPI_Isend(1);

MPI_Barrier();

if(rank == 1)

MPI_Irecv(0);

MPI_Wait();

(b) Aligned collectives

Figure 3: Combining collectives across separate source-code
statements

To perform this transformation, recall that our benchmark generator
operates on communication traces, not on application source code; it
therefore does not literally perform the source-code transformation
shown in Figure 3. Rather, it follows the sequence of steps presented
in Algorithm 1 to align in time the RSDs of the same collective
operation across nodes then combine these RSDs into a single RSD
specifying the complete set of nodes to which the collective operation
applies.

The main idea, illustrated in Figure 4 for RSDs corresponding
to the C+MPI code in Figure 3, is to stop the trace traversal for a
node at each collective in which it participates until all of the other
participating nodes have arrived at the same collective. Algorithm 1
guarantees that (1) a collective operation corresponds to only one
RSD in the output trace, (2) the ordering of MPI events for each
node is preserved in the trace, and (3) the output trace is still in a
compressed format. This algorithm tracks the traversal on different
nodes by maintaining a traversal context for each node. The traversal
context stores the current RSD the node is executing, the loop stack the

execution is in, and the iteration count for each loop in the stack. Upon
startup, the algorithm traverses the trace on behalf of node 0, which is
called the current running node. For each RSD of non-collective MPI
routines that the running node is involved in, the algorithm extracts
the current MPI event and appends an RSD to the output queue. (Note
that an RSD can contain multiple MPI events across loop iterations
and across nodes due to compression.) For collectives, however, the
traversal stops for the current running node and switches to the next
node in the communicator (indicated by the small arrows in Figure 4).
When the last node in the communicator arrives at the collective, the
algorithm appends the RSD for all the nodes to the output queue and
switches the traversal back to the first node that is blocked on the same
collective. We treat MPI_Finalize as a collective so that the algorithm
cannot finish until the traversal is done for all the nodes. To guarantee
that the new trace is scalable in length, we apply ScalaTrace’s loop
compression algorithm [12] to the output RSD queue each time a new
RSD is appended to the queue. The complexity of this algorithm is
O(p · e), where p is the number of MPI tasks and e is the number of
communication events per task. Nevertheless, we do not blindly run
this algorithm for arbitrary input traces. Before applying the algorithm
we first check the trace to see if there are unaligned collectives. This
check costs only O(r), where r is the number of RSDs in the trace
and is typically much smaller than e due to compression.

Task 0 Task 1

RSD1: {0, MPI_Isend, 1} Ù {1, MPI_Barrier, 0 1}
RSD2: Ù{0, MPI_Barrier, 0 1} {1, MPI_Irecv, 0}
RSD3: {0, MPI_Wait} {1, MPI_Wait}

Ø Ø
Combination

RSD1: {0, MPI_Isend, 0}
RSD2: {0 1, MPI_Barrier, 0 1}
RSD3: {1, MPI_Irecv, 0}
RSD4: {0 1, MPI_Wait}Ù

TASK 0 ASYNCHRONOUSLY SENDS AN x-BYTE MESSAGE TO

UNSUSPECTING TASK 1 THEN

ALL TASKS SYNCHRONIZE THEN

TASK 1 ASYNCHRONOUSLY RECEIVES AN x-BYTE MESSAGE

FROM TASK 0 THEN

ALL TASKS AWAIT COMPLETION.

Figure 4: Operation of Algorithm 1

4.4 Eliminating Nondeterminism
MPI supports the use of a wildcard value, MPI_ANY_SOURCE,

for the source parameter of point-to-point receives. For example, in the
NAS Parallel Benchmarks’s implementation of LU decomposition [3],
nodes use MPI_ANY_SOURCE to receive messages in arbitrary order
from their neighbors in a 2-D stencil. The problem with the use of
MPI_ANY_SOURCE from a benchmarking perspective is that it
has the potential to introduce performance artifacts, as discussed in
Section 4.1. That is, each run of LU may stress the communication
subsystem slightly differently based on the order in which messages
happen to be received. To promote reproducibility of empirical
measurements, our benchmark generator removes nondeterminism
by replacing wildcard receives with arbitrary but valid non-wildcard
receives.

