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Abstract—When multiple computational resource elements
collaborate to handle events in a cyber-physical system, schedul-
ing algorithms on these resource elements and the communi-
cation delay between them contribute to the overall system
utilization and schedulability. Employing earliest deadline first
(EDF) scheduling in real-time cyber-physical systems has many
challenges. First, the network layer of a resource has to interrupt
and notify the scheduler about the deadlines of arrived messages.
The randomness of interruption makes context switch costs
unpredictable. Second, lack of globally synchronized clocks across
resources renders event deadlines derived from local clocks and
piggybacked in messages meaningless. Third, communication
delay variances in a network increase the unpredictability of the
system, e.g., when multiple resources transmit message bursts
simultaneously. We address these challenges in this work. First,
we combine EDF scheduling with periodic message transmission
tasks. Then, we implement an EDF-based packet scheduler, which
transmits packets considering event deadlines. Third, we employ
bandwidth limitations on the transmission links of resources to
decrease network contention and network delay variance. We
have implemented our hybrid EDF scheduler in a real-time
distributed storage system. We evaluate it on a cluster of nodes in
a switched network environment resembling a distributed cyber-
physical system to demonstrate the real-time capability of our
scheduler.

I. INTRODUCTION

When computational resource elements in a cyber-physical
system are involved in the handling of events, understanding
and controlling the scheduling algorithms on these resource
elements become an essential part in order to make them
collaborate to meet the deadlines of events. Our previous work
has deployed a real-time distributed hash table in which each
node employs a cyclic executive to schedule jobs that process
data request events with probabilistic deadlines, which are
resolved from a hash table [21]. However, cyclic executives
are static schedulers with limited support for real-time systems
where jobs have to be prioritized according to their urgency.
Compared to static schedulers, EDF always schedules the
job with earliest deadline first and has a utilization bound
of 100% on a preemptive uniprocessor system [15], [14]. In
theory, two major assumptions have to be fulfilled in real-time
systems in order to achieve this utilization bound. First, the
scheduler has to know the deadlines of all jobs in the system,
so it can always schedule the job with the shortest deadline.
Second, the cost of a context switch between different jobs
is ignorable. To satisfy the second assumption, not only the
cost of a single context switch, but also the number of context
switches must be ignorable. This constrains the number of job
releases in a period of time. Employing EDF schedulers in such
a distributed system raises significant challenges considering

the difficulty of meeting these assumptions in a cyber-physical
system in which computational resource elements (i.e., nodes)
communicate with each other by message passing.

First, to handle an event in a cyber-physical system, mes-
sages of the event are passed among nodes to trigger jobs
on each node so that the event can be eventually processed.
When messages arrive at a particular node, they are queued
in the operating system network buffer until the job scheduler
explicitly receives these messages and releases corresponding
jobs to process them. The delays between the arrival and
reception of messages provide a limitation on the capability
of the job scheduler in terms of awareness of the deadlines
of all current jobs on the node. One possible solution to
address this problem is to let the operating system interrupt
the job scheduler whenever a new message arrives at the node.
In this way, the scheduler can always accept new messages
at their arrival time so that it knows the deadlines of all
current jobs. However, this may result in an unpredictable
cost of switching between the job execution context and the
interruption handling context that receives messages.

To address this problem, we combine a periodic message
receiving task with the EDF scheduler. This receiving task
accepts messages from the system network buffer and re-
leases corresponding jobs into job waiting queues of the EDF
scheduler. Considering the fact that message jobs can only
be released when the receiving task is executing, this design
makes the scheduler partial-EDF because of the aforemen-
tioned delays. However, it increases the predictability of the
system in terms of temporal properties including period, worst
case execution time, and relative deadline of the receiving task,
which also makes context switch cost more predictable. In
addition, our partial-EDF adopts a periodic message sending
task to regulate the messages sent by events so that the inter-
transmission time of messages has a lower bound. We have
theoretically studied the impact of the temporal properties of
these transmission tasks on the schedulability of partial-EDF.

The second challenge is relevant to the deadlines carried
in event messages. Since clocks of nodes in cyber-physical
systems are not synchronized globally considering the cost
of global clock synchronization [11], deadlines carried in
messages sent by different nodes lose their significance when
these messages arrive at a node. To address this problem,
our scheduler maintains a time-difference table on each node
consisting of the clock difference between the senders and
this receiving node. Hence, the deadlines carried in messages
can be adjusted to the local time based on the information in
this time-difference table. Thus, the EDF order of jobs can be
maintained. These time-difference tables are built based on the



Network Time Protocol (NTP) [17], and they are periodically
updated so that clock drifts over time can be tolerated.

The third challenge is to optimize the underlying network
that the cyber-physical system utilizes to transmit event mes-
sages between nodes to provide a bounded network delay.
We assume that even in a real-time distributed system where
all nodes release distributed jobs periodically, the number of
corresponding messages received by the receiver nodes cannot
be guaranteed to be periodic due to the inconsistent delay of the
underlying network. Since the jobs that handle these messages
could send messages to further nodes (when distributed jobs
require more than two nodes to handle them), the variance in
the numbers of messages can potentially increase the burstiness
of the network traffic, which decreases the predictability of
network delay. Our evaluation in Section IV-C proves this
hypothesis. We address this challenge in two ways. First, we
propose an EDF-based packet scheduler that works on the
system network layer on end nodes to transmit packets in
EDF order. Second, since network congestion increases the
variance of the network delay especially in communication-
intensive cyber-physical systems (considering the fact that
multiple nodes may drop messages onto the network simul-
taneously and that bursty messages may increase the packet
queuing delay on intermediate network devices, which may
require retransmission of message by end nodes), we employ
a bandwidth sharing policy on end nodes to control the data
burstiness in order to bound the worst-case network delay of
message transmission. This is essentially a network resource
sharing problem. In terms of resource sharing among parallel
computation units, past research has focused on shaping the
resource access by all units into well defined patterns. These
units collaborate to reduce the variance of resource access
costs. E.g., MemGuard [25] shapes memory accesses by each
core in modern multi-core platforms in order to share memory
bandwidth in a controlled way so that the memory access
latency is bounded. D-NoC [4] shapes the data transferred by
each node on the chip with a (σ, ρ) regulator [3] to provide
a guaranteed latency of data transferred to the processor. We
have implemented our bandwidth sharing policy based on a
traffic control mechanism integrated into Linux to regulate the
data dropped onto the network on each distributed node.

