
ScalaJack: Customized Scalable Tracing with
in-situ Data Analysis ?

Srinath Krishna Ananthakrishnan, Frank Mueller

North Carolina State University, mueller@cs.ncsu.edu

Abstract. Root cause diagnosis of large-scale HPC applications often
fails because tools, specifically trace-based ones, can no longer record
all metrics they measure. We address this problems by combining cus-
tomized tracing and providing support for in-situ data analysis via Scala-
Jack, a framework with customizable instrumentation and pluggable ex-
tension capabilities for problem directed instrumentation and in-situ data
analysis. We further eliminate cross cutting concerns by code refactor-
ing for aspect orientation and evaluate these capabilities in case studies
within and beyond the scope of tracing.

1 Introduction

Experience suggests that HPC codes suffer scalability issues each time the con-
currency level increases by an order of magnitude. Analyzing the causes requires
knowledge of an application’s global and local behavior. Frequently, tracing is
used for root cause analysis. Specific application events are identified and traced
during execution. Tracing differs from profiling in that it tries to preserve more
data, including the chronology of events, while profiling is inherently lossy and
focuses on aggregate metrics of loops and nodes. But trace-based tools struggle
to isolate problems since instrumentation costs can be prohibitive with exhaus-
tive collection of metrics at events and results in perturbations that can mask the
true problem. Traditional approaches employ periodic probing [6] instead of full
instrumentation and may employ reduction in data volume through compres-
sion. However, this merely postpones the problem of analyzing the data, which
requires decompression again. In-situ analysis is an alternative as it reduces data
volume inherently and facilities realtime/online root cause analysis. Leveraging
user knowledge for instrumentation, problem-specific tracing and analysis capa-
bilities can thus be realized.

Contributions: We have developed ScalaJack to support active analysis
tracing, i.e., problem-specific extraction and on-the-fly reduction of data through
analysis. ScalaJack supports user-customizable instrumentation and user call-
backs as pluggable extensions for instrumenting interfaces and a means for in-
situ data analysis at specific execution points. This supports rapid generation of
problem-specific analysis tools. Instrumentation via ScalaJack is aspect-oriented
to reduce cross-cutting concerns in source code to improve code readability,

? This work was supported in part by NSF grants 1217748, 0958311, and 0937908.

reuse, portability and maintainability, which aids in designing large and multi-
scalar HPC codes. In experiments, ScalaJack shows scalable trace file sizes with
increasing number of tasks and minimal overhead. Aspect-oriented analysis sug-
gests significantly decreased scattering of cross-module code references.

2 Background

ScalaJack is a redesign of ScalaTrace to support customizable instrumentation,
user callbacks and aspect-oriented program design. ScalaTrace [17] is a state-
of-the-art scalable parallel communication tracing library for message-passing
MPI programs. MPI events are traced through the PMPI profiling layer. Scala-
Trace combines on-the-fly intra-node compression of MPI calls within loops with
inter-node compression of events across nodes (in MPI Finalize). ScalaTrace
employs RSDs and PRSDs ([Power] Regular Section Descriptors [14]) struc-
tures to represent events in a loop as constant size logs. An RSD is a tuple
< length, event1...eventn > in one loop and a PRSD represents multiple RSDs
in nested loops. E.g., two nested for loops with a barrier in the outer and a send
in the inner loops correspond to PRSD < 10, RSD1,MPI Barrier > where
RSD1 is < 10,MPI Send > for 10 iterations per loop level.

ScalaTrace represents events and parameters through an elastic data repre-
sentation [24] that morphs scalars, vectors and histograms. Resulting trace files
are scalable yet completely lossless, except for delta times between MPI events
recorded as lossy histograms. A replay engine allows events to be replayed with-
out original program code, even for non-deterministic histogram data.

Aspect-oriented programming [11] is a software engineering technique
to reduce scattering of cross-cutting concerns in source code. An aspect is is a
piece of code that cannot be factored out into procedural isolation due to cross-
cutting concerns (e.g., logging, timing, performance monitoring, load balancing)
located at pointcuts in the code, where concerns are the set of all aspects and
a pointcut separates two regions of disjoint concerns.