As in Section 4.3’s algorithm for combining collectives, Algo-
rithm 2 utilizes a trace-traversal approach to resolve wildcard receives.
Let ei jk represent an MPI event k that is issued by node i and has



Algorithm 1 Algorithm to align collectives
Precondition: Tin: input trace, N: total number of nodes
Postcondition: Tout : the trace for CONCEPTUAL code generation

1: function INITIALIZATION(Tin, N)
2: for i← 1, N do
3: Allocate traversal context C[i]
4: C[i].RSD← Tin.head
5: end for
6: Initialize Tout to am empty trace
7: Tout ← ALIGN(0, Tout ) . Start with node 0
8: return Tout
9: end function

10: function ALIGN(n, Tout )
11: iter← C[n].RSD
12: while iter do
13: if node n is not in iter.rank_list then
14: iter← iter.next
15: else
16: if iter.op is not a collective then
17: Extract current MPI event
18: Append a new RSD to Tout
19: Compress Tout
20: iter← iter.next
21: continue
22: end if
23: if iter.op is a collective or MPI_Finalize then
24: if some participants have not arrived yet then
25: C[n].RSD← iter
26: next← the next node in the communicator
27: ALIGN(next, Tout )
28: else
29: Append an RSD for all participants to Tout
30: Compress Tout
31: C[n].RSD← iter
32: for each i ∈ {participants} do
33: C[i].RSD← C[i].RSD.next
34: end for
35: first← the first node in the communicator
36: ALIGN(first, Tout )
37: end if
38: end if
39: end if
40: end while
41: return Tout
42: end function

node j as its peer. We maintain two lists for each node x: a list L1 of
the to-be-matched MPI events ex j11,ex j22,ex j33, . . . that were issued
by node x itself and a list L2 of the MPI events ei1xk1 ,ei2xk2 ,ei3xk3 , . . .
specifying the events issued by other nodes that should be matched by
node x. Upon startup, this algorithm traverses the input trace on behalf
of an arbitrary node x. During the traversal, it adds the unmatched
point-to-point operations to list L1 of node x and to list L2 of each peer
node. The traversal for node x stops when the execution is blocked
on (1) a blocking send/receive, (2) a collective, or (3) a wait opera-
tion. It then switches the traversal to a node y whose execution will
potentially unblock the execution on node x. In order to be selected
as the target node to which the traversal switches (i.e., node y), a
node must be (1) the destination/source of the blocking send/receive
on node x, (2) a node in the same communicator with node x, or (3)

the destination/source of one of the nonblocking sends/receives that
node x is waiting on, respectively. During the traversal for node y,
we look up every MPI operation we arrived at in list L2 of node y to
detect matches. When a match is found, we delete the event from
both lists. If possible, we unblock the execution on node x so that
the traversal for it can proceed later on. If the receiver of a match
uses MPI_ANY_SOURCE, this value is replaced with the rank of the
(first) matching sender so that the wildcard source is resolved. Col-
lectives are handled in a similar way as Algorithm 1 by blocking the
traversal until every participating node arrives. We treat MPI_Finalize
as a collective that all the nodes participate in, so that every node
is traversed before the algorithm finishes. Because Algorithm 2 is
again based on traversing a trace and each MPI event is evaluated
exactly once, the complexity is also O(p · e), where p is the number
of MPI tasks and e is the number of communication events per task.
Similarly, the use of wildcard receives is checked at a cost of O(r)
before applying this algorithm, where r is the number of RSDs in the
trace and, typically, r� e.

A ScalaTrace trace is obtained from an instance of a correct ex-
ecution of the original parallel application. However, ScalaTrace
does not represent this or any other specific execution because it does
not replace the wildcard source value with the rank of the actual
sender. Consequently, if the original application potentially deadlocks,
Algorithm 2 suffers from the same risk. As an example, the code
fragment in Figure 5(a) deadlocks if the wildcard receive is matched
with node 0 but completes if matched with node 2. One possible
execution generates the trace shown in Figure 5(b), which causes
Algorithm 2 to hang because node 0 is blocked on MPI_Finalize and
node 1 is blocked on MPI_Recv(0) during trace traversal.

