
The FREEDM Architecture of Fault Tolerant Network Routing
through Software Overlays ∗

Christopher Zimmer
North Carolina State University

cjzimme2@ncsu.edu

Frank Mueller
North Carolina State University

mueller@cs.ncsu.edu

Abstract
Control decisions of intelligent devices in critical infrastructure can
have a significant impact on human life and the environment. In-
suring that the appropriate data is available is crucial in making in-
formed decisions. Such considerations are becoming increasingly
important in today’s cyber-physical systems that combine compu-
tational decision making on the cyber side with physical control
on the device side. In the FREEDM system, power management of
green energy is provided in a highly distributed and scalable man-
ner. The system has to insure that Intelligent Energy Management
(IEM) and Intelligent Fault Management devices have the appropri-
ate data to make control decisions for microgrids and with respect
of microgrid connectivity to an upstream utility power grid. The
job of insuring the timely arrival of the data falls onto the network
designed to support these intelligent devices. This network needs
to be fault tolerant. When nodes, devices or communication links
fail along a default route of a message from A to B, the underly-
ing hardware and software layers should ensure that this message
will actually be delivered as long as alternative routes exist. Insur-
ing multi-route pathways and discovery of these pathways iscrit-
ical in insuring delivery of critical data. In this work, we present
methods of developing network topologies of smart devices that
will enable multi-route discovery in an intelligent power grid. This
will be accomplished through the utilization of software overlays
(1) that maintain a digital representation of the physical network
and (2) allow new route discovery in the case of fault. Also, in this
work we aim to present a visualization of the connection states and
pathways through the network aimed at helping external entities to
understand the states of the network. Our vision is that the applica-
tion of this approach in an intelligent power grid will enable IEM
and IFM devices to make automated, decentralized decisionsand
to maintain state of lower-level devices.

Keywords Distributed Networking, Distributed Fault Tolerance

1. Introduction
Failures of network equipment in intelligent systems can result in

• incorrect decisions regarding device failure,

• faulty decisions made due to lack of data,

• system reconfigurations, or

• degradation of system performance.

In modern network topologies, network failures resulting in these
issues may be avoided through smart routing technologies that can
take faulty equipment out of the loop. However, such fault tolerance

∗This work was supported in part by NSF grant EEC-0812121 and U.S.
Army Research Office (ARO) grant W911NF-08-1-0105 managed by
NCSU Secure Open Systems Initiative (SOSI).

is only feasible in situations where the faulty equipment does not
constitute a single point of failure of communication within the
network. Therefore, it is important to maintain redundant pathways
through networks.

Routing decisions are an important part of networking. Con-
crete routes are configured statically in many networks. When a
networking device on a static route fails, any messages sentalong
that route will timeout and result in communication failurewith
respect to this end point. In these scenarios, many systems will as-
sume the end point to be out of service. This does not have to be
the case. Networks of devices can be designed to contain multiple
pathways to connect clusters of nodes in a redundant manner.If
these pathways exist, a network needs to be able to alternateand
utilize them in times of fault.

Another consideration to make when designing a network is
its shape / topology of connectivity. The shape of the network
can have a significant impact on its performance. For example,
networks with a ring topology can only sustain a single link failure.
Fully connected mesh networks offer the greatest amount of fault
tolerance but this comes at the cost of one connection per pair of
nodes, which imposes exponential resource needs.

In this work, we present a method of utilizing software network
overlays to provide shape and meta information about connectivity.
Utilizing knowledge of shape/topology and meta information, the
network is able to react in case of faults and generate new routes
through the network in manner that is transparent to the userby
providing a software overlay middleware.