Aspect-specific code is moved from the original application’s component to
an aspects specification, i.e., advice, which is executed at the original pointcut in
the code (as a pre- or post-wrapper), often realized via run-time or compile-time
support for aspects [12,3].

3 Design and Implementation

ScalaJack reuses compression techniques of ScalaTrace but augments and ex-
tends them by introducing an API to define custom events specific to a program
and to register callbacks for in-situ analysis of live data. ScalaJack relies on
aspects through run-time interpositioning of MPI calls via PMPI and dynamic
pre-loading / tagging of event prologues / epilogues.

Figure 1 illustrates how ScalaJack composes generic instrumentation libraries
with the application. Custom events are tagged by either augmenting the appli-
cation with instrumented calls or by enumerating such events in a specification
file. The user may provide an instrumentation class (UserStat, derived from
the Stat class) that implements the methods to start/stop/merge specific trace
events, which is compiled separately and linked into the application.

Fig. 1. Instrumentation Composition
with ScalaJack Fig. 2. ScalaJack’s High-level Design

ScalaJack’s high-level design is depicted in Figure 2 with novel com-
ponents (circled) and redesigned existing components (non-circled). Each event
is wrapped by ScalaJack with a prologue and epilogue to support tracing and
invocation of aspect-specific callbacks. Event/user trace data within a task are
compressed on-the-fly by exploiting the program’s loop constructs while a second
phase of compression is performed via inter-node compression over all tasks. This
highly compressed single file trace is thus scalable with the number of processes.

Fig. 3. Typical Application workflow with ScalaJack

A typical application workflow (Figure 3) consists of a parallel code with
customized instrumentation to trace and instrument MPI routines or arbitrary
functions augmented by in-situ reduction (through analysis) of instrumentation-
derived data. Reduced data is co-located with the appropriate event blocks and
stored as RSDs and PRSDs in a scalable fashion, preserving the structure of
program/trace. Correlating data to the events provides insight into root causes

to identify, e.g., performance anomalies. Other tertiary tasks due to cross-cutting
concerns integrate readily, e.g., visualization, yielding better code modularity.

Custom Events can bee registered to extend ScalaTrace’s scalable com-
pression algorithms for interposing arbitrary events in programs. This level of
tracing reduces default instrumentation to MPI Init/F inalize events or, op-
tionally, user-defined equivalents in the code, which would require user-provided
alternatives for rank/size/barrier (of MPI) for internal ScalaJack functionalities,
e.g., inter-node data reduction (not covered in this paper). A custom event API
supports (a) event registration and (b) specification of pre-/post-wrappers.

Registration of custom events via the API returns an event code (orthogo-
nal to MPI events) for further ScalaJack calls and internally establishes a con-
trol block for optional flags for events. Flags may suppress stack signature
generation (normally used to identify functions during compression). Signature
omission may facilitate joint compression of event sets grouped together by a
data-specific criterion or for aggregation.

Custom events invoke user-supplied arbitrary functions when triggered. Reg-
istered wrappers for pro- and epilogues resemble functions for custom events
and are synonymous to those for MPI events instrumented via the PMPI in-
terpositioning techniques. An auto-generated prelinker provides skeleton code
that wraps the original function call. Custom wrappers may coexist with MPI
wrappers per event, and both of their data resides in the same, single trace file.
Flag-controlled tracing of just Init/Finalize facilitates inter-node compression for
MPI-associated user events, while the mix of both event streams may hamper
ScalaJack’s default MPI compression.

Nested custom events, i.e., trace events inside pre-/post-wrappers, can cause
incorrect ordering, e.g., before the epilogue of event 1, the prologue of event 2 is
encountered. Instead of using stack-bloating data structures, pre-/post-wrappers
are represented as two different events sequences.