To demonstrate the feasibility and capability of our partial-
EDF job scheduler, the EDF-based packet scheduler and the
bandwidth sharing policy, , we integrated them into our previ-
ous real-time distributed hash table (DHT) that only provides
probabilistic deadlines [21]. The new real-time distributed
system still utilizes a DHT [18] to manage participating
storage nodes and to forward messages between these nodes
so that data requests are met. However, each participating node
employs our partial-EDF job scheduler (instead of the cyclic
executive in our previous paper) to schedule data request jobs
at the application level. Furthermore, each node employs our
EDF-based packet scheduler to send packets in EDF order
at the system network level. In addition, all participating
nodes follow our bandwidth sharing policy to increase the
predictability of network delay. We evaluated our system on a
cluster of nodes in a switched network environment.

In summary, the contributions of this work are: (1) We
combine periodic message transmission tasks with an EDF
scheduler to increase the predictability of real-time distributed

systems; we study the impact of period, relative deadline,
and WCET of transmission tasks on the EDF job scheduler.
(2) We propose an EDF-based packet scheduler running at
the operating system level to make the network layer aware
of message deadlines. (3) We utilize a Linux traffic control
facility to implement our bandwidth sharing policy to decrease
the variance of network delays. (4) We implement our compre-
hensive EDF scheduler and bandwidth sharing policy in a real-
time distributed storage system to demonstrate the feasibility
and capability of our work.

The rest of the paper is organized as follows. Section II
presents the design of our partial-EDF job scheduler, packet
scheduler, and traffic control policy. Section III details our real-
time distributed storage system implementation. Section IV
discusses the evaluation results. Section V contrasts our work
with related work. Section VI presents the conclusion and on-
going research.

II. DESIGN

This section first presents the design of our partial earliest
deadline first scheduler (partial-EDF) that employs periodic
tasks to transmit messages and release jobs, and schedules
these jobs in EDF order. It then presents the time-difference
table maintained on each node so that the absolute deadlines
carried in messages can be adjusted to local clock time. Then,
this section presents the design of our EDF packet scheduler
and bandwidth sharing policy at the network transport layer.

A. Partial-EDF Job Scheduler

In distributed real-time systems, messages that contain the
deadlines of the event are passed among nodes so that the
event can be eventually processed. When a message arrives
at the operating system network buffer, the scheduler has to
acknowledge the arrival of the message so that it can release a
corresponding job, which inherits the absolute deadline of the
message and can be executed later to process the message.
However, when the sender transmits messages periodically,
the scheduler on the receiving side cannot guarantee that
the release of jobs to process these messages be periodic
considering the variance of network delays between the sender
and receiver, which causes deviations in message arrival times.

One possible solution is to let the operating system notify
the scheduler when a message arrives. For example, a sched-
uler implemented on a Linux system may utilize a thread to
accept messages. This thread is waiting on the network socket
until the kernel notifies the thread of message arrivals. The
scheduler, once interrupted, releases sporadic jobs to process
messages. In this way, the scheduler can process the deadlines
of messages immediately when they arrive at the node. Let
us call this scheduler global-EDF if it executes the job in an
EDF order, considering the fact that this scheduler has the
knowledge of all deadlines of the corresponding jobs in the
system so that it can always execute jobs with the shortest
deadlines first. The drawback of the solution is that it is hard
to provide a reliable service. Since the operating system may
interrupt the scheduler as well as the job executed at a sporadic
time, context switches between the scheduler and the interrupt
handler may reduce the predictability of the system.



To eradicate the randomness of context switches, we com-
bine the EDF scheduler with a static schedule table, which
includes temporal information of a periodic message sending
task and a periodic message receiving task. The sending task
is to guarantee inter-transmission time of messages has a
lower bound. We will describe its details when we present
the schedulability test of this EDF scheduler. The receiving
task, once executed, accepts messages from the operating
system network buffer, processes deadlines contained in these
messages, and releases corresponding jobs into the EDF job
queue. The receiving task introduces delays between message
arrivals and receptions, since messages that have arrived at a
node have to wait in the network buffer until the next execution
of the transmission task. As a result, the scheduler only has
the deadline information of the jobs in the job queue (but no
deadline information of the messages waiting in the network
buffer). Thus, we name this scheduler the partial-EDF job
scheduler.

Fig. 1 illustrates the effects of the partial-EDF job scheduler
on a node that receives and processes messages of 3 distributed
tasks. The green blocks on the first line (τ ′) represent the exe-
cution of the periodic receiving jobs while blocks on the other
lines (τ1, τ2, τ3) represent the execution of the corresponding
jobs for these tasks, respectively. Four messages arrive at time
2, 3, 6, and 8. Since the corresponding jobs of the messages can
only be released the next time a transmission job is executing,
jobs τ1,1, τ1,2, τ2,1, τ3,1 are released at time 7, 7, 7, and 13, as
shown in the figure. The numbers in the blocks indicate the
absolute deadlines of the jobs inherited from messages. As the
figure shows, both messages, τ2,1 and τ3,1, have arrived at this
node at time 8. However, τ2,1 is executed first even though τ3,1
has a tighter deadline since the message of τ3,1 is still waiting
in the network buffer and the partial-EDF scheduler has no
knowledge of its arrival at time 8.
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Fig. 1: Partial-EDF Job Scheduler Example (1)

The system density-based schedulability test [14] for
global-EDF scheduling is not sufficient for our partial-EDF.
As an example, assume the absolute deadline of τ3,1 was
10 in Fig. 1. The global-EDF scheduler can execute all jobs
before their deadlines (τ3,1 is scheduled at time 8) as the
system density is no more than 100%. However, under partial-
EDF, τ3,1 cannot execute before time 10 because of the delay
between the message arrival at time 8 and its reception within
τ ′ at time 12.

