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Abstract
Problem domains are commonly decomposed hierarchically
to fully utilize parallel resources in modern microproces-
sors. Such decompositions can be provided as library rou-
tines, written by experienced experts, for general algorith-
mic patterns. But such APIs tend to be constrained to certain
architectures or data sizes. Integrating them with applica-
tion code is often an unnecessarily daunting task, especially
when these routines need to be closely coupled with user
code to achieve better performance.

This paper contributes HiDP, a hierarchical data paral-
lel language. The purpose of HiDP is to improve the cod-
ing productivity of integrating hierarchical data parallelism
without significant loss of performance. HiDP is a source-
to-source compiler that converts a very concise data paral-
lel language into CUDA C++ source code. Internally, it per-
forms necessary analysis to compose user code with efficient
and architecture-aware code snippets.

This paper discusses various aspects of HiDP systemat-
ically: the language, the compiler and the run-time system
with built-in tuning capabilities. They enable HiDP users to
express algorithms in less code than low-level SDKs require
for native platforms. HiDP also exposes abundant computing
resources of modern parallel architectures. Improved coding
productivity tends to come with a sacrifice in performance.
Yet, experimental results show that the generated code deliv-
ers performance very close to handcrafted native GPU code.

1. Introduction
Contemporary research seems to indicate that no panacea
can seamlessly adapt sequential legacy programs to mod-
ern parallel architectures. Simply converting programs into
many concurrently executing threads may not necessarily
deliver expected levels of performance improvements. This
is partly due to today’s parallel machines consisting of far
more complicated execution and memory hierarchies than
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the simplistic Von Neumann model, which may be a suitable
abstraction for sequential programs — but not so much for
today’s hierarchical parallelism. Any approaches that ignore
such hierarchies are likely to yield performance inferior to
they capabilities.

Execution Level Suitable Parallelism Synchronization
Kernel less than a few dozens tasks kernel boundaries
Block a few dozens to a few hundreds syncthreads()
Warp more than a few hundreds Not Necessary

Thread more than tens of thousands Not Necessary

Table 1. Execution Hierarchies in Modern GPUs

Consider modern GPU architectures as an example. Table
1 lists the execution hierarchies in Nvidia GPUs. For a single
GPU unit, there exist at least four execution levels, each of
which features different favorable degrees of parallelismand
synchronization methods.Suppose a problem can be divided
by a number of concurrent tasks, which can be realized by
fine-grained data-parallel threads cooperatively.When the
number of tasks is small (a few to a few dozens), the top
kernellevel suffices to utilize all GPU computing resources.
This is done by assigning multiple blocks to one logic task.
But this requires the local barrier synchronization in one task
to be replaced by a more expensive global barrier because of
a lack of hardware synchronization across multiple blocks.
We can also assign just one block to process one task. The
benefit of doing this is that task barriers can be implemented
locally inside each block. But this is only beneficial when
the number of tasks is large enough to exercise all GPU re-
sources. As we delve down to the warp or thread level, syn-
chronization comes at no cost because it is ensured by SIMD
and instruction ordering. However, GPUs need substantially
more parallelism to reach their peak instruction throughput.
There is no clear delimiter to the range of suitable paral-
lelism for each execution level. Effective hierarchical paral-
lelization hence often become dependent on both the hard-
ware and the application. This ambiguous boundary exposes
more challenges to languages, as it becomes the task of the
compiler and runtime to decouple hierarchical parallelism
from the algorithmic expressions.

Hierarchical architectures like GPUs have a substantial
influence on the way to solve problems. A common ap-
proach to match the hardware structure involves a two-step
decomposition. Firstly, a task-level divide-and-conquerap-
proach partitions a large-scale problem into a number of
smaller tasks. This step provides opportunities for reducing
synchronization overhead and utilizing faster but limitedon-
chip caches. Secondly, these tasks are executed by a massive



number of threads cooperatively, demanding exposition of
fine-grained data parallelism. As a result, data-parallel prim-
itives, such as segmented parallel scan and reduction (de-
tailed later), play an important role in coding productivity
and performance.

Fortunately, many seemingly inherently sequential oper-
ations (reduce, scan, partition, etc.) have efficient parallel
solutions. A significant effort has been invested by experi-
enced programmers in providing such solutions, often as li-
braries. In the CUDA ecosystem, libraries like Thrust [14]
and CUDPP [15] are widely used by developers to avoid im-
plementing such operations from scratch. However, users of-
ten find it difficult to integrate these libraries with their own
code for mainly two reasons: (1) User code and libraries are
often closely coupled. Users often have to investigate the fine
details of the library. (2) Libraries often provide alternate im-
plementation choices of the same functionality due to the hi-
erarchical execution model in today’s microprocessors. The
best choice is often data dependent, yet not necessarily ob-
vious to programmers. Therefore, it is necessary to try each
of them, which can be a daunting task for end users.

Contributions: We propose HiDP, a data-parallel lan-
guage with hierarchical parallel-for clauses and built-indata-
parallel primitives. These language features are equally suit-
able for describing parallel algorithms and for obtaining high
performance in contemporary GPUs. The HiDP compiler ju-
diciously maps parallel for constructs onto the hierarchical
execution model of modern GPUs. When multiple mapping
choices exist, the compiler generates different versions of
code, one for each mapping. It also emits tuning code that
aids users in selecting the appropriate version, or the usercan
manually prune alternatives based on domain knowledge.

HiDP is a machine-independent language. In fact, HiDP
encourages users to express algorithms in a general,
architecture-neutral fashion. This makes HiDP robust to fu-
ture architectural advances and extensible for code gener-
ation in other formats, such as OpenCL [16]. Like many
other high-level languages, HiDP is very concise and easy to
learn. More than an order of magnitude of lines of code can
be saved compared to native CUDA code. HiDP could also
serve as an intermediate language for other high-level lan-
guages since its code transformations result in performance
that only marginally falls short of hand-written CUDA code.