User callbacks provide hooks at any communication point and selected
call graph nodes, e.g., for in-situ data analysis on event or program data. They
also support aspect orientation to separate cross-cutting concerns from main
algorithms. Prologues of MPI events cause ScalaJack to create control blocks
while epilogues consists of routines that append the events into the trace and
engage in intra-node compression of trace data. User callbacks as pre-/post-
wrappers serve as pointcuts and may augment the trace with user-collected data.
User callbacks further support data analysis, optional on-the-fly compression,
and, in contrast to MPI wrappers, even early reduction across nodes. A Stat
(Statistics) class provides overloading capabilities by the user through object
orientation with two instantiations for (a) the computation phase before the
event and (b) the communication phase of the event. Callbacks are established
by overriding Stat’s start/end methods or by a ScalaJack API call resulting
in internal Stat instantiation and method overriding. Thus, callbacks before
and after each compute/communicate phase are invoked out of the respective
pre-/post-wrappers. An optional flag supports suppression of entries into the

trace file to let users override Stat’s callback method, which is invoked just once
(without compute/communicate distinction).

User-directed compression: Data from in-situ analysis in callbacks enters
the trace as a compressed histogram by default. Users can overload the V alueSet
class and support their own set of compression routines as callbacks invoked
by our reduction framework with data marshaling. This supports pointcuts in
programs while providing scalability even for customized user data types.

Most aspect-oriented frameworks map aspects to specific events. In contrast,
ScalaJack aspects are universal across events but event-specific aspects are re-
alized by light-weight filters. Users can access event objects of pointcuts to ex-
ecute aspects for specific events/conditions, e.g., to access the send count of
MPI events. Users can also access event trace queues in their structurally com-
pressed form (PRSDs). This facilitates analysis on the entire trace, e.g., for trace
similarity via k-means clustering to group traces based on a distance metric.

4 Evaluation

We assess the scalability of ScalaJack via traces generated by its custom event
framework. In addition, the overhead incurred in using ScalaJack over a näıve
implementation is studied. We evaluate ScalaJack by refactoring several case
studies of typical HPC applications to utilize our aspect-oriented callback frame-
work. Tasks that are tangential to the program are refactored as part of these
callbacks. As a result, cross-cutting concerns are removed from the main com-
ponent of the program, thus improving readability and maintainability.

All experiments were conducted on our ARC cluster with two AMD Opteron
6128 processors with 8 cores each (16 cores) per node and a QDR InfiniBand
interconnect. Execution times and trace file sizes were averaged over 10 runs.

Since ScalaJack helps remove cross-cutting concerns in the code, the amount
of code related to a concern that is scattered is reduced. To quantify the im-
provement of using ScalaJack over a näıve implementation with respect to the
code footprint, we utilize the degree of scattering (DOS) and degree of focus
(DOF) metrics from [8,7]. Concentration (CONC) measures how many of the
source lines related of a concern s are contained within a component t (e.g., file,
class, method intending to a specific task), i.e.,

CONC(s, t) =
SLOCt,s

SLOCs

where SLOCt,s is the number of source lines of code (SLOC) in component t
related to concern s, and SLOCs is the SLOC in all of concern s. It should be
noted that SLOC excludes comments, blank lines and annotations for concern
assignment. The drawback of CONC is that it does not reflect the amount of
scattering of a concern’s code and does not allow for different concerns to be
compared. This is covered by the degree of scattering (DOS) metric defined by

DOS(s) = 1−
|T |
∑T

t

(
CONC(s,t)− 1

|T |

)2
|T |−1

where T is the set of components for |T | > 1 [7]. DOS is a normalized factor be-
tween 0 (completely localized) and 1 (completely delocalized). Thus, a reduction
in DOS is an indication of less scattering of code across components.