To derive the schedulability test for our partial-EDF sched-
uler, we consider a set τ of N tasks that are scheduled in a
distributed system of M nodes. A local task τl = (Tl, Cl, Dl)
is characterized by its period Tl, worst case execution time

(WCET) Cl, and relative deadline Dl. A distributed task
τi = (Ti, Ci, Di)

si,ri−−−→ (T ′i , C
′
i) is characterized by a node

si that releases jobs of the task with period Ti, relative
deadline Di, and WCET Ci of the jobs. The message sending
task on node si regulates the message traffic of task τi so
that the minimum inter-transmission time is T ′i , although the
EDF scheduler could reduce the time between the executions
of consecutive jobs of task τi. However, we require that
Ti ≥ T ′i . The receiving task on the receiver ri releases jobs
with WCET C ′i to process these messages. In addition, we use
τsi = (T si , C

s
i , D

s
i ) to denote the sending task on the ith node,

and we use τ ri = (T ri , C
r
i , D

r
i ) to denote the receiving task.

Fig. 2 depicts an example that has one distributed task τ1
and two nodes, (i.e., N = 1, M = 2). The number in a block
represents the absolute deadline of that job. The red blocks on
the first line represent the execution of the jobs of τ1 on the first
node in EDF order. τ1 = (3, 1, 21)

1,2−−→ (3, 1) indicates that the
message sending task on the first node τs1 (3, 1, 1) guarantees
that the inter-transmission time of messages of τ1 is at least
3. The second receiving job (shown as a block with absolute
deadline 11) on the second node τ r2 (5, 1, 1) accepts the first
three messages of τ1 and releases three jobs to process them,
respectively.
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Fig. 2: Partial-EDF Job Scheduler Example (2)

A sufficient schedulability test for our partial-EDF is to
prove that a task set always has a system utilization of no
more than 100% during any time interval. Let us consider
the worst case. Task τi generates a flow of periodic messages
(period T ′i ) from si to ri. Equation 1 expresses the arrival
time of the jth message of task τi on the receiver ri, where
δsi,ri,j is the network delay between the sender and receiver
when this message is transmitted and Osi,ri is the clock time
difference between the sender and receiver. Equations 2 and 3
express the constraints of the number of messages ki of task
τi that can be queued in the network buffer together with the
jth message of the same task before their reception at the
receiver ri (Equation 3 is derived from the left-most terms of
Equation 2). In this worst case, messages j, j+1, ..., j+ki−1
all arrive at the receiver during xT rri , the start time of the
xth receiving job on ri, and (x + 1)T rri , the start time of the
(x+1)th receiving job (assuming messages of the same event
are transmitted by the underlying network in FIFO order).

A(i, j) = jT ′i + δsi,ri,j +Osi,ri (1)

xT rri < A(i, j) ≤ A(i, j + ki − 1) ≤ (x+ 1)T rri (2)

x = bA(i, j)
T rri

c (3)

Equation 4 is derived from the right-most terms of Equa-
tion 2 substituted with Equation 1. It presents the upper bound



of the number of messages ki. Let δ−si,ri be the best case
network delay between the sender and receiver, and δ+si,ri be
the worst case network delay. Equation 5 presents the number
of messages for the ith task that can be queued in the operating
system network buffer at the receiver in the worst case, derived
from substituting x in Equation 4 according to Equations 3
and 1.

ki ≤
(x+ 1)T rri − δsi,ri,j+ki−1 −Osi,ri

T ′i
− j + 1 (4)

ki = 1+

b
T rri
T ′i

+
b jT

′
i+δ

+
si,ri

+Osi,ri

T r
ri

cT rri − jT
′
i − δ−si,ri −Osi,ri

T ′i
c

≤ 1 + b
T rri
T ′i

+
δ+si,ri − δ

−
si,ri

T ′i
c

with δsi,ri,j ≤ δ+si,ri and δsi,ri,j+ki−1 ≥ δ
−
si,ri . (5)

The intuition of Equation 5 is that in order to maximize
the number of queued messages for an event between two
receiving jobs, the first message queued for that event has
to arrive with the worst network delay and the last message
queued before the receiving job has to arrive with the best
network delay.

The first three jobs of τ1 in Fig. 2 illustrate this worst case.
Assume the network delay between the two nodes is in the
range [1, 3]. The message of the first job τ1,1 arrives after the
first receiving job of the second node is invoked because of the
large network delay (i.e., 3). After that, τ1,2 and τ1,3 arrive,
which results in the worst-case number of message arrivals
from τ1 (i.e., k1 = 3). Equation 5 with T rri = 5, T ′i = 3, δ+si,ri
= 3, and δ−si,ri = 1 derives exactly this worst case.

When the sth queued message is eventually accepted by
the (x + 1)th receiving job, the scheduler releases a job to
process the message. The relative deadline of the job should be
the difference of the absolute deadline carried in the message
adjusted by the clock time difference, (j+ s)Ti+Di+Osi,ri ,
and the time when the job enters the EDF queue, (x+1)T rri +
Crri . Equation 6 shows the relative deadline, D′i,s, of this job
(substitute x from Equations 3 and 1). A negative job deadline
indicates that the absolute deadline carried in the message is
shorter than the worst-case time (T rri + Crri + δ+si,ri ), i.e., the
time required for the partial-EDF on the receiver to release a
corresponding job to process the message. In this case, this
message cannot be processed before its deadline.

D′i,s = ((j + s)Ti +Di +Osi,ri)− ((x+ 1)T rri + Crri)

≥ ((j + s)T ′i +Di +Osi,ri)− ((x+ 1)T rri + Crri)

≥ (sT ′i +Di)− (T rri + Crri + δ+si,ri),

where δsi,ri,s ≤ δ+si,ri and 0 ≤ s ≤ ki − 1. (6)

If these jobs can be executed before the (x+2)th receiving
job, the task set is schedulable. Equation 7 defines the total
density of periodic tasks on node m (the density of local
periodic tasks are included). Equation 8 defines the total
density of jobs that process messages sent to node m in this
case. L(i,m), S(i,m), and R(i,m) are indicator functions.
L(i,m) = 1 iff τi is a local periodic task on node m.
S(i,m) = 1 iff node m is the sender of distributed task τi.
R(i,m) = 1 iff node m is the receiver of distributed task τi.