2. The HiDP Language
A HiDP program is built around a top-level structure speci-
fied through the keywordfunctionfollowed by the function
name. Other functions can be defined and can be called by
the top-level function or by each other. Yet, there is only a
single entry to a HiDP program. The compiler will generate
a legal C++ function signature and body based on the top-
level function.

The header of the function body declares the arguments of
this function. The data flow and read/write access properties

inside the function are indicated by keywordsinput, output
or inout. All arguments of a function are passed by reference,
i.e., a change of an argument in the function will be seen by
the function’s callee.

In designing the HiDP language, we pursue the following
major goals: We intend to: (1) expose low-level data struc-
tures for full control over the data layout design; (2) preserve
the conciseness of data parallel script languages; (3) provide
the ability to customize data-parallel operations,e.g., hier-
archical or partial mappings; (4) embed basic data-parallel
primitives in the language to improve coding productivity;
and (5) keep the language platform independent and only
add machine-dependent information at the directive level.In
the following subsections, we present key aspects of HiDP
and explain how our goals are met by them.

2.1 Data Types

HiDP’s basic structure is an array of any dimension (Scalars
have a dimension of 0). There are two ways to declare a
variable. One is at the function header (argument), the other
is inside the function body (local variable):
datatype var([dim0]...[dimn]);

A declaration starts with a data type identifier, which can
be either a fundamental C/C++ data type (char, float int ...)
or a derived (user-defined) one. The number of bracket pairs
after the variable name implies the dimension of the variable.
The size in each dimension of these arguments is expressed
symbolically in terms of either constant or free variables,the
values of which must be determined by the HiDP runtime
system. An example of declaring a 2D dimensional float
array and a 1D dimensional float array is as follows:
float my 2d array[I][J], my 1d array[K];

The other option for declaration is to specify a data type
for a scalar integer variable at the beginning of amap block
(see Section 2.3). Such a scalar integer has to be within a
certain range, which is expressed as two tuples enclosed by
brackets (inclusive) or parentheses (exclusive). We call this
kind of variable amap iterator:
map iter := ranges;

The range is relaxed to be any arithmetic expression of
variables and constants. An example of declaring a map
iteratori from 1 toJ − 1 is:
i := [1 : J−1];

We will discuss themap iteratorin more detail later.

2.2 Data Parallel Expressions

Like many other data-parallel languages, HiDP allows con-
cise array operations on each element of a structure. This
corresponds to the concept of anapply-to-eachor mapcon-
struct in other languages. Such expressions, together with
themap block, form the fundamental statements of the HiDP
language. Consider the statement
A = B ∗ C;



All elements of A are updated by the multiplication of ele-
ments at the same relative position in B and C. HiDP requires
that all variables in a data parallel expression maintain the
same shape (same number of dimensions and same size on
each dimension) but allows scalar variables to “expand” to
the same shape as other multi-dimensional variables in the
same expression.

2.3 Hierarchical Map Blocks

The support for data parallel expressions above improves
coding productivity by eliminating somefor loops of lan-
guages like C and C++. But the defaultapply-to-eachbe-
havior may be too strict to express certain algorithms.

HiDP relaxes its stringent behavior by defining amap
blockfollowing the principle idea of aparallel for construct.
The number of iterations inside amap blockis determined
by map iterators, which must be defined at the beginning
of the map block, but there may be multiple ones of them
defined for eachmap block. In addition, HiDP allows an
optional suffix function call to be made at the end of the
map block. Therefore, amap blockcan be of the following
formats (following EBNF notation):
mapblock: map block

| map block suffix
block:{ statements}
suffix: function call

Map blockscan be hierarchical. Amap blockis called
anothermap block’s parent if the former fully encloses the
later. Two types of statements can reside in amap block:
scalar expressions and pre-defined data-parallel primitives
(see Section 2.4). Theparallelismof a map blockis deter-
mined by the product of allmap iteratorsof itself and all its
parentmap blocks. The level ofparallelismis expressed by
the number of concurrent scalar expressions executed in this
map block. HiDP assumes sequential execution of instruc-
tions in themap blockbut does not assume any synchroniza-
tion between different iterators (except for entering and exit-
ing data parallel primitives, see Section 2.4). Therefore,the
behavior of any writing to the same memory position from
different iterators is undefined.

Many applications have inherent nested parallelism. This
fits naturally with HiDP’s hierarchical map blocks. Starting
from the outermost map block, the compiler’s major role is
to determine which execution model is best suited for this
level, optionally enhanced by programmer hints.

2.4 Data Parallel Primitives

HiDP supports many data-parallel primitives that improve
coding productivity. Those primitives can be written either
outside anymap blockor inside/appended to amap block.
If associated with a map block, primitives implicitly call
local barriers before entering and after exiting the block.
Primitives inside the map block can be regarded as seg-
mented primitives. All operations are performed indepen-
dently within each segment. Each segment may execute

within several blocks cooperatively, within a single block,
within a warp or even within a thread. This depends on the
number of segments and availability of the primitive’s imple-
mentation at the execution level. Such choices are ultimately
made by the HiDP compiler and runtime. HiDP requires
each irregular segmented array to be associated with two
index vectors, termedlow range and high range. These
vectors indicate the low and high indexes of each segment,
respectively. This representation of a segmented array dif-
fers from NESL [4], where an associated boolean array of
the same size as the original array is used to infer segment
boundaries. For regular segmented arrays (segment sizes are
the same), HiDP supports a different interface where only
two scalar inputs are used to replace the two low and high in-
dex vectors:seg size andnum seg. This design choice was
driven by practical considerations. We find that significant
performance benefits can sometimes be achieved if prior
knowledge about regularity is available. Table 2 shows the
syntax of selected data-parallel primitives in different sce-
narios.