Degree of Focus (DOF) is a dual to the DOS metric and captures how
focused a component is. Dedication (DEDI) is defined as

DEDI(t, s) =
SLOCt,s

SLOCt

where SLOCt,s is the number of source lines of code (SLOC) in component t
related to concern s, and SLOCt is the SLOC in all of component t. Again, a
better metric would be the normalized degree of focus (DOF)

DOF (s) =
|S|
∑S

s

(
DEDI(t,s)− 1

|S|

)2
|S|−1

where S is the set of concerns for |S| > 1. DOF is a normalized factor between 0
(completely unfocused) and 1 (completely focused). Thus, an increase in DOF
is desired as it is indicative of reduction in scattering and increase in focus.

Performance analysis: One of the most frequently identified aspects in
any program is performance analysis. Developers typically want to identify the
performance characteristics of specific regions of their code. In most HPC appli-
cations, distinct regions of computation and communication can be identified,
and it is often desired to collect performance metrics related to the phases. We
evaluate ScalaJack’s viability with the IS benchmark of the NAS Parallel Bench-
mark suite. IS sorts integers through a parallel implementation of bucket sort.
As part of the benchmark, each task generates a random number sequence from
a seed based on the rank.

We illustrate ScalaJack’s capabilities to support performance analysis aspects
by choosing PAPI [15] to instrument the L1 data cache misses during the ran-
dom sequence generation in addition to performing trace analysis on every MPI
event in the program. We compare an implementation of the IS benchmark that
uses ScalaJack with a näıve implementation with tracing concerns around all
MPI functions and performance analysis concerns around the random sequence
generation step. We utilize the tracing level of ScalaJack, where all MPI events
are traced with custom events and both intra-node and inter-node compression
are performed. The näıve version of IS initializes the PAPI library, followed by
an instrumentation of the random sequence generation routine of IS with the
PAPI API. The return value of this instrumentation routine is then added to
the trace. To indicate the changes to perform tracing, a sample MPI routine,
MPI Reduce, is called to add data to the trace. The ScalaJack version differs
from the näıve implementation by utilizing PMPI wrappers to trace events (and
compress them) while the PAPI API calls are invoked as part of a StatPAPI
callback. These callbacks are invoked as part of the prologue and epilogue of the
custom event associated with random number generation. This allows for separa-
tion of concerns and reusability of the PAPI statistics collection Stat framework.

Figure 4(a) compares the trace files generated with ScalaJack and that of
the näıve implementation. The trace file sizes shown are relative (normalized)
to the ones generated with n = 4 tasks for the näıve and the ScalaJack versions,
respectively. As can be seen from the graph, traces generated with ScalaJack are
highly scalable with an increasing number of processors compared to the traces
generated by the näıve implementation. This is owing to the fact that ScalaJack
employs intra-node (to compress loops) and inter-node compression to generate
a single trace file, while the näıve implementation performs no compression and

(a) Trace file sizes (b) Execution times (c) ScalaJack % overhead

Fig. 4. IS Results

generates traces for each of the tasks. We compare relative trace file sizes because,
on an absolute scale, trace files generated with ScalaJack are larger for lower
values of n due to timestamp data of few hundred bytes per event added to the
trace. ScalaJack internally times every communication and computation phase
of the program and stores them as histograms. This is utilized later by the
replay engine and other tools like benchmark generators to create instances of
the original program [17,25].

To highlight the overhead incurred in using ScalaJack, we compare the run-
ning times of the two implementations of the IS benchmark. As shown in Fig-
ure 4(b), ScalaJack introduces very little overhead to the näıve implementation’s
execution. To put it in a different perspective, Figure 4(c) shows the percent-
age overhead times of ScalaJack over the näıve implementation. As it can be
seen, ScalaJack introduces the highest performance overhead for n = 32, i.e., for
the best performance of IS under strong scaling, which is when instrumentation
overhead (constant across n) contributes the most — but still amounts to just
0.07% overhead for n = 32. There is substantial variability in the overhead of
ScalaJack over the näıve implementation since each task of the näıve implemen-
tation performs I/O to the parallel file system at MPI Finalize to write n trace
files for n nodes back to disk, each of which may be rather large (in the order of
GBs depending on the number loop iterations). This results in I/O contention.
In contrast, only rank 0 performs I/O to the file system with ScalaJack after
aggregating the traces from all its peers, i.e., a single file of rather moderate size
(in the MBs) suffices.