Otherwise, L(i,m), S(i,m) and R(i,m) are 0. The density
test on node m for this case is expressed in Equation 9. This
density test has to pass for all M nodes.

ρm =

N∑
i=1

(L(i,m) + S(i,m))
Ci

min{Ti, Di}
+ (

Crm
T rm

+
Csm
T sm

)

L(i,m) =

{
1, if τi is local on m,

0, otherwise.

S(i,m) =

{
1, ifsi = m,

0, otherwise.
(7)

ρ′m =

N∑
i=1

R(i,m)

ki−1∑
s=0

C ′i
min{T rm, D′i,s}

R(i,m) =

{
1, if ri = m,

0, otherwise.
(8)

ρm + ρ′m ≤ 1 (9)
Our schedulability test accuracy depends on the variance

of network delays as shown in Equation 5. We will intro-
duce our bandwidth sharing policy in Section II-C, which
reduces contention and network delay variance. In addition,
absolute deadlines carried in messages have to be adjusted
at the receiver to compensate for pairwise time differences
across nodes. Otherwise, our partial-EDF cannot schedule
corresponding jobs in EDF order. We will introduce the time-
difference table maintained on each node in Section II-B to
address this problem.

B. Time-difference Table

Our scheduler depends on the task deadlines carried in the
messages to schedule the jobs to process these messages in
EDF order. Since the messages received on a node could come
from different senders and the absolute deadlines carried in
these messages are derived from the local clock of the senders
(i.e., different reference frames), the receiving node must have
adequate knowledge of the time difference to maintain the
EDF order of job executions. Global clock synchronization
could solve this problem but is costly [11]. Instead of clock
synchronization, our scheduler maintains a time-difference
table on each node. This table contains the difference between
the clocks on nodes that send messages to each other. When
one node receives messages from another node, it uses the
time-difference table to adjust the absolute deadlines carried in
the messages, so that the deadlines in all messages are adjusted
to the local clock of this receiver.

We utilize the algorithm of the Network Time Protocol
(NTP) [17] to derive the time difference between each pair of
sender and receiver. We assume the sender s and receiver r
of a task τ to be known a priori. In our system, the receiver
r transmits a synchronization message to s and s transmits
a feedback message to r. On the basis of the timestamp
exchanged via this pair of messages, the receiver r can derive
the round trip delay δs,r and clock offset O′s,r The constraint
of the true time offset for the sender relative to the receiver,
Os,r, is expressed in Equation 10. Following the NTP design,
the data-filtering algorithm is performed on multiple pairs of
(δs,r, O

′
s,r) collected from timestamps exchanges to derive the

three time offset. Each node in our distributed system has a



periodic task to transmit time synchronization messages and
to calculate its local time-difference table dynamically.

δs,r −
O′s,r
2
≤ Os,r ≤ δs,r +

O′s,r
2

(10)

With the time-difference table, the absolute deadline carried
in messages can be adjusted to the local time on the receiver
(i.e., D′r = Ds +Os,r).

C. EDF Packet Scheduler and Bandwidth Sharing

We utilize a traffic control mechanism provided by Linux
to regulate the message traffic that is transmitted via the
network in order to reduce network contention and variance
of network delay. By limiting the bandwidth per node and
by reducing the burstiness of the traffic, network contention
can be reduced. In addition, we extend Linux traffic control
by implementing a deadline-driven queue discipline, the EDF
packet scheduler, to compensate for the shortcoming of our
partial-EDF scheduler that it may transmit the messages for
tasks with longer deadlines earlier than the messages for tasks
with shorter deadlines.

Let us assume that each node in the distributed system is
connected by a single full-duplex physical link to a switch
and the network interface works in work-conserving mode.
A node transmits messages to other nodes via the same link.
We configure the network interface to use the Hierarchical
Token Bucket (HTB) [7] algorithm to transmit messages.
HTB has two buckets: The real-time bucket is utilized to
transmit packets of messages that serve real-time tasks and
the background traffic bucket is utilized to transmit background
traffic. This design requires that the IPs and ports of receiving
nodes for real-time tasks are known a priori, so that their
messages can be differentiated from other traffic and put into
the real-time bucket. We configure HTB to have a (σ, ρ)
regulator [3] for each bucket. This regulator ensures that the
total size of packets transmitted from that bucket during the
time interval [s, e] is bounded by σ + ρ ∗ (s − e), where σ
determines the burstiness of the traffic, and ρ determines the
upper bound of the long-term average rate.

In order to configure HTB so that it benefits real-time
systems, we propose several policies (1) to prioritize buckets,
(2) to schedule packets in the real-time bucket, and (3) to
share bandwidth among nodes. First, the real-time bucket has
a higher priority than that of the background traffic bucket.
Task packets are transmitted before background traffic packets
when both buckets are legitimate to send packets according to
the (σ, ρ) rule.

Second, the real-time bucket employs an EDF packet
scheduler to schedule packets. Since the Linux traffic control
layer does not understand task deadlines embedded in data
messages, which are encapsulated by the application layer, we
extend the data structure for IP packets in Linux by adding new
fields to store timestamps and extend the setsockopt system
call by supplying these timestamps. These extensions provide
the capability of specifying message deadlines for real-time
tasks (applications). Then, our EDF packet scheduler utilizes
the message deadlines to transmit packets in EDF order. By
employing the EDF packet scheduler, we compensate for
shortcomings of our partial-EDF job scheduler. As mentioned

in Section II-A, because of the delay between message arrivals
and receptions introduced by the receiving task in our partial-
EDF scheduler, messages that arrive at a node but have not
been accepted into the job queue may be processed later
than the jobs already in the queue, even if these messages
have shorter deadlines. As a result, messages carrying short
deadlines are put into the real-time bucket later than packets
with longer deadlines. By considering the deadlines carried in
the messages at the transport layer, our EDF packet sched-
uler compensates for this shortcoming by rescheduling the
messages. In contrast, the background traffic bucket simply
employs a FIFO queue to transmit background traffic.