Irregular Parallel Primitives
min/ max = min/max(input, low range, high range)

sort(in key, out key, [in value, out value], low range, high range, dir)
partition(in, out, [in value, out value], in low range, pivots,
in high range, out low range, out high range, function)

reduce(“ + /∗′′, input, output, low range, high range)
scan(in, out, low range, high range)
reverse inplace(inout, low range, high range)
reverse(in, out, low range, high range)

Regular Parallel Primitives
min/ max = reg min/ max(in, out, seg size, num seg)

reg sort(in key, out key, [in value, out value], seg size, num seg, dir)
reg reduce(“ + /∗′′, in, out, seg size, num seg)
reg scan(input, output, seg size, num seg)
reg reverse(inout, seg size, num seg)
reg reverse(in, out, seg size, num seg)

Outside Map Block
min/ max = min/max(in, size)

sort(in, out, size, dir)
partition(in key, out key, [in value, out value], pivot, size, function)
reduce(“ + /∗′′, in, out, size)
scan(in, out, size)
reverse inplace(inout, size)
reverse(in, out, size)

Map Suffix Functions
reduce(“ + / ∗ /min/max′′, output, input, ranges)

Table 2. Selected Data Parallel Primitives in HiDP
A typical usage of a partition in a map clause is, e.g.:

float in[size], out[size], pivots[numsegs];
int low[num segs], high[numsegs], outlow[num segs∗2],
new high[num segs∗2];
...
map {

seg := [0: numsegs);
partition(in, out, low, pivots, low, high, newlow,

new high, MyCompare);}

There will benum segs instances of partition operations on
the input arrayin. The ith instance (0 <= i < num segs)
works on elements betweenlow[i] and high[i]. The new
index ranges for the two new smaller partitions are created
in new low[2 ∗ i], new high[2 ∗ i], new low[2 ∗ i + 1] and
new high[2 ∗ i + 1]. MyCompare can either be a native
CUDA device function or an internal HiDP function.



Depending on the position of the data parallel primitive,
there may be multiple instances of primitive calls. For ex-
ample, if a data primitive is called inside amap block, the
number of instances is theparallelism degreeof the current
map block. These instances can be executed in parallel with-
out any synchronization. But HiDP assumes local barriers
before and after each of them. In other words, the range of
the synchronization is constrained to the necessary range to
guarantee correctness of each instance. If a primitive is a suf-
fix function call for amap block, only a single local barrier
constrained by therangesis needed.

2.5 User-Assisted Directives

HiDP supports directives as annotations for map clauses.
They are required to assist the compiler in performing the
mapping from a hierarchical structure to an execution model.
They often require prior knowledge that cannot be deduced
by the compiler, and they help reduce the exploration space.
Such directives must immediately precede themap clausein
the program. Their syntax is:

#pragma hidp [kernel|block|warp|subwarp|thread]

2.6 GEMM in HiDP

As a concrete example, consider the HiDP source code for
the level-3 BLAS GEMM routine in Figure 1. Lines 2 to 4
define the function header. The body of the function con-
sists of a single-level map structure with a reduce suffix on
temporary variablec0. Line 8 defines threemap iterators
for themap block. The reduction is applied to allk iterators
(line 10) for differenti andj iterators and is assigned to the
2-D arrayC1. As mentioned above, synchronization is im-
plicitly reinforced before and after the suffix reduction call,
but only at a local range (for everyk iterators). AfterC1 is
updated,C is finally calculated by the GEMM rule (line 11).

1 # implementing C = alpha∗ A ∗ B + beta∗ C
2 function GEMM
3 input float alpha, beta, A[M][K], B[K][N];
4 inout float C[M][N];
5 {
6 float C1[M][N];
7 map{
8 m:=[0:M); n:=[0:N); k:= [0:K);
9 c0 = a[m][k] ∗ b[k][n];

10 } reduce(”+”, C1[m][n], c0, k:=[∗]);
11 C = alpha∗ C1 + beta∗ C; }

Figure 1. GEMM in HiDP

HiDP encourages users to express algorithms at the finest
data granularity. For the GEMM example, this occurs at line
9 in Figure 1, where the element-wise multiplication over all
three dimensions is expressed. This makes HiDP indepen-
dent of the underling hardware architecture. The decisions
on whether or not to fuse them and at which level are left to
the compiler backend as it depends on the properties of the
targeted hardware.
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Figure 2. Overview of HiDP Compiler
3. The HiDP Compiler
In this section, we provide an overview of the compilation
steps to transform HiDP into a set of CUDA/C++ functions
containing both the host and device code. We use the GEMM
example in the previous section as a running example.

3.1 Overview

The HiDP compiler consists of a number of phases shown
in Figure 2. The input of the framework is a HiDP program
with a single function entry. It emits one or even multiple
versions of the CUDA kernel code and C++ host code for
the same HiDP program. If the output contains multiple
versions, a wrapping C++ function is also generated to aid
during the tuning process. Users can intercept the tuning
process and directly pick the most appropriate version.

3.2 Front End

The HiDP compiler parses each routine to transform a HiDP
program into an abstract syntax tree (AST). It detects the
top entry-level function and instantiates other internal func-
tions at the top level. There are four types of statements in
HiDP: assignment expression, map block, branch expression
and function call. They are hierarchical in the sense that a
map block can contain multiple assignment expressions in-
side. All further analysis is performed hierarchically at each
statement level. The HiDP front end does not expand data-
parallel expressions into for loops throughout the code trans-
formations.

After parsing, the compiler recursively analyzes the input
and output set of each statement from the bottom up. Having
a complete understanding of this step is important for gen-
erating function arguments and recovering inout data in the
tuning wrapper.