Table 1 (left columns) shows the improvement of using ScalaJack for separa-
tion of concerns over the näıve implementation. For IS, the identifiable compo-
nents are main and PAPI, where the main component implements the benchmark
while the PAPI component implements the performance metrics collection rou-
tines. The concerns here are identified as perf and sort, where perf is the actual
performance metrics collection API invoked at the pointcuts and sort is the rest
of the main component that performs the sorting. The goal is to reduce the
tangling of code between the two concerns and ScalaJack achieves this. This is
reflected by the lower (better) DOS score and a correspondingly higher (better)
DOF score for ScalaJack compared to the näıve implementation.

Table 1. Aspect metrics
IS CLAMR TFIDF

näıve ScalaJack näıve ScalaJack näıve ScalaJack

PAPI main PAPI main aux main aux main aux main aux main
CONC(perf,t) 1 0.4777 1 0.0444 1 0.0739 1 0.0118 1 0.3665 1 0.0683

DOS(perf) 0.4992 0.0850 0.1369 0.0234 0.4643 0.1273

perf sort perf sort main fd main fd main aux main aux
DEDI(main,s) 0.0588 0.9411 0.0057 0.9942 0.2708 0.7293 0.0540 0.9459 0.4155 0.5945 0.1134 0.8666
DOF(main) 0.7782 0.9770 0.2102 0.7955 0.0286 0.5978

Visualization and Load balancing: We next evaluate the effectiveness
of ScalaJack for aspect-oriented application scenarios beyond tracing for per-
formance analysis. We first consider CLAMR [13], an adaptive mesh refinement
solver developed at Los Alamos National Laboratory. CLAMR implements a cell-
based shallow water code by computing the finite difference on AMR using MPI.
CLAMR periodically refines the mesh and also performs load balancing across
the nodes to redistribute the meshes. In addition, CLAMR performs OpenGL
or MPE-based visualization to display the mesh’s current state.

(a) Execution times (b) ScalaJack % Overhead

Fig. 5. CLAMR Results

Application codes like CLAMR have numerous conflicting concerns that can
be effectively addressed using ScalaJack. In the näıve version of CLAMR, tasks
like visualization, mesh refinement, load balancing and printing of statistics are
not part of the main concern at hand, i.e., computing the finite difference. In
CLAMR’s ScalaJack version, the various concerns that are tangential to the main
concern at hand are refactored into the appropriate prologue/epilogue.CLAMR
was evaluated with the custom level of tracing, i.e., only custom events are traced
and no MPI events except for MPI Init/F inalize. Custom events are config-
ured to be created without the stack signature so as to reduce the trace footprint.
Since no data is to be written as part of the callbacks, we register user callbacks
with the callback mode flag. Since the goal with CLAMR is not tracing but
rather refactoring tangential concerns into callbacks, we refrain from comparing
trace sizes between näıve and ScalaJack. Instead, to assess the scalability, we
compare the execution times of both versions.

Figure 5(a) compares the overhead of ScalaJack through the differences in
execution time between the näıve and the ScalaJack versions of CLAMR. Fig-
ure 5(b) shows that ScalaJack introduces an overhead of a maximum of 0.03%

(a) Execution times-IDF (b) ScalaJack % Overhead

Fig. 6. TF-IDF Results

overhead. This is lower than that of IS because we utilize custom level tracing
for CLAMR, which does not trace any MPI events.

Table 1 (middle columns) summarizes the improvements of using ScalaJack
to eliminate concerns from CLAMR. With CLAMR, the main component is
the code that performs the finite difference, while all cross-cutting concerns are
grouped as an auxiliary concern. With ScalaJack, all cross-cutting concerns are
performed at the callbacks as part of registered custom events. With CLAMR,
the majority of the cross-cutting concern code was that of visualization because
the rank 0 task aggregates all mesh values from the other tasks for visualization.
Since a major portion of the code is eliminated from the main component, we
observe a better (higher) DOF score and thus a better (lower) DOS score.

