
NoCMsg: Scalable NoC-Based Message Passing

Christopher Zimmer, Frank Mueller

North Carolina State University, Raleigh, NC, USA

mueller@cs.ncsu.edu

Abstract—Current processor design