Third, we consider the underlying network utilized by
nodes as a whole system and propose two strategies of
bandwidth sharing among nodes. Let wm be the proportion of
bandwidth for node m and M be the number of nodes. The first
strategy is fair-share (i.e., wm = 1

M ). This strategy is simple
to understand but does not consider the different transmission
demands of nodes. Consider a scenario where two periodic
tasks on node 1 transmit messages to node 2, of which only
one periodic task transmits messages back to node 1. Node 1
could benefit from a larger fraction of bandwidth since it has a
larger transmission demand. Thus, the second strategy shares
bandwidth proportionally considering the number of tasks on
each node and the periods of these tasks. Let us assume the task
sets on nodes were known a priori so that the denominator in
Equation 11 represents the aggregate of transmission demands
on all nodes and the numerator the transmission demand of
node m.

wm =

∑N
i=1 S(i,m) 1

T ′i∑N
i=1

1
T ′i

(11)

The experimental evaluation results in Section IV show that
our EDF packet scheduler can decrease the deadline miss rate
of messages significantly and the bandwidth sharing policy
can decrease the network delay deviation in a local cluster of
nodes. In Section III, we will elaborate on the implementation
of our real-time distributed storage system, which employs the
hybrid EDF scheduler to schedule jobs and packets.

III. REAL-TIME DISTRIBUTED STORAGE SYSTEM

In this section, we summarize our prior contributions [21],
i.e., we present the features of our real-time distributed storage
system and its message routing algorithm, which provides the
basis of our novel contributions in this work. We then present
our integration of a hybrid EDF scheduler to the RT-DHT.

A. DHT

As a storage system, our RT-DHT provides put(key, data)
and get(key) API services to upper layer applications. This RT-
DHT manages a group of storage nodes connected over the
networks and implements a consistent hashing algorithm [10]
to map a key onto a node that stores the data. When a put or
get request is sent to any node in the system, a lookup(key)
message is forwarded among these nodes following a particular
forwarding path until it arrives at the node to which this key
is mapped.

We adopt the Chord algorithm [18] to determine the
forwarding paths for requests. Chord organizes storage nodes
in a ring-shaped network overlay [18], [10]. It uses a base



hash function, such as SHA-1, to generate an identifier for
each node by hashing the node’s information, e.g., IP address
and port. It also uses the same hash function to generate an
identifier for the key of a request. The purpose of using the
same hash function is to generate the identifiers of nodes and
keys in the same domain in which ordering is defined. If node
A is the first node after node B clockwise along the ring, A
is called the predecessor of B, and B is called the successor
of A. Similarly, a key also has a successor node. For example,
Fig. 3 depicts 9 storage nodes (green) that are mapped onto the
Chord ring (labels in squares are their identifiers), which has
5-bit identifiers for nodes and keys. N14 is the successor of
N12 and the predecessor of N20. The successor node of K14 is
N15. The Chord algorithm defines the successor node of a key
as its destination node, which stores the corresponding data of
the key.

Node

Node

Node

Node
Node

Node

Node

Node

Node

N4

N1

N7

N9

N12

N15

N20

N24

N30

"Where is key 14?"

"Key 14 is at N15."

Fig. 3: Chord ring example
Chord maintains a so-called finger table on each node,

which acts as a soft routing table to decide the next node to
forward lookup messages to. Each entry in that table is a tuple
of (start, interval, forward node), as shown in Table I of N4’s
finger table. Each entry in the table represents one routing rule:
the next hop for a given key is the forward node in that entry if
the entry interval includes the key. For example, the next hop
for K14 is N12 as 14 is in [12, 20). In general, for a node with
identifier k, its finger table has logL entries, where L is the
number of bits of identifiers generated by the hash function.
The start of the ith finger table entry is k+ 2i−1, the interval
is [k + 2i−1, k + 2i), and the forward node is the successor
node of key k + 2i−1. Because of the way a finger table is
constructed, each message forwarding reduces the distance to
its destination node to at least half that of the previous distance
on the ring. The number of intermediate nodes per request is at
most logM with high probability [18], where M is the number
of nodes in the system.

Chord provides high efficiency and deterministic message
forwarding in the stable state (i.e., no node failures, node joins,
and network failures). This is important to our RT-DHT since
based on this property, we can apply the bandwidth sharing
policy and perform a schedulability test on a given task set to
determine whether the deadlines of the requests in the task set
can be met by our partial-EDF scheduler.

B. Hybrid EDF Scheduler Integration

We have implemented our RT-DHT in Linux. Each storage
node in the system employs a partial-EDF job scheduler

TABLE I: Finger table for N4

# start interval forward node
1 5 [5, 6) N7
2 6 [6, 8) N7
3 8 [8, 12) N9
4 12 [12, 20) N12
5 20 [20, 4) N20

using a single thread. As described in Section II-A, the static
schedule table includes the temporal information of periodic
tasks. Based on this temporal information, the scheduler sets
up a periodic timer. When the signal handler (at the application
level) is triggered by the timer interrupt, the scheduler, by
executing the handler, releases the jobs of periodic tasks into
a job queue according to the table. After that, the scheduler
executes the jobs waiting in the queue in EDF order.

This work extends the Linux system by providing support
for the RT-DHT storage node for message deadlines and for
transmitting messages in EDF order (see Section II-C). Below
are the most significant changes we made to Linux to support
this functionality.

(1) We added a new field, deadline, of type ktime t in the
kernel data structure sock so that deadline of a socket provided
by the application can be stored.

(2) We extended the kernel function sock setsockopt and
added a new option SO DEADLINE so that the application
can utilize setsockopt (i.e., the corresponding user mode func-
tion) to configure the message deadlines when the application
attempts to transmit messages. sock setsockopt keeps the value
of the deadline in the deadline field of the sock structure.

(3) When the application transmits a message, the kernel
creates instance(s) of the sk buff structure to store the data of
the message. We added a new field, deadline, in sk buff so that
the deadline of a socket can be saved when the kernel creates
the data structure. After this, the deadline of the message in
sk buff is passed down to the transport layer.