Data analysis in-situ with trace analysis: As the final case study, we an-
alyze ScalaJack’s effectiveness with a MapReduce style application that can take
advantage of the reduction capabilities of ScalaJack. TF-IDF is a data analysis
metric used to assess the importance of a given term with respect to a docu-
ment in a dictionary [20]. The two metrics involved are term frequency tf(t, d),
defined as the frequency of occurrence of a term t in a given document, and
inverse document frequency idf(t,D) in a set of documents D, defined as the
inverse of the frequency of documents that contain a term t within a given dic-
tionary of terms. The TF-IDF metric is then defined by

tfidf(t, d,D) = tf(t, d)× idf(t,D)

TF-IDF is a MapReduce style problem wherein a set of documents are ini-
tially mapped across a number of tasks and each task computes the tf and
idf metrics separately followed by a reduction, which aggregates idf metrics.
With such analysis problems, efficient reduction strategies that are scalable are
required because a näıve implementation might lead to bottlenecks and lower
performance. Data analysis problems, such as TF-IDF, can exploit the internal
reduction logic of ScalaJack otherwise utilized by inter-node compression. This
is supported via the definition of a custom V alueSet instead of the Histogram,
thus performing data analysis as part of a defined user callback. Such a solution
allows for increased reusability of code as developers do not have to explicitly
implement communication strategies themselves.

The näıve TF-IDF initially computes the tf and node-local idf and then
constructs a communication tree to perform a reduction. The ScalaJack version

defines the reduction as a V alueSet of the StatTFIDF object associated with
the idf computation event. As part of the event’s epilogue, the idf table is added
to the Stat object. When inter-node compression is performed at the prologue
of MPI Finalize, the idf tables are compressed as well. With the ScalaJack
version, users do not have to be concerned with implementing a communication
tree and use ScalaJack’s internal reduction tree to perform scalable compression.
In our tests, we compare the näıve implementation with the ScalaJack imple-
mentation with support for inter-node compression. As with CLAMR, tracing
is not the goal here. Hence, we assess the scalability through the overhead of
ScalaJack over the näıve implementation.

Figure 6(a) shows the overhead of ScalaJack in comparison to the näıve
version. ScalaJack introduces minimal overhead of about 0.16% as reflected in
Figure 6(b), thus proving to be light weight. Table 1 (right columns) shows
the aspect-related metrics for the TF-IDF case study. With ScalaJack, concerns
relating to the communication tree for final idf aggregation are eliminated and
are made through an extension of the V alueSet class. This reduces the tangling
of code, thus leading to better (higher) DOF and better (lower) DOS scores.

5 Related Work

Our implementation of customizable instrumentation with in-situ data analysis
through ScalaJack is closely related to tools that support tracing or profiling
of MPI programs. Paraver [19] is a tracing and visualization tool that supports
tracing of both shared memory and message passing programs. For MPI pro-
grams, Paraver includes a tracing library for intercepting MPI calls and saving
them as individual trace files during execution. These trace files are merged of-
fline and then visualized. Paraver and other tracing tools [22,16,9,18] allow users
to store user-defined values in a trace but they lack ScalaJack’s compression of
trace files on-the-fly and the ability to directly affect compression of native trace
values (as opposed to user-defined trace values).

VAMPIR [16] is another tracing tool for MPI/OpenMP/CUDA events with
support for visualization that stores traces as flat files, which are compressed
later through zlib compression. Even though such tools generate trace files with
limited scalability, they do not take advantage of the underlying structure of the
trace file. Thus, such trace files cannot be efficiently used for replay [24] or code
generation [25] supported by ScalaTrace. Recent versions of VAMPIR provide
support for marking regions in the trace with specific marker events for identi-
fying potential hotspots in the trace files [4]. These markups can then be used
by automated performance analysis tools like Scalasca [9]. With ScalaJack, this
can easily be achieved by writing instrumentation data with additional markups
directly to the trace file and using plugins for domain-specific compression.