if(rank == 1){

MPI_Recv(MPI_ANY_SOURCE);

MPI_Recv(0);

}

if(rank == 0 || rank == 2){

MPI_Send(1);

}

(a) MPI program with potential deadlock

RSD1: {1, MPI_Recv, MPI_ANY_SOURCE}
RSD2: {1, MPI_Recv, 0}
RSD3: {0, MPI_Send, 1}
RSD4: {2, MPI_Send, 1}
(b) The trace of (a) that makes Algorithm 2 hang

Figure 5: Potential deadlock
To avoid potential hangs in Algorithm 2 caused by nondeterminism

in the original application, our benchmark generator extends Algo-
rithm 2 to detect deadlock conditions during trace traversal. Notice
that these deadlocks stem from incorrect MPI semantics of the ap-
plication, not from our tracing or code-generation framework. We
decided to identify such incorrect MPI programs and report the ex-
istence of deadlocks to the user. To this end, we track another two
types of events during traversal: (1) Ti jk, the transfer of traversal from
node i to node j due to MPI event ek, and (2) U , the unblocking event.
We append these events to a global list, L3, in the order they were
encountered during the traversal. If the traversal is switched to node n
while node n is blocked on an MPI event ek, the deadlock detection
algorithm traverses L3 to determine if any unblocking event U has
taken place since the last time the traversal left node n due to the
same MPI event ek. If there is no unblocking event found, a potential
cyclic dependency is detected. If ek is a blocking send/receive, then a
deadlock potential has been uncovered and the algorithm terminates.
If ek is a wait operation blocked on multiple requests, the traversal is



Algorithm 2 Algorithm to resolve wildcard receive (without deadlock
detection)
Precondition: T: input trace, N: total number of nodes
Postcondition: T: trace without wildcard receive

1: function INITIALIZATION(T, N)
2: for i← 1, N do
3: Allocate list L1 and list L2 for node i
4: Allocate traversal context C[i]
5: C[i].RSD← T.head
6: end for
7: T←Match(0, T) . Start with node 0
8: return T
9: end function

10: function MATCH(n, T)
11: iter← C[n].RSD
12: while iter do
13: if node n is not in iter.rank_list then
14: iter← iter.next
15: else
16: if iter.op is point-to-point operation then
17: if match with an event eink in L2 then
18: L2.delete(eink)
19: nodei.L1.delete(eink)
20: if nodei.L1 is empty then
21: C[i].RSD← C[i].RSD.next . unblock
22: end if
23: if iter.peer is MPI_ANY_SOURCE then
24: iter.peer = i . resolve the wildcard
25: end if
26: iter← iter.next
27: continue
28: else
29: p← iter.peer
30: L1.add(enp(kn++))
31: nodep.L2.add(enpkn )
32: if iter.op is blocking operation then
33: C[n].RSD← iter
34: MATCH(p, T)
35: else
36: iter← iter.next
37: continue
38: end if
39: end if
40: end if
41: if iter.op is collective or MPI_Finalize then
42: ... . refer to Algorithm 1
43: end if
44: if iter.op is wait operation then
45: if L1 is not empty then
46: MATCH(L1.first.getPeer(), T)
47: else
48: iter← iter.next
49: continue
50: end if
51: end if
52: end if
53: end while
54: return T
55: end function

proxied to the peer of another nonblocking communication on which
node n is waiting. If the peers of all the pending nonblocking send-
s/receives have been traversed and the cyclic dependency still exists,
a deadlock potential has been detected and the algorithm terminates.
This algorithm implements a sufficient deadlock detection scheme.
As a result, Algorithm 2 is guaranteed to be deadlock-free. However,
unlike the DAMPI algorithm [23], Algorithm 2 does not establish or
test the permutations of all execution interleavings and thus does not
present a necessary condition for a deadlock as the approach is based
on a single trace sequence of events. It may therefore fail to identify
deadlocks in the original application that were not uncovered by the
specific trace execution.