(4) We implemented an EDF packet scheduler, which
provides the standard interfaces of Linux traffic control queue
disciplines [7]. The EDF packet scheduler utilizes a prioritized
queue to maintain the instances of sk buff in a min-heap data
structure. We utilize the cb field, the control buffer in sk buff,
to implement a linked list-based min-heap. This linked list-
based implementation does not have a limit on the number
of messages that can be queued in the min-heap, which an
array-based implementation of min-heap would have.

We combine Linux HTB with our EDF packet scheduler
and associate the hierarchical queue with the network interface
that connects the storage node with the DHT overlay as
described in Section II-C. Since the EDF packet scheduler
implements the standard interfaces of queue disciplines, the
storage system can utilize the Linux traffic control command
(i.e., tc) to configure the queue when the system boots up.

Section II-A presented the schedulability test for the
partial-EDF job scheduler. However, more than two storage
nodes may be involved to serve the same data request of a
distributed task in the RT-DHT. For example, to serve the
request that looks up the data for key 15 on N4 in Fig. 3,
N4 first executes a job to transmit the request message to N12
following the finger table. Then, N12 executes a corresponding



job to process the message and transmits another message
to N15 via its sending task. N15 obtains the data from its
storage and transmits a feedback message back to N4. We
adjust the task set in the schedulability test to accommodate
this as follows.

Let us use τ to represent the original task set, in which
the message forwarding path for τi is Pi = (n1, n2, ..., nmi),
where mi is the length of the path. Let us denote τi =
(Ti, Ci, Di)

n1,n2−−−→ (T ′i , C
′
i) to represent task τi that initializes

data requests on node n1 periodically. We first replace τi with
τ1i as shown in Equation 12. The partial-EDF scheduler on n1
schedules τ1i with its new absolute deadline Di

mi
. We share the

end-to-end deadline Di evenly among mi nodes to simplify
the representation of our schedulability test model. Past work
has provided sophisticated protocols for the subtask deadline
assignment problem (SDA) [9], [22], [23], which can be
adopted by our schedulability model. When the receiving job
on n2 releases the corresponding job to process the message
of τi, it increases the deadline of the job by Di

mi
. Replacing τi

by τ1i only changes Equation 7 in Section II-A if mi = 2 (i.e.,
Di → Di

2 ).
τ1i = (Ti, Ci,

Di

mi
)
n1,n2−−−→ (T ′i , C

′
i) (12)

On node n2, the jobs created by τ1i transmit messages to
n3. To reflect this new task on n3 in the schedulability test,
we define a virtual task τ2i = (∗, 0, Di

mi
)
n2,n3−−−→ (T ′i , C

′
i). The

density of the jobs (on sender n2) of τ2i is already considered
in Equation 8 since they are the very jobs that process the
received messages of τ1i . The density of the jobs (on receiver
n3) of τ2i is considered in Equation 8 for node n3. This task
is virtual since the scheduler on n2 does not actually schedule
any jobs of the task. We set its WCET to 0 so that it can be
integrated into Equation 7. As indicated in Equations 4 to 8,
the density of the jobs on receiver n3 does not depend on the
period of τ2i . Thus, the period of τ2i is set to *. In general,
Equation 13 expresses the virtual task τ ji for each node nj on
the path.

τ ji = (∗, 0, Di

mi
)
nj ,nj+1−−−−−→ (T ′i , C

′
i), where 2 ≤ j < mi. (13)

Finally, we perform the schedulability test on the new
task set, which is the union of τ and all virtual task, with
Equations 5 - 9 by adjusting Equation 6 (Di → 2Di

mi
) and

Equation 7 (Di → Di

mi
).

To simplify the presentation of these equations, we assume
that the jobs to process messages of the same task have the
same WCET even when they are executed on different storage
nodes (i.e., C ′i is inherited by the virtual task). However, the
schedulability test does not depend on inheritance of WCETs.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we evaluate our hybrid EDF scheduler on
a local cluster. The experiments are conducted on 8 nodes,
each of which features a 2-way SMP with AMD Opteron 6128
(Magny Core) processors and 8 cores per socket (16 cores
per node). Each node has 32GB DRAM and Gigabit Ethernet
(utilized in this study). These nodes are connected via a single
network switch. Each node runs a modified version of Linux
2.6.32, which includes the EDF packet scheduler.

In the first experiment, we evaluate the contribution of the
bandwidth sharing policy in terms of decreases in network
delay variance. Then, we evaluate the impact on task deadline
miss rate when employing our EDF packet scheduler. Next,
we evaluate the partial-EDF job scheduler by running different
task sets on the RT-DHT.

A. Bandwidth Sharing Results

In this experiment, we use the network benchmark, Sock-
perf, to measure the application-to-application network delays
in ping-pong mode. We utilize 8 nodes, each of which runs a
Sockperf server and a client. Each Sockperf client periodically
transmits messages as TCP packets to the servers and a server
sends a feedback packet back to the client immediately. The
clients calculate network delays based on the time of sending
the message and receiving the feedback. Sockperf clients can
only transmit a fixed number of messages (specified with burst
option) within a period of time. However, a real-time appli-
cation could have different message transmission demands in
different frames. We extend the Sockperf implementation to
transmit varying numbers of messages during different time
periods. In our experiment, the varying numbers are drawn
round robin from a population of bursts derived from burst op-
tion, and the destination (server) of the message is chosen from
the 8 servers in a round robin fashion. As a result, the number
of messages transmitted (i.e., burstiness) in different frames
can be different. We compare the network delay variance with
and without bandwidth sharing policy. For the experiments
of bandwidth sharing, we configure the network interface of
server and client to send messages into two token buckets: one
for the client to transmit messages and the other one for the
server to transmit feedback messages. A third token bucket is
added to transmit unclassified (background) traffic including
the packets of other applications running on the same node.