Execution Level s kernel s block s warp s sub-warp s sub-warp2 s thread
1-D Shape gridDim.x/BLOCK PERTASK gridDim.x s block * WARP PERBLOCK s warp * 4 s warp * 8 s block * blockDim.x

Table 3. 1-D Shapes of Execution Model
Level kernel block warp sub-warp sub-warp2 thread

s kernel 1 - - - - -
s block BLOCK PER TASK 1 - - - -
s warp s block∗ WARP PERBLOCK WARP PERBLOCK 1 - - -

s sub-warp s warp∗ 4 s warp∗ 4 4 1 - -
s sub-warp2 s warp∗ 8 s warp∗ 8 8 4 1 -

s thread s block∗ blockDim.x blockDim.x 32 8 4 1

Table 4. 1-D Shapes of Execution Model Given its Immediate Upper Layer

3.3 Nested Shape Representation and Analysis

HiDP relies heavily on shape analysis to perform state-
ment fusion and execution model mapping in a safe man-
ner. To achieve that, each statement is analyzed to obtain
its shape, which indicates the maximal possible number of
data-parallel threads for this statement. We call it thepar-
allelism degreeof a statement. Parallelism degrees can be
multi-level depending on the position of a statement. We use
the notation of{[level 0], ..., [level n-1]} to represent an n-
level shape. For the GEMM example below, there are four
statements in the HiDP source code: a map block (s1), an
assignment inside the map (s2), a suffix function call (s3)
and another assignment outside the map block (s4). The
shape analysis starts from the innermost assignment (s2).
Its shape is determined by the range of all map iterators
at the same or higher levels. In this case, there is only one
map block. Therefore, its shape is a single-level 3D shape of
{[0 : M, 0 : N, 0 : K]}. Next, the reduce call is analyzed.
The reduction range is for allks. Therefore,[0 : K] is pro-
moted to the next level making the reduce function’s shape
a two-level shape of{[0 : M, 0 : N ], [0 : K]}. This is a two-
level shape where each instance in the first level shape space
(M × N ) contains up toK degrees of data parallelism. Its
instances need local barrier support (reduction in this case).
The shape of the map block is kept consistent with its suf-
fix function call. The shape of the last statement is deduced
from the dimension of its operands (C1 or C). Hence, it is
a single level shape ({[0 : M, 0 : N ]}). The shape of each
statement after shape analysis is shown below:
float C1[M][N];
map{ # { [0:M, 0:N], [0:K] } (s1)

m:=[0:M); n:=[0:N); k:= [0:K);
c0 = a[m][k] ∗ b[k][n]; # { [0:M, 0:N, 0:K] } (s2)

}reduce(...); #{ [0:M, 0:N], [0:K] } (s3)
C = alpha∗ C1 + beta∗ C; #{ [0:M, 0:N] } (s4)

3.4 Statement Fusion

The main motivation behind combining as many operations
as possible into a kernel is to save off-chip memory trans-
actions because intermediate variables can be kept in reg-
isters, which avoids accesses to global memory. The HiDP
compiler tries to merge statements at the top level ((s1) and
(s4) in the GEMM example) building on shape analysis. Two
statements can be fused if and only if their shapes are com-
patible with each other. Two shapes are compatible when one

is a prefix of the other in a flattened format. In the GEMM
example, (s4)’s shape is a prefix of (s1). Therefore, they can
be fused into a larger unit. (s4)’s shape extends to the same
number of level as (s2), while the parallelism degree in the
second level is just 1. After fusion, the GEMM function be-
comes a single statement, as shown in the following:
{ map{ # { [0:M, 0:N], [0:K] }

... }
C = alpha∗ C1 + beta∗ C; #{ [0:M, 0:N], 1 }

} # { [0:M, 0:N], [0:K] }

The fused statement does not necessarily correspond to a
single kernel at this point. Its transformation also depends on
which execution model it is mapped to. For example, if the
compiler later decides to assign multiple blocks to execute
one instance in theM × N space at the first level shape, a
barrier is needed for the reduction. This results in multiple
kernels due to the lack of a global barrier across multiple
blocks in CUDA.

3.5 Execution Model Abstraction and Mapping

Starting with this phase, the transformations are machine de-
pendent. First of all, we depict the target machine as a set
of hierarchical execution models. HiDP currently only sup-
ports CUDA in the back-end. We will thus use the CUDA
terminology throughout the rest of the section (even though
OpenCL or OpenMP mappings are feasible as well). We add
two more execution models to the one mentioned in Section
1. We call them sub-warp (8 thread lanes) and sub-warp2 (4
thread lanes). Similar to statements in HiDP, each level hasa
physical shape, which corresponds to the number of parallel
instances at this level in GPUs. Table 3 lists the one dimen-
sional shapes for all supported execution models. The job
of execution model mapping is to associate the hierarchical
statement shape into appropriate physical shapes according
to theirparallelism degrees. The physical shape of an execu-
tion model also depends on its immediate upper layer during
the mapping. The relative shape for each case is shown in
Table 4. The lower level shapes always have equal or more
parallelism than the upper level shapes.

Take GEMM as the example: The shape of the fused
statement is{[0 : M, 0 : N ], [0 : K]}. The first level
hasM × N parallelism degrees. Since these are inputs to
the function and are not known at compile time, HiDP may
select any of the execution models, assumingM ×N ranges
from one to arbitrarily large number. The switching point is



marked as a tuning parameter. The second levelK is always
mapped to the thread level because it is the last level. To
conserve space for depicting the code, we prune the tuning
space from 6 possibilities to 3 by choosing only block, warp
and thread for the first level shape mapping. In fact, this can
also be done by inserting a pragma before the map block:

#pragma hidp block warp thread

The set of valid mappings are shown in the table below. The
expressions in parentheses represent the physical parallelism
degree at this level.