4.5 Sources of Performance Inaccuracy
As indicated, there are a number of ways in which our benchmark

generator trades off performance fidelity for an improved ability to
reason about the generated code and its performance: computation
times are summarized across ranks instead of being specified individ-
ually (Section 3.1); some complex MPI collectives are implemented
in terms of more basic CONCEPTUAL collectives (Section 4.2); and
nondeterministic receive ordering is replaced with an arbitrary deter-
ministic ordering (Section 4.4). In Section 5 we examine the impact
of these design decisions in the context of a suite of test programs.

5. EVALUATION

5.1 Experimental Framework
To evaluate our benchmark-generation methodology, we generated

CONCEPTUAL codes for the NAS Parallel Benchmarks (NPB) suite
(version 3.3 for MPI, comprising BT, CG, EP, FT, IS, LU, MG, and SP)
using the class C input size [3] and for the Sweep3D neutron-transport
kernel [24]. These benchmarks all have either a mesh-neighbor com-
munication pattern or rely heavily on collective communication. Some
of them (e.g., Sweep3D) require collective alignment (Section 4.3),
and some (e.g., LU) require the resolution of wildcard receives (Sec-
tion 4.4). Hence, the key features of our code-generation framework
are fully tested in this set of experiments. We believe results from the
NPB and Sweep3D in this paper, combined with previous ScalaTrace
experiments [13, 26], are sufficient to demonstrate the correctness
of our approach, and we do not foresee any algorithmic or technical
problems with generating code for larger applications. Moreover,
these benchmarks are sufficient to demonstrate our ability to retain
an application’s performance characteristics. In particular, several
kernels in the NPB suite, including CG, FT, and MG, are known to
be memory-bound [18], which stresses our generated benchmarks’
ability to mimic computation with spin loops of the same duration.

Benchmark generation is based on traces obtained on (a) Ocracoke,
an IBM Blue Gene/L [1] with 2,048 compute nodes and 1 GB of
DRAM per node and (b) ARC, a cluster with 1728 cores on 108
compute nodes, 32 GB memory per node, and an Ethernet interconnect.
Due to limited access to these systems our experiments generally run
on only a subset of the available nodes. Benchmark generation is
performed on a standalone workstation.

5.2 Communication Correctness
Our first set of experiments verifies the correctness of the gener-

ated benchmarks, i.e., the benchmark generator’s ability to retain
the original applications’ communication pattern. For these experi-
ments, we acquired traces of our test suite on Blue Gene/L, generated
CONCEPTUAL benchmarks, and executed these benchmarks also on
Blue Gene/L. To verify the correctness of the generated benchmarks,
we linked both them and the original applications with mpiP [22], a
lightweight MPI profiling library that gathers run-time statistics of



MPI event counts and the message volumes exchanged. Experimental
results (not presented here) showed that, for each type of MPI event,
the event count and the message volume measured for each generated
benchmarks matched perfectly with those measured for the original
application.

We then conducted experiments to verify that the generated bench-
marks not only resemble the original applications in overall statistics
but also that they preserve the original semantics on a per-event ba-
sis. To this end, we instrumented each generated benchmark with
ScalaTrace and compared its communication trace with that of its
respective original application. Due to differences in the call-site
stack signatures between the original application and the generated
benchmark, these traces are never bit-for-bit identical. Therefore, we
replayed both traces with the ScalaTrace-based ScalaReplay tool [26]
to eliminate spurious structural differences and thereby fairly compare
the pairs of traces. The results (again, not presented here) show that
the original applications and the generated benchmarks generated
equivalent traces. That is, the semantics of each of the original ap-
plications was precisely reproduced by the corresponding generated
benchmark.

5.3 Accuracy of Generated Timings
Having determined that benchmarks produced using our benchmark

generator faithfully represent the communication performed by the
original applications, we then assessed the generated benchmarks’
ability to retain the original applications’ performance. To measure
the total execution time of the original applications, we extended the
PMPI profiling wrappers of MPI_Init and MPI_Finalize to obtain
timestamps). The corresponding CONCEPTUAL timing calls were
also added to the generated benchmarks. We ran both the original
application and the generated benchmark on the Blue Gene/L system
and compared the total elapsed times. Figure 6 shows that the timing
accuracy is qualitatively extremely good. Quantitatively, the mean ab-
solute percentage error (i.e., 100%×|(TCONCEPTUAL−Tapp)/Tapp|)
across all of Figure 6 is only 2.9%, and only two data points exhibit
worse than 10% deviation: LU at 256 nodes observes a deviation
of 22% (40 s for the benchmark versus 52 s for the original applica-
tion), and SP at 16 nodes observes a deviation of 10% (980 s for the
benchmark versus 1092 s for the original application).