Several tools [22,16,9,18,6,5] support tracing of arbitrary user events through
automatic instrumentation via compiler abstractions, dynamic preloading or
manual instrumentation of code, both statically and dynamically via binary
rewriting. ScalaJack also supports built-in preloading and manual instrumenta-
tion but emphasizes separation of cross-cutting concerns via aspect orientation,
which simplifies reuse for other programs. In addition, programs not only lever-

age ScalaJack’s compression tree framework to perform reduction of their own
data structures efficiently but also improve on intra-node compression and inter-
node reduction of default communication tracing data, which is unprecedented.

Arnold et al. [2] identified task behavior equivalence classes using stack signa-
ture similarity. They utilized MRNet, a software overlay network that provides
efficient multicast and reduction communications [21]. MRNet provides a gen-
eral framework with generic plugins, each requiring an explicit implementation of
compression and reduction. In contrast, ScalaTrace natively supports compres-
sion and reduction, i.e., trace-specific plugins directly complement this process
or even manipulate internal data structures affecting the trace file format.

Our work is also related to light-weight profiling tools like mpiP [23], gprof
[10], and HPCToolkit [1]. While these tools provide simple and high-level infor-
mation to support a high-level understanding of performance problems, Scala-
Jack provides facilities to the user for profiling of arbitrary interfaces in their
programs in addition to supporting light-weight tracing. Since the instrumenta-
tion data is stored along with the trace files, users can correlate events to the
data thus helping them to diagnose subtle anomalies dependent on event orders.

6 Conclusion

We have implemented ScalaJack, a framework for customizable instrumentation
with in-situ data analysis. ScalaJack provides APIs for users to tag sections of
the code that need to be instrumented. This allows users to perform instrumen-
tation at interfaces that are pertinent to the problem at hand instead of having
to instrument exhaustively, thereby often compromising scalability. ScalaJack
provides direct access to intra-node and inter-node compression algorithms and
data structures to preserve the execution structure of a program in a lossless
fashion in addition to maintaining scalability.

ScalaJack facilitates in-situ analysis provides by allowing users to perform re-
duction of data by registering callbacks. In addition to providing native support
to compress numeric data into histograms, ScalaJack provides APIs for users
to define their own data elements depending on the application. Since the call-
backs are synonymous to aspects, users can leverage them to write better code,
thus enhancing readability and maintainability. An evaluation of ScalaJack with
several case studies has shown that it is very light-weight, posing an overhead
of under 0.2% and capable of producing lossless and near-constant trace sizes
for event parameters, while resulting in efficient, maintainable source codes with
about 75% reduction in the degree of scattering. Overall, this demonstrates the
fidelity of ScalaJack in facilitating trace generation and analysis for users.

References
1. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey,

J., Tallent, N.: HPCToolkit: Tools for performance analysis of optimized parallel
programs. Concurrency & Comp.: Practice and Experience 22(6) (2010) 685–701

2. Arnold, D.C., Ahn, D.H., de Supinski, B.R., Lee, G.L., Miller, B.P., Schulz, M.:
Stack trace analysis for large scale debugging. In: International Parallel and Dis-
tributed Processing Symposium. (2007)

3. Aspect, C.: AspectC: AOP for C. (2004)

4. Brunst, H., Hackenberg, D., Juckeland, G., Rohling, H.: Comprehensive perfor-
mance tracking with Vampir 7. In: Tools for HPC 2009. (2010) 17–29

5. Buck, B., Hollingsworth, J.: An API for runtime code patching. International
Journal of High Performance Computing Applications 14(4) (2000) 317–329

6. DeRose, L., Hollingsworth, J., Hoover, T.: The dynamic probe class library – an
infrastructure for developing instrumentation for performance tools. In: Interna-
tional Parallel and Distributed Processing Symposium. (April 2001)