2. Software Overlay Network
Using software overlays to improve network resilience is anidea
first described by Anderson et al. [1]. In their work, they presented
the basis for a resilient overlay network (RON) partitioning dis-
tributed nodes that may contain a different topological perspective
than the external, physical network topology. Their work assumed
nodes to potentially be separated geographically across the Internet.
Our work utilizes a similar partitioning for the routing of messages
but deviates in that it utilizes this approach in a much smaller local
area network (LAN) to facilitate fault-tolerant communication. In
our approach, devices are organized into software partitions that are
calculated locally based on their IP address. Partitions are created
as a side effect of subnet masks. Each partition is assumed tobe
fully connected. These partitions are then grouped together in clus-
ters of a certain static size. The combined group of clustersand par-
titions are interconnected with horizontal and vertical uplinks. An
example is depicted in Figure 1. Utilizing vertical uplinks, we then
organize our software overlay network into a tree-based topology.
Similar work has been performed in the High Performance Com-
puting domain by Varma et al. [4]. Uplinks will serve as the default
routing path for general message communication in the absence of



Devices

Uplink

Crosslink

Switch

Node

Figure 1. Device Cluster

failures. Figure 2 depicts the vertical uplinks and shows the result-
ing tree formed by them. Uplinks are necessary to provide inter-
cluster communication. They constitute the network backbone of
the system. To increase fault tolerance, it is necessary to introduce
horizontal crosslinks that will serve as secondary paths through the
network, as depicted in Figure 2.

This abstract software overlay can fit onto arbitrary intelligent
power grids. Most importantly, it provides redundant communica-
tion pathways and the potential to connect the network in alternate
ways in case of faults in the system via its software middleware
layer. This capability is crucial for allowing intelligentnodes in the
system to maintain appropriate state and to coordinate the actions
of system control tasks.

Figure 2. Cluster Tree

In Figure 3 communication pathways are primarily used
through the switching interface composed of uplinks as de-
picted in the first half of the figure. Our system differs from
a regular network in the composition of a series of intelligently
placed crosslinks that can occur as node to switch or node to
node lines. In the event of a loss of a uplink, the abstract net-
work will enter into a reorganization mode. Reorganization
mode is typically defined in the system as what to do in the

case of a sent message timeout. In this work, the reorganiza-
tion mode will explore the possibilities of alternate routing in
the network by using meta-information describing the charac-
teristic of the network. In using software overlays part of the
network information that is provided to a node is its partiti on
information that the node can use to determine its neighbors
on a switch and the partitions above and below it in a tree.
From this information a node in reorganization mode can be-
gin communicating with its neighbors to determine important
information. The most important of this information being t he
location of crosslinks, and through using the crosslinks deter-
mining if this is a node failure on the recieving end or a link
failure along the switching path. The second half of Figure 3
depicts the utilization of a crosslink in an attempt to resend a
previously failed message. A proper response from the reciev-
ing node would indicate to the reorangized node that the failure
was in the switch link. A system like this could be very useful

Network Flow of Fault Free Tree

Network Flow in Presence of Line Fault

Figure 3. Message Pathways

in an intelligent powergrid utilizing a distributed networ k. This
system will aid the distributed grid intelligence of the intelligent
power grid to insure more stable reorganizations in the caseof



wide area faults in the power grid. One of the primary issues
at hand is distributed leader election of intelligent energy man-
agement nodes. A central theme in leader election is dealing
with non-determinism in the network. This work by enabling
more effective communication will aid in creating node reorga-
nizations that provide a more stable service.

3. API
To aid in the creation and testing of this work, a unified mes-
sage passing API has been created that facilitates coordination be-
tween nodes ranging from the large and sophisticated IEM nodes
to small ZigBee devices. The API is a non-blocking, asynchronous
approach similar to Active Messages [5] as implemented in Tiny
OS [3]. In this message passing API, a device or node registers
a message type to receive a message handler. The handler is then
used in sending and receiving messages. The current API provides
constructs for

• non-blocking send,

• non-blocking receive,

• handle generation,

• conditioned waiting and,

• condition signalling.

Due to frequent faults and large timeouts in a distributed net-
work, non-blocking network abstractions were designed to facil-
itate this work. This allows devices within the network to send
messages without having to wait for acknowledgements before pro-
ceeding with other work. The same approach is applied to receives
to avoid a need for actively monitoring a queue. In a non-blocking
approach, a received message is handled by the network API. When
a new message is received, the application is able to use it orignore
it until a later time. It is thus possible to create blocking semantics
if desired. This is done using the conditioned wait and condition
signalling methods in the API. Through these methods, a running
process on a device sends a message and then blocks until begin
woken up by the receipt of a response message.