5.4 Applications of the Benchmark Generator
The experimental results presented in Sections 5.2 and 5.3 indicate

that the performance of the generated benchmarks can be trusted.
We now present an example of some what-if analysis that is made
practical by automatic benchmark generation.

A current trend in high-performance computing is to supplement
general-purpose CPUs with more special-purpose computational ac-
celerators (e.g., GPUs).1 However, by Amdahl’s Law [2], accelerating
only an application’s computational phases does not always lead to
proportional overall speedup. Unfortunately, it is nontrivial both to
predict how fast a parallel application will run once accelerated and to
port a parallel application to an accelerated architecture. Application
developers may also optimize performance by overlapping communi-
cation and computation. This too takes time to implement and leads
to a reduction in execution time that can be difficult to predict.

Because the CONCEPTUAL benchmarks produced by our gen-
erator are easy to modify, we can use our framework to estimate
how fast an application can be expected to run once accelerated or
once communication and computation fully overlap. We generated
a benchmark from the NPB BT code on 64 cores using the class C
input. We then modified the CONCEPTUAL code to vary the time
1In fact, four of the world’s ten fastest supercomputers contain accel-
erators (http://www.top500.org/, November 2010).

spent in all computation phases from 100% down to 0% of their
original time to simulate different expected improvements due to
acceleration. We ran the resulting benchmark variations on the ARC
cluster (cf. Section 5.1) and plotted the results in Figure 7.
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Figure 7: Communication performance of BT
Reading Figure 7 from right to left, the data points ranging

from 100% down to 30% of the original application’s compute time
are essentially what one might expect: a steady but sublinear decrease
in total execution time. That is, a fabricated 3.3x speedup of compu-
tation leads to only a 21% reduction in total execution time for BT.
However, as computation time continues to decrease, rather than reach
a plateau, the total execution time increases. At the 0% computation
mark, which represents infinitely fast processors on a modern Ethernet
network, there is essentially no speedup over the unmodified BT
execution time.

To understand this puzzling behavior, note that BT is a stencil code
consisting almost exclusively of asynchronous point-to-point com-
munication operations, with only a few collectives at the beginning
and end of the execution. Reducing the time between subsequent
communication operations alters the dynamics of the messaging layer
and leads to the observed increase in performance. For example, if
messages begin arriving faster than they can be processed, they will
start being directed to the MPI implementation’s unexpected-receive
queue, which incurs a performance cost in the form of an extra mem-
ory copy to transfer unexpected messages to the target buffer. Once
all available space for storing incoming messages on a given node is
exhausted, the MPI implementation’s flow-control mechanism must
stall any senders and later pay a cost in network latency to resume
them. It is the nonlinear effects such as those that make it important
to quantify potential performance improvements using a framework
such as ours before investing the effort to accelerate an application.

We should note that the experimental result presented in Figure 7
is both application-specific and platform-specific. Yet, with our
benchmark-generation approach, the experiment can easily be re-
peated on different platforms without ever needing to port the original
application. In addition, our BT experiment can easily be refined to
utilize different speedup factors for different computational phases.
We foresee this type of performance experimentation, enabled by
our benchmark generator, becoming increasingly important as HPC
hardware increases in complexity and requires expanded efforts to
port large applications (for potentially small performance gains).

6. DISCUSSION AND FUTURE WORK
This work has demonstrated the feasibility of automatically gen-

erating performance-accurate and highly readable benchmarks from
application traces. The ability to generate benchmarks that can be
executed with arbitrary number of MPI processes still remains an
open problem. Our prior publication contributed a set of algorithms
and techniques to extrapolate a trace of a large-scale execution of an
application from traces of several smaller runs [26]. We intend to
incorporate that effort into benchmark generation.