[0:M, 0:N] [0:K]
block(gridDim) thread(blockDim)

warp(gridDim * WARPPER BLOCK) thread(32)
thread(gridDim * blockDim) thread(1)

After this step, we are able to determine CUDA kernel
delimiters for each mapping. Because our run-time supports
in-kernel local barriers for the three mappings we choose, a
single kernel can implement the fused statement. The scope
of the local variableC1 is within the kernel and its access
pattern is strictly sequential, meaning that each scalar in
the array is accessed by the same iterator. Therefore, it can
be kept in the register file without any writes to the global
memory, obviating its storage allocation.

3.6 Machine Dependent Optimizations

An important optimization strategy for CUDA code genera-
tion is to take advantage of the fast on-chip Shared Memory.
The HiDP compiler tries to detect shared access patterns be-
tween neighboring threads. Again, this depends on the final
execution mapping. HiDP searches for arrays whose indices
contain only constant or map iterators that are mapped to the
thread execution model. HiDP reasons about the shape of
thread layout to facilitate the loading of shared data.

3.7 Loop Unrolling and Code Generation

The final code generation step needs to consider the mis-
match between theparallelism degreeof the nested shape
(usually data dependent) and the physical parallelism of the
corresponding execution model. The former is often greater
than the latter. Because the execution order of iterators inthe
same map block is irrelevant, we generate a for loop with the
following template:
for (id = iter start + levelid; id < iter end; id+=levelstepsize){

iterator = id;
... (loop body);}

whereiter start anditer end are the left and right bound-
aries of the map iterator. Furthermore,level stepsizes are
the same as the values in Table 4 for the case of a one di-
mensional shape.

Each supported data-parallel primitive has properties like
shared memory usage and auxiliary variables. The properties
are carried through the compiler framework and are inter-
laced with other HiDP code. On the host side, all arrays are
encapsulated by the HiArray class, which supports an arbi-
trary number of dimensions and maintains data integrity ac-
cording to the read/write properties deduced by the compiler.

It is not mandatory to support data-parallel primitives in ev-
ery level of the execution model.Restrictions are considered
by the compiler to prune the number of possible execution
model mappings.

3.8 GEMM CUDA/C++ Output

1 // gemm block version
2 global void gemmblock(...){
3 shared float sum[BLOCK SIZE]; // used for block reduction
4 int m = blockIdx.x;
5 int n = blockIdx.y;
6 float s = 0.0f;
7 for (k = 0 + threadIdx.x; k< K; k += blockDim.x)
8 s += fetchA(m,k)∗ fetchB(k,n);
9 reduceblock<ADD, float>(sum, s);

10 if (threadIdx.x == 0)
11 fetchC(m,n) = alpha∗ sum[0] + beta∗ fetchC(m,n);
12 }
13 // gemm warp version
14 global void gemmwarp(...){
15 shared float sum[WARPSPERBLOCK][WARP SIZE];
16 int warpId = threadIdx.x/WARPSIZE;
17 int warpIndex = threadIdx.x & 0x1F;
18 int m = blockIdx.x;
19 int n = blockIdx.y∗ WARPSPERBLOCK + warpId;
20 float s = 0.0f;
21 for (k = 0 + warpIndex.x; k< K; k += WARP SIZE)
22 s += fetchA(m,k)∗ fetchB(k,n);
23 reducewarp<ADD, float>(&sum[warpId][0], s);
24 if (warpIndex == 0)
25 fetchC(m,n) = alpha∗ sum[warpId][0] + beta∗ fetchC(m,n);
26 }
27 // gemm thread version, before shared memory optimization
28 global void gemmthread(...){
29 int m = blockIdx.x∗ blockDim.x + threadIdx.x;
30 int n = blockIdx.y∗ blockDim.y + threadIdx.y;
31 float s = 0.0f;
32 for (k = 0; k < K; k += 1)
33 s += fetchA(m,k)∗ fetchB(k,n);
34 fetchC(m,n) = alpha∗ s + beta∗ fetchC(m,n);
35 }

Figure 3. HiDP Emits Different Kernels

Figure 3 lists the emitted GEMM kernel code for the
aforementioned three mappings. Depending on the actual
execution model mapping, HiDP emits different reduce
functions (lines 9 and 23 for block and warp versions, but
none for the thread version). The assignment expression in-
side the map block in HiDP code is converted into for loops
(lines 7 to 8, 21 to 22, 32 to 33) according to the template
mentioned in Section 3.7. Finally, special care needs to be
taken when there is more physical parallelism than the shape
parallelism at a certain level. The expression needs to be en-
sured to only enable the first few threads. This is the case for
the (s4) statement because its shape is 1 on the second level,
but there are multiple valid degrees of physical parallelism
for the block and warp versions. Consequently, lines 10 and
24 are inserted by the compiler to adjust for the parallelism
difference.