The API is being developed using the Mace distributed proto-
typing language [2]. Mace is a C++ abstraction that enables the
low-level network details to be abstracted from the programmer
while leaving significant amounts of flexibility in the message han-
dling abilities and supporting timeout-based fault detection, which
is central to our fault tolerance network overlay approach.We have
developed a universal FREEDM messaging passing API and a ba-
sic prototype of our proposed system on top of Mace.

4. Distributed Visualizer
In a distributed network it is important to be able to understand the
structure and status of the network. This information may often be
difficult to obtain in a distributed network. To aid the maintainers
of the system in identifying problems and correcting them weare
developing a visualization tool that enables a real-time view of
the state of the networked devices in the system and the dynamic
routing through our software overlays. This system will provide
information regarding a nodes current running status as well as
generate a topological layout of the network based on data provided
to the running model.

Utilizing a centralized server approach, nodes can communicate
with the interface server. The server provides a graphical represen-
tation of the status of the nodes and current messages in flight. The
projected design of the visualizer will present a fully detailed rep-
resentation of the underlying LAN. This enables one to monitor
system activity, to detect failed components, to observe alternate

routing activity, and to sustain partial functionality in the presence
of partitioning / islanding of power microgrids. As such, one can
determine which links have failed and, more specifically, which
nodes have failed. The information is provided by working nodes
that report the status of successful and failed communication at-
tempts within the network.

This work differs from using a commodity tool such as Cacti or
Hobbit in that it will be able to provide the visualization for non-IP
devices such as those used in a ZigBee platform that are MAC ad-
dressable. This visualizer will interface with IP addressable nodes
to detect any MAC-based devices connected to it and display their
current status.

In the figure below, the visualizer is being used to display the
communication paths of three separate devices. The visualizer can
be provided with information detailing the locations of software
links between nodes to create a graphical representation ofthe
network. In this figure, the network structure is being codedas a
tree network resembling the shape of the network utilized inour
Mace prototype.

Figure 4. Visualizer Swing Window

The visualization tool is developed using the Java Swing graph-
ics packages over a network socket API to connect with our dis-
tributed prototype written in C++ using the Mace distributed pro-
gram library [2]. In its current status, it supports:

• setting status,

• defining links,

• defining partitions,

• visualizing path, and

• visualizing messages.

The prototype of the message-passing system is instrumented
with calls that relay messages during each critical step in the pro-
gram communication path. At each step, a command message is
sent to the visualizer that renders the information on screen. Failed
nodes may not be able to report their current status to the system
visualizer. In such a case (i.e., when timeouts occur in the system),
the node status is updated by the node that receives the timeout.

5. Conclusion
The vision of this work is to enable IEM and IFM nodes to com-
municate, even in the events of multiple link failures. The first step
to accomplish this is through introducing increased but intelligent
redundancy in the links of the network. We introduced a middle-
ware framework that utilizes software overlays to support fault-
tolerant communication in a network with redundancy through al-
ternate communication paths. Our development of low overhead
route detection algorithms to assist in the presence of single and
multiple link failures constitutes the key contribution toprovide
such fault tolerance in a transparent manner to other control soft-
ware. Our middleware layer will provide the means for higher-



level distributed grid intelligence (DGI), such as providing hier-
archical control with leader-election schemes within thissoftware
overlay architecture. Overall, our software middleware architecture
for fault tolerant network overlays realize the vision of sustainable
and decentralized energy management on the software side inthe
FREEDM system and beyond.

References
[1] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris.

Abstract the case for resilient overlay networks.

[2] C. Killian, J. Anderson, R. Braud, R. Jhala, and A. Vahdat. Mace:
language support for building distributed systems. InACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 179–188, 2007.

[3] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler. Tinyos: An
operating system for sensor networks. pages 115–148. 2005.

[4] J. Varma, C. Wang, F. Mueller, C. Engelmann, and S. L. Scott.
Scalable, fault-tolerant membership for MPI tasks on hpc systems.
In International Conference on Supercomputing, pages 219–228, June
2006.

[5] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active
messages: a mechanism for integrated communication and computa-
tion. In ISCA ’92: Proceedings of the 19th annual international
symposium on Computer architecture, pages 256–266, New York, NY,
USA, 1992. ACM.