Currently, our work focuses on the generation of communication
benchmarks. Our approach guarantees that the generated communi-

http://www.top500.org/


 1

 4

 16

 64

 256

 1024

16 36 64 100
144

196
256

R
u
n
n
in

g
 T

im
e
 (

s
)

Number of Nodes

App Time
coNCePTuaL Time

(a) BT

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

16 32 64 128
256

R
u
n
n
in

g
 T

im
e
 (

s
)

Number of Nodes

App Time
coNCePTuaL Time

(b) CG

 1

 2

 4

 8

 16

 32

 64

 128

 256

16 32 64 128
256

R
u
n
n
in

g
 T

im
e
 (

s
)

Number of Nodes

App Time
coNCePTuaL Time

(c) EP

 1

 2

 4

 8

 16

 32

 64

 128

 256

16 32 64 128
256

R
u
n
n
in

g
 T

im
e
 (

s
)

Number of Nodes

App Time
coNCePTuaL Time

(d) FT

 1

 2

 4

 8

 16

 32

16 32 64 128
256

R
u
n
n
in

g
 T

im
e
 (

s
)

Number of Nodes

App Time
coNCePTuaL Time

(e) IS

 1

 4

 16

 64

 256

 1024

 4096

4 16 64 256

R
u
n
n
in

g
 T

im
e
 (

s
)

Number of Nodes

App Time
coNCePTuaL Time

(f) LU

 1

 2

 4

 8

 16

 32

 64

 128

 256

16 32 64 128
256

R
u
n
n
in

g
 T

im
e
 (

s
)

Number of Nodes

App Time
coNCePTuaL Time

(g) MG

 1

 4

 16

 64

 256

 1024

 4096

16 64 144
256

R
u
n
n
in

g
 T

im
e
 (

s
)

Number of Nodes

App Time
coNCePTuaL Time

(h) SP

 1

 2

 4

 8

 16

 32

 64

16 32 64 128

R
u
n
n
in

g
 T

im
e
 (

s
)

Number of Nodes

App Time
coNCePTuaL Time

(i) Sweep3D
Figure 6: Time accuracy for generated benchmarks

cation is cross-platform performance-portable because we preserve
the original communication pattern and can execute it natively on a
target machine. However, since computation times are taken from
the source machine, the computation performance does not reflect
architecture-specific effects of a different platform. One advantage of
mimicking computation with spin loops is that this enables studies
in which computation time is explicitly varied, as in Section 5.4.
Meanwhile, we are also working on scalable memory tracing to com-
plement communication tracing. Automatic generation and replay
of memory-access behavior within ScalaTrace is a subject of future
work.

7. CONCLUSIONS
To bridge the gap between the performance realism of a complete

application and the convenience of porting and modifying a benchmark
code, we have designed, implemented, and evaluated a benchmark-
generation framework that automatically generates portable, customiz-
able communication benchmarks from parallel applications. Our
approach is based on an application’s dynamic behavior rather than
its statically identifiable characteristics. We use ScalaTrace [12]
to recover application structure from a communication trace and
CONCEPTUAL [15] to express the resulting benchmarks in a read-
able, editable, yet executable format.2 Algorithms we developed
to assist in this process merge collective operations described by
disparate source-code lines into a single call point and eliminate non-
determinism caused by wildcard receives. Empirical measurements
indicate that the performance of the generated benchmarks is faithful
to that of the original application.

2ScalaTrace and CONCEPTUAL are freely available from, http:
//moss.csc.ncsu.edu/~mueller/ScalaTrace/ and http://
conceptual.sourceforge.net/.

There are two main conclusions one can draw from this work. First,
it is in fact feasible to automatically convert parallel applications into
benchmark codes that accurately reproduce the applications’ perfor-
mance yet are easy to port, read, edit, and reason about. Second,
as demonstrated in Section 5.4, nonlinear performance effects come
into play as applications are modified for nascent architectures, and
performance-accurate, application-specific benchmarks are an impor-
tant new technology for quantifying these effects before exerting the
effort involved in application porting.

The benchmarks we generate preserve all communication opera-
tions, represent applications’ actual run-time behavior, and do not
grow proportionally to the process count or message volume. To our
knowledge, our work is the first successful attempt at automatically
converting parallel applications into performance-accurate bench-
marks that exhibit all of those features.
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