The host C++ code is generated with necessary branches
to choose which version of the kernel to run (lines 11, 14 and



1 // generated wrapper code with tuning branches
2 void gemmwrapper(HiArray<float, 1> &C, ...){
3 int C dim0 = C.getDim(0);int C dim1 = C.getDim(1);
4 ...;
5 int M = C dim0; int N = C dim1;
6 ...
7 vector<int> degree0;
8 degree0.pushback(M);
9 degree0.pushback(N);

10 dim3 block, grid;
11 if (degree0 < TUNING 0) {
12 config block(degree0, block, grid);
13 gemmblock<<<...>>>(...);
14 } else if(degree0 < TUNING 1) {
15 config warp(degree0, block, grid);
16 gemmwarp<<<...>>>(...);
17 } else{
18 config thread(degree0, block, grid);
19 gemmthread<<<...>>>(...);
20 }
21 }
22 // tuning function
23 void gemmtuning(HiArray<float, 1> &C, ...){
24 int C dim0 = C.getDim(0);int C dim1 = C.getDim(1);
25 ...;
26 int M = C dim0; int N = C dim1;
27 ...
28 vector<int> degree0;
29 degree0.pushback(M);
30 degree0.pushback(N);
31 dim3 block, grid;
32 for (int i = 0; i < 3; i++) { // three paths
33 saveinout arrays();
34 start timing();
35 gemmblock<<<...>>>(...); // for i == 0
36 gemmwarp<<<....>>>(...); // for i == 1
37 gemmthread<<<...>>>(...); // for i == 2
38 end timing();
39 report timing(degree0); }
40 }

Figure 4. Generated C++ Code by HiDP Compiler (Code is
expanded for clarification purpose. Actual code may differ)

17 in Figure 4). The parameters TUNING0 and TUNING1
are tuning parameters that need to be determined later.

3.9 Auto-Tuning

If the compiler detects any tuning possibilities, it will also
emit tunable code wrapped by profiling code to measure
the execution time for each code path. The user can run the
executable in thetuning mode, where the measured time for
each training test case is reported. The second part of Figure
4 illustrates this concept.After the training phase, the user
can then launch an analysis tooloperating on the profiling
results to determine appropriate switching conditions for
different versions of generated code.

Our analysis tool performs a linear regression match to
determine the best time to switch kernels. Occasionally, a
switch may not be result in performance benefits because
other factors besides the detectedparallelism degreeaffect
performance but are not factored into decisions. If that was
the case, users could always overwrite HiDP’s decision by

supplying customized code around various kernels to select
the best one based on their prior domain knowledge.

4. Experimental Results
In this section, we investigate the performance of HiDP’s
generated code in several examples. Not only do we com-
pare with parallel implementations on CPUs in some cases,
but also with published, hand-optimized CUDA implemen-
tations of the same workload. As we will see, even the com-
piler cannot apply some of the optimizing techniques that an
experienced programmer can, while our auto-tuning scheme,
an optimization phase that is usually ad-hoc or absent in
hand-written code, closes this performance gap.

The experimental platform is a two-socket machine with
two AMD Opteron 6128 processors (8 cores each), one
Nvidia GTX 480 and 32 GB memory. All experiments
are performed using single-precision floating point, unless
stated otherwise.

4.1 GEMM

Following the GEMM example in previous sections, we
compare with the GEMM of the CUBLAS 4.2 library, a
hand-crafted BLAS implementation released by Nvidia.

Let the sizes of the three matrices inC = alpha × C +
beta×A×B beM ×N (for C), M ×K (for A) andK×N

(for B). As mentioned in previous sections, our compiler
generates several versions of CUDA code depending on the
size ofM × N , i.e., the parallelism degree detected by the
compiler. The auto-tuning engine will find the best switching
points after several iterations of off-line training.
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Figure 5. GEMM Results for Small+MediumM × Ns
Figure 5 depicts the results for double precision matrix-

matrix multiply whereK is 4096 while varyingM × N

from 16 to 65536. The figure shows the absolute execu-
tion time for each case (except some long execution time
for block and warp versions atM × N >= 4096). As we
can see, whenM × N <= 64, the block version outper-
forms other techniques. This is because assigning an entire
block (at this size) to cooperatively compute one element in



C has a better chance of saturating GPU resources than as-
signing one thread per element. As the parallelism (M ×N )
increases, the warp version catches up and performs best in
the range of128 <= M × N <= 256. For M × N ex-
ceeding 256, HiDP’s thread version outperforms the other
two versions. In contrast, CUBLAS does not deliver the best
performance untilM × N reaches 32768. This implies that
the hand-written CUBLAS assigns multiple elements per
threads (a.k.a.thread fusion), which hurts performance for
cases whenM × N is small to medium.

Of course, this is by no means to say HiDP can replace
the GEMM in CUBLAS. For large-scale GEMM, CUBLAS
outperforms auto-generated code in HiDP by a large margin.
HiDP does not intend to compete with well-refined numer-
ical libraries. But what HiDP shows is that different code
transformation strategies are suited for different data inputs,
even on the same machine. It is necessary to emit a complete
selection of alternatives for auto-tuning.

4.2 3D Stencil Computation

An interesting group of computations that is well-suited for
GPUs are Jacobi stencil computations [9]. In stencil com-
putation, new values of elements are updated based on old
values of the local element and their neighbors. There are
different neighbor access patterns for different types of sten-
cil computation. HiDP detects such patterns and optimizes
them using on-chip Shared Memory to save off-chip mem-
ory bandwidth.

We select two stencil computations (7-point and the Hi-
meno benchmark) utilizing double-precision floating-point
and compare the performance of HiDP generated code with
another adaptive framework for stencil computations [23].
The details of the Himeno computation can be found in
[20, 21]. Figure 6 shows how Himeno is expressed in HiDP.
The main part is a map clause with a reduction suffix. The
map clause gives the user customized control of map itera-
tors, which exclude boundary indices in all three axes here.
Array accesses are assumed to be in the order of the declara-
tions of map iterators. Brackets can be omitted if the access
is independent per thread. For example,a0 inside the map
clause meansa0[i][j][k]. We can see that HiDP is almost as
concise as the domain specific language in [23]. By adding
a reduction using the map suffix, HiDP can even generate
reduction code inside the same kernel as the stencil compu-
tation, a feature not supported by other frameworks [23].

Because there is only a single-level map in HiDP and the
reduction is applied to all map iterators (a global reduction),
the compiler selects a kernel-level execution mode where the
entire map clause becomes a CUDA kernel. The reduction at
this kernel-level mode is a two-phase process involving both
the GPU and CPU: each block performs a block-level reduc-
tion and then the CPU reduces all local reduction values into
a single one.