7. Eaddy, M., Zimmermann, T., Sherwood, K., Garg, V., Murphy, G., Nagappan, N.,
Aho, A.: Do crosscutting concerns cause defects? IEEE Transactions on Software
Engineering 34(4) (2008) 497–515

8. Eaddy, M., Aho, A., Murphy, G.C.: Identifying, assigning, and quantifying cross-
cutting concerns. In: Workshop on Assessment of Contemporary Modularization
Techniques. (2007) 2–2

9. Geimer, M., Wolf, F., Wylie, B.J.N., Abraham, E., Becker, D., Mohr, B.: The
scalasca performance toolset architecture. In: International Workshop on Scalable
Tools for High-End Computing. (June 2008)

10. Graham, S.L., Kessler, P.B., Mckusick, M.K.: Gprof: A call graph execution pro-
filer. ACM Sigplan Notices 17(6) (1982) 120–126

11. Kiczales, G., Hilsdale, E.: Aspect-oriented programming. In: ACM SIGSOFT
Software Engineering Notes. Volume 26. (2001) 313

12. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: ECOOP 2001 OO Programming. (2001) 327–354

13. Laboratory, L.A.N.: Cell-based adaptive mesh refinement using MPI and OpenCL
GPU code. "https://github.com/losalamos/CLAMR"

14. Marathe, J., Mueller, F., Mohan, T., de Supinski, B.R., McKee, S.A., Yoo, A.:
METRIC: Tracking down inefficiencies in the memory hierarchy via binary rewrit-
ing. In: Int’l Symp. on Code Generation and Optimization. (March 2003) 289–300

15. Mucci, P.J., Browne, S., Deane, C., Ho, G.: PAPI: A portable interface to hardware
performance counters. In: HPCMP Users Group Conference. (1999)

16. Nagel, W.E., Arnold, A., Weber, M., Hoppe, H.C., Solchenbach, K.: VAMPIR:
Visualization and analysis of MPI resources. Supercomputer 12(1) (1996) 69–80

17. Noeth, M., Ratn, P., Mueller, F., Schulz, M., de Supinski, B.R.: ScalaTrace: Scal-
able compression and replay of communication traces for high-performance com-
puting. Journal of Parallel Distributed Computing 69(8) (2009) 696–710

18. of Dresden, T.U.: Score-p: Application instrumentation. "https://silc.zih.

tu-dresden.de/scorep-current/html"
19. Pillet, V., Labarta, J., Cortes, T., Girona, S.: PARAVER: A tool to visualise

and analyze parallel code. In: WoTUG-18: Transputer and occam Developments.
Volume 44 of Transputer and Occam Engineering. (April 1995) 17–31

20. Rajaraman, A., Ullman, J.: Mining of Massive Datasets. Cambridge Press (2011)
21. Roth, P., Arnold, D., Miller, B.: MRNet: A software-based multicast/reduction

network for scalable tools. In: Supercomputing. (2003) 21–36
22. Shende, S.S., Malony, A.D.: The tau parallel performance system. Int. J. High

Perform. Comput. Appl. 20(2) (May 2006) 287–311
23. Vetter, J., Chambreau, C.: mpiP: Lightweight, scalable MPI profiling. CASC/mpip

(2005) "http://mpip.sourceforge.net/".
24. Wu, X., Mueller, F.: Elastic and scalable tracing and accurate replay of non-

deterministic events. In: Int’l Conference on Supercomputing. (June 2013) 59–68
25. Wu, X., Deshpande, V., Mueller, F.: ScalaBenchGen: Auto-generation of commu-

nication benchmarks traces. In: International Parallel and Distributed Processing
Symposium. (2012) 1250–1260

"https://github.com/losalamos/CLAMR"
"https://silc.zih.tu-dresden.de/scorep-current/html"
"https://silc.zih.tu-dresden.de/scorep-current/html"
"http://mpip.sourceforge.net/"

	 ScalaJack: Customized Scalable Tracing with in-situ Data Analysis