Fig. 4 depicts the network delay interval on one node (x-
axis) over the network delay (round-trip delay) in milliseconds
(y-axis). The blue clusters depict the network delays for the
bandwidth sharing policy. The interval of blue clusters extends
from 0.14 to 3.69 (i.e., a range of 3.55) altogether, which is
larger than 0.97, the range without bandwidth sharing policy.
However, the large variance is not only due to network delays.
Since the token bucket implementation of Linux is driven by
kernel timer events, once a message is pending in the queue
(i.e., not transmitted by the network interface immediately due
to the bandwidth sharing policy), the message has to wait
at least one timer interrupt interval until the next time the
network interface considers to transmit messages. The timer
interrupt interval is 1ms (i.e., HZ = 1000). Considering the
cost of the token bucket implementation, we divide the mea-
sured application-to-application delays into different clusters
and calculate the network delay variance in each cluster. As
depicted in Fig. 4, each blue cluster represents a cluster of
network delays with the variance marked on the x-axis. The
range of all blue clusters is less than the 0.97 range of the red
cluster, which illustrates the benefit of our bandwidth sharing
policy.

Fig. 5 depicts the network delays for all 8 nodes after the
token bucket costs are removed in the measured data. We
observe that the bandwidth sharing policy reduces network
delay variance on all nodes. The cost of bandwidth sharing
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contributes significantly to application-to-application network
delay since we utilize a Gigabit network switch and NICs in
our experiment. However, we believe that the proportion of
the cost will reduce in complex network topologies, where
cumulative network queuing delays on intermediate network
devices could change significantly without bandwidth sharing
policy, i.e., our reference without bandwidth sharing in the
experiments is the best case in a distributed system.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 Node-1 Node-2 Node-3 Node-4 Node-5 Node-6 Node-7 Node-8

N
et

w
o

rk
 D

el
ay

 (
m

s)

No Bandwith Sharing
Bandwith Sharing

Fig. 5: Network delay comparison (2)

The challenge of applying bandwidth sharing is to deter-
mine the limit of the packet transmission rate according to the
transmission demand of the applications and the transmission
capability of the underlying network. If the transmission rate is
too large, packets are transmitted into the network immediately
and network contention could be significant resulting in large
network delay variance. If the rate is too small, packets could
wait in the bucket for a long time resulting in large application-
to-application delays. In Section II-C, we proposed to share the
total rate proportionally according to the demand of an individ-
ual node. However, we did not provide a theoretic method to
determine the total rate. In the experiment for Fig. 4 and 5, we
configure Sockperf to simulate a 10ms frame size (set option
mps to 100) and in each frame, the number of messages are
chosen from [5, 10] in a round robin fashion (set option burst
to 10 for an the interval of [ burst2 , burst]). The message size
is 400 bytes. Then, we tune the rate experimentally and select
2.45Mbps as the client transmission rate and 19.60Mbps as
the server transmission rate.

B. EDF Packet Scheduler Results

In this section, we extend the network benchmark, Sock-
perf, so that messages sent by Sockperf clients carry deadline
information. Sockperf clients specify the deadline (by using
the setsockopt system call) before sending a message and
Sockperf servers immediately send a feedback message with a
specified message deadline. The feedback message inherits the
deadline of the original message sent by the client. A Sockperf
client compares the arrival time of a feedback message and the
deadline carried in that message to determine if this message
has met its deadline. In each experiment, we first run Sockperf
without the EDF packet scheduler on 8 nodes (one client and
one server on each node), then we run Sockperf in playback
mode, which transmits the same sequence of messages with
the EDF packet scheduler installed on the same nodes. We
compare their deadline miss rates.

The workload is controlled by Sockperf options
(mps, burst). The number of messages transmitted in a
frame by a client is chosen from an interval [ burst2 , burst] in a
round robin fashion. Each message is 400 bytes. In addition,
the deadline of a message is the current time when the
message is created, increased by a random value uniformly
drawn from the interval [D, 2D], where D is a configurable
parameter in different experiments.

Fig. 6 depicts the deadline miss rates on one node under
different workloads and deadline setups. Line 0.8-NoEDF
depicts the change of deadline miss rates when the work-
load changes from mps = 100, burst = 40 to mps =
5000, burst = 200. D is 0.8ms, and no EDF packet scheduler
is attached to the network interface of the nodes. The line
indicates that before workload (4400, 40), the deadline miss
rate is stable (about 5%). After that, the deadline miss rate
increases significantly when the workload increases. This is
explained as follows: When the workload is small, the network
interface can transmit messages immediately into the network.
In this case, the deadline misses are caused by the network
delay. When the workload increases to large values (i.e., larger
than (4400, 40) in our experiment), message packets start
to be queued in the network buffer, which increases their
transmission time. Thus, deadline misses increase significantly.
In addition, the probability of a message being queued depends
on the burst size, since a larger burst size suggests that the
Sockperf client attempts to transmit more messages in a frame.

As a comparison, line 0.8-EDF depicts the change of
deadline miss rates under the same setup, except that each
node adopts an EDF packet scheduler. We observe a similar
trend of deadline miss rates that change with the workload
as for line 0.8-NoEDF. However, due to the capability of re-
scheduling packets, the EDF packet scheduler decreases the
deadline miss rates when the network interface is dominated
by bursty data. Lines 1.0-NoEDF and 1.0-EDF depict the
comparison of deadline miss rates when D is 1ms, which
suggest a similar trend as that of D = 0.8ms.

C. Partial-EDF Job Scheduler Results

We next experiment with our RT-DHT storage system to
measure the value of ki defined in Equation 5, which is the
worst number of messages that can arrive at one node for task
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τi, since ki is the basis of the schedulability test of the partial-
EDF scheduler. Then, we compare the measurement with the
value calculated by our formula. To simplify the analysis, we
predefine the identifiers of nodes and keys on the chord ring
instead of using a hash function to calculate these identifiers.
We utilize 8 storage nodes in this experiment.