The difference in performance (in GFlops) is shown in
Figure 7. HiDP generates a block size of16× 16 by default.

function himeno
input float a0[I][J][K], a1[I][J][K], a3[I][J][K], b0[I][J][K], b1[ I][J][K],

b2[I][J][K], c0[I][J][K], c1[I][J][K], c2[I][J][K], p[I ][J][K], wrk1[I][
J][K], bnd[I][J][K], omega;

output float gosa, wrk2[I][J][K];
{

map{
i:=[1:I−2]; j:=[1:J−2]; k:=[1:K−2];
s0 = a0∗ p[i+1][j][k] + a1∗ p[i][j+1][k] + a2∗ p[i][j][k+1] + b0∗(

p[i+1][j+1][k] − p[i+1][j−1][k] − p[i−1][j+1][k] + p[i −1][j
−1][k]) + b1∗(p[i][j+1][k+1] − p[i][j+1][k −1] − p[i][j −1][k
+1] + p[i][j−1][k−1]) + b2∗(p[i+1][j][k+1] − p[i+1][j][k −1]
− p[i−1][j][k+1] + p[i −1][j][k −1]) + c0∗ p[i−1][j][k] + c1∗
p[i][j −1][k] + c2∗ p[i][j][k −1] + wrk1;

ss = (s0∗ a3− p) ∗ bnd;
wrk2 = p + omega∗ ss;
ss2 = ss∗ ss;

}reduce(’+’, gosa, ss2, i:=[∗], j := [∗], k:=[∗]);
}

Figure 6. Himeno Benchmark in HiDP

In contrast, [23] uses off-line tuning to search for the best
parameters for a stencil. This difference contributes to the
performance difference between them. However, HiDP still
manages to reach at least70% of the GFlops performance.
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4.3 Sparse Matrix Vector Multiplication

A typical sparse matrix vector multiplication routine has a
two-level map block where the outer level iterates over each
row of the sparse matrix and the inner level iterates over
each element in the same row and then performs a reduction
on this row. The shape analysis generates a two-level nested
shape{[0 : row), ∗} for the second-level map clause. The∗
indicates that the parallelism degree is data dependent. This
uncertainty, if not further constrained by the user, leads the
HiDP compiler to try several options to determine which
execution mode to choose at the second level. The number
of rows is used by HiDP as the parallelism degree,i.e., it
determines which mapping has a better chance to utilize
all GPU computing resources. In the following, we show
results obtained by three decisions where the inner map is
executed (1) by an entire warp, (2) by a subwarp of 8 threads
(subwarp) and (3) by a subwarp of 4 threads (subwarp2). As
the number of rows for the sparse matrix increases, HiDP
tends to use less threads per inner map.

Figure 8 depicts the speedups achieved for each choice
using a hand-written sparse matrix vector library (CUSP) as
the baseline. We show two representations of the sparse ma-
trix here: CSR (Compressed Sparse Row) and COO (Coordi-
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Figure 8. Sparse Matrix Vector Multiply

nate List). On the X axis, matrices are ordered by increasing
number of rows from left to right. We see a clear perfor-
mance benefit of using fewer threads per row as the num-
ber of rows increases, with only a few exceptions near the
switching point. (In COO format, HiDP still chooses sub-
warp as the parallelization alternative for the scircuit matrix
— even though subwarp2 is slightly faster. This is due to a
significant performance loss of subwarp2 for the pwtk ma-
trix.) With our tuning capability, HiDP delivers very closeor
even better performance than hand-written CUDA code.

Another observation is that HiDP performs better in COO
format than CSR format in general. This is due to implemen-
tation differences between our HiDP code and CUSP for the
COO format: HiDP uses an auxiliary array to convert the
COO format into the CSR format and reuses the CSR ker-
nels. In contrast, CUSP performs segmented reduction for
the COO format, which turns out to be slower.

Just using the number of rows to determine the switching
point is by no means optimal. The distribution characteris-
tics (min, max and average etc.) of the number of non-zero
entries in each row of the sparse matrix should affect the de-
cision, too. The HiDP compiler, at this point, does not con-
sider these aspects for more advanced decisions. If equipped
with prior knowledge, the user has to manually choose the
appropriate implementation.

4.4 Particle Simulation
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Figure 9. Particle Simulation

As a demonstration of a pipeline of kernels, we choose
the particle simulation example of the CUDA SDK. We
simulate collisions of 128K particles in a cube (Figure 9(b)).
The core of the simulation consists of a sequence of steps: an
update of particle velocities and positions, hashing, sorting
and collision detection. After rewriting the algorithm into a

much more concise HiDP code, the compiler emits several
kernels similar to the hand-written code of the CUDA SDK.
As a result, the FPS (frame per second) metric shows little
difference (Figure 9(a)).

4.5 Quicksort

It is very easy to express quicksort in HiDP because HiDP
supports segmentedpartition and sort as built-in parallel
primitives (see Table 2). In HiDP, quicksort performs a few
iterations of partitioning with carefully chosen pivots. (We
use the average of the min and max.) In the beginning,
there is only one segment. The number of segments doubles
after each iteration. After the number of segments is large
enough (64 or more), we finish with segmented sort in a
separate map clause, which internally uses a merge sort
implementation.

We compare HiDP’s code with GPU-Quicksort, a hand-
written CUDA sorting library using quicksort [6]. GPU-
Quicksort also starts with partitioning an array into smaller
segments but then switches to bitonic sort. To the best of our
knowledge, it is the fastest open-source GPU implementa-
tion utilizing quicksort.

Figure 10 depicts the execution time of each implementa-
tion for 4 to 32 million unsigned integers. The input distribu-
tion is uniform. (We observed similar patterns for other input
distributions.) HiDP is able to keep up with GPU-Quicksort
in terms of performance. But in contrast to GPU-Quicksort,
HiDP shines in coding productivity: the total number of
source code lines for GPU-Quicksort, including both host-
side C++ and CUDA, adds up to about 900 lines. The equiv-
alent HiDP code is just short of 50 lines, more than an order
of magnitude less.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

4 8 16 32

E
xe

cu
tio

n 
T

im
e 

(m
s)

Number of Elements (millions)

GPU-Quicksort
HiDP

Figure 10. Quicksort



4.6 Bitonic Sort

Bitonic sort is a good show case for HiDP’s support of a
regular interface for parallel primitives because it always
works on segments of the same size and the total size has to
be a power of two. Here, we compare the performance with
that of the same algorithm released by Nvidia in the CUDA
SDK. In this example, auto-generated HiDP code achieves
up to80% of the performance of hand-written code (Figure
11). Similar to quicksort, bitonic sort in HiDP requires only
≈50 lines of code. In contrast, the hand-written CUDA SDK
requires more than 250 lines of code.
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5. Related Work
There are numerous propositions to extend existing lan-
guages with directional annotations. Leeet al. were the
first to support CUDA code generation with OpenMP an-
notations ([18, 19]). The StarSs programming model rep-
resents a group of variants (OmpSs [10], GpuSs [3]) un-
der a common theme: exploiting task-level parallelism via
compiler pragmas on task arguments. It relies on the read-
/write properties of task arguments to build a task depen-
dency graph and creates necessary memory copies. StarPU
[2] offers a unified task abstraction. Tasks can be imple-
mented by “codelet”, which targets different architectures.
Both StarSs and StarPU focus on run-time scheduling of
tasks and do not alleviate users from writing low-level ker-
nels. HMPP [22] and OpenACC [17] are recent approaches
to utilize OpenMP-like pragmas on parallelizable code sec-
tions, which are often do/for loops. Their optimization scope
is limited to block level. Both lack auto-tuning capabilities.

On the language side, Sequoia [12] adds memory hier-
archy as a first class feature in its language with task par-
allelism. It captures the importance of utilizing the mem-
ory hierarchy of modern architectures, which is also part of
HiDP’s optimization strategies. Chapel [7] and UPC [11]
are parallel languages for a Single Program Multiple Data
(SPMD) model of parallelism. They provide high degree of
programmability with a global address space. Chapel also
supports nested parallelism with mixed task and data paral-
lelism. C++ AMP [8] extends C++ to support data-parallel
accelerators. Nested parallel for loops are absent from C++
AMP, for it treats the underling accelerator as a flat archi-
tecture — unless the user uses language extensions to write
kernels in a similar manner to CUDA or OpenCL. None of

the above languages exploit the hierarchical execution model
of GPUs to the extend that HiDP does.

The Petabricks compiler [1] provides an encapsulation
of a function body that is similar to HiDP’s approach. This
modular design is convenient for compilers with auto-tuning
capabilities. In contrast, Petabricks’s tuning is for algorith-
mic choices. Users need to provide native code for each al-
gorithm.

An active research topic is source-to-source compiler
framework that translates well-established high-level lan-
guages (data-parallel Haskel, Python) to CUDA. Garg
and Amaral [13] propose compiling techniques to convert
Python loop structures and array operations to CUDA code.
But to stay efficient, they require the programmer to conform
to the style of the targeted language (similar to C++ AMP).
Copperhead [5] conforms to Python’s syntax as much as pos-
sible without introducing codelets. It advocates the mapping
of nested parallel structures into a hierarchical execution
model. Though this mapping can be directed by the end-user,
it is static and lacks the tuning capabilities that are essential
for performance, as shown in our work. CuNesl [24] is a
recent compiler framework to directly convert NESL [4], a
very concise data-parallel language supporting nested paral-
lelism. Similar to HiDP, it generates CUDA/C++ code from
high-level functional languages. This work identifies the ne-
cessity to convert recursive calls into iterative functions to
better match today’s GPU architecture. But it suffers from
non-negligible performance loss and memory footprint in-
creases. This is because the standard flattening method to
convert nested parallelism into its segmented counterpartis
too general and fails to efficiently utilize hierarchical re-
sources of GPUs.

Overall, HiDP provides a low-level, hierarchical STL-
like interface with data-parallel language features. The user
can concentrate on algorithmic design while benefiting from
the hand-crafted common primitives developed by architec-
ture experts. The single-entry function design helps to inte-
grate HiDP with an existing mixed language code base.

6. Conclusion
Inserting directional annotations to legacy code may be a de-
sirable method to take advantage of new compiling and ar-
chitecture features, yet such annotations limit the optimiza-
tion space, and their applicability is often restricted to only
selected algorithms. In practice, data structures and algo-
rithms tend to require changes to better utilize computational
resources of modern parallel architectures. High-level lan-
guages that embrace performance efficiency and coding pro-
ductivity seem to be a more promising solution to improve
performance.

This paper presents HiDP, a hierarchical data-parallel lan-
guage designed for efficient execution on today’s SIMT ar-
chitectures. HiDP allows users to express algorithms as a
mixture of both task-level and data-level parallelism. HiDP’s



compiler performs kernel fusion based on symbolic shape
analysis and integrates with common handwritten data-
parallel primitives. HiDP explores various execution map-
pings according to the application structure and searches for
appropriate dynamic switching points via auto-tuning.

HiDP’s motivation reaches beyond coding productivity.
Our experimental results show that HiDP is capable of
achieving good performance for many application types
compared to their hand-written counterparts. HiDP is an ac-
tive project with a forthcoming open-source release.
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