In the first experiment, we run a single distributed put-
request task τ1 = (10, 1, 100)

0,1−−→ (5, 1) on node 0, which
only involves nodes 0 and 1 (all times are expressed in ms).
The partial EDF scheduler on node 0 releases jobs of τ1 with
a period of 10ms and the sending task guarantees that the
inter-transmission time for the message of τ1 is at least 5ms.
The frame size of node 0 is 5ms (we require that T0 ≥ T ′0). In
addition, a local periodic task τ2 = (60, 50, 60) is scheduled on
node 0. We busy wait to make the real execution time of a task
match its WCET. The receiving task on node 1 has a period
of 10ms. We observe that the worst-case number of message
arrivals on node 1 is 3, which matches the value calculated
by Equation 5 (i.e., k1 = 1 + b 105 + δ+−δ−

5 c), since both δ+

and δ− are small in our local cluster compared to the message
sending period (5ms). However, we cannot simply decrease
the period of τ1 to the level of network delay considering
the minimal time slices of Linux (1ms in our experiment).
Instead, we implement a traffic control utility to simulate large
network delays. We add a 10 ± 5ms network delay to node
0, which results in a delay range of [5.25ms, 15.89ms]. (The
delay range is measured via the ping-pong mode of Sockperf.
It changes over time but the changes are in ±0.5ms). With
this setup, the worst-case number of message arrivals is 4 (i.e.,
smaller than the upper bound 5 calculated from Equation 5).

Then, we update τ1 so it releases put requests that require
nodes 0, 3 and 4. In this case, the message of τ1 is first
forwarded to node 3 and from there forwarded to node 4. Both
nodes 3 and 4 have a 10ms message receiving period and a
5ms message sending period. We observe the same worst-case
number of message arrivals, i.e., 4.

However, the temporal properties of the receiving task in
our partial-EDF scheduler have to be tuned to suit different
workloads. For example, the WCET of the receiving task
determines the most number of messages it can copy from
the kernel. In one experiment, each node has four distributed
tasks and each of them involves three nodes. The periods of

these tasks are 40ms each. The receiving task of 1ms WCET
cannot always copy all messages from the kernel and release
the corresponding jobs to process these messages. This leaves
as an open question: How should one theoretically determine
the proper WCET of the receiving task as well as the sending
task?

V. RELATED WORK

Past research has put forth methodologies for adjusting
the interrupt-handling mechanisms of operating systems to
provide predictable interrupt-handling mechanisms for real-
time application tasks [26], [5], [13]. These approaches im-
proves the predictability of the kernel-level interrupt handling,
while our partial-EDF job scheduler focuses on improving the
predictability of the interrupt handling at user level. Compared
to other structured user-level real-time schedulers that provide
predictable interrupt management [19], our partial-EDF job
scheduler simply adopts a static scheduling mechanism (i.e.,
cyclic executive [2]) with an EDF scheduler. This simplifica-
tion allows us to use a density-based schedulability test on a
task set by refining the temporal properties of tasks in the table
(for example, the timer interrupt handler, the message sending
task, and the message receiving task in our system). Thus,
these tasks can be modeled as periodic tasks in the density-
based schedulability test. This also allows us to perform a
schedulability test on a set of distributed tasks, in which we
consider the temporal dependency among tasks on different
distributed nodes.

Resource sharing significantly affects the predictability of
real-time systems where multiple real-time tasks may attempt
to access the shared resource simultaneously. Past work has
focused on shaping the resource access patterns to provide
predictable response times to concurrent real-time tasks [25],
[4], [24], [12]. For example, bursty memory accesses were
delayed so that the number of memory accesses by a task
meets a bound during a period of time. Shaping is also
utilized to improve the schedulability of fixed-priority real-time
distributed systems that contain periodic tasks with a release
jitter. [20]. We apply a similar methodology, which utilizes
Linux traffic control mechanisms to shape the out-going traffic
on distributed nodes in order to improve the predictability
of the network delay (i.e., a decrease in variance of network
delay). In contrast to past work [20], our experimental results
have shown the benefit of applying shaping, which decreases
the network delay variance by reducing network congestion in
general in distributed systems, where tasks not only experience
release jitter, but the number of tasks can also vary over time.
However, these aforementioned resource-sharing mechanisms
are passive since they only reduce the probability of resource
contention instead of eradicating contention altogether by only
controlling the resource access of end nodes. Real-time tasks
may benefit more from active resource sharing mechanisms,
which perform access control via resource controllers [1] or
real-time state-ful communication channels [8]. These mech-
anisms require intermediate devices (e.g., network routers) to
cooperate. Today, software-defined networks (SDN) [16] allow
intermediate network devices (i.e., SDN capable switches and
routers) to control traffic flows explicitly, which may reduce the
network delay variance even for complex network topologies.

We implement an EDF packet scheduler that transmits



packets in EDF order at end nodes. Previous research has also
proposed to transmit real-time traffic over entire networks [6].
However, this requires modifications to the IP packets and
end nodes to establish stateful communication channels be-
fore transmitting data. In addition, network devices have to
maintain channel states and be aware of the deadlines carried
in IP packets.

VI. CONCLUSION

We have presented a hybrid EDF scheduler for distributed
real-time systems. At the application level, our partial-EDF
job scheduler utilizes periodic tasks to transmit messages
over networks to decrease the impact of application-level
interrupt handling on system predictability, while the scheduler
schedules tasks in EDF order. We have proposed a density-
based schedulability test on a task set for our partial-EDF job
scheduler. In the transport layer, we extend the Linux network
stack to support message deadlines and implement an EDF
packet scheduler to transmit messages in EDF order. We also
propose to utilize Linux traffic control mechanisms to decrease
network delay variance, which may increase the predictability
of distributed tasks. Our experimental results showed that the
EDF packet scheduler can decrease the deadline miss rate
and the traffic control mechanism can decrease network delay
variance in a local cluster. In addition, we demonstrated the
effectiveness of these techniques by integrating them into our
RT-DHT storage system so that data requests can be served in
EDF order.

Future work includes experimenting the traffic control
mechanism in complex network topologies and performing
fine-grained network resource control, for example, adopting
software-defined network techniques to prioritize messages on
intermediate network devices according to message deadlines.
In doing so, we wish to study the impact of our hybrid EDF
scheduler in a large-scale environment, where more nodes
could process real-time distributed tasks simultaneously. In
addition, we wish to find a better way to evaluate our partial-
EDF job scheduler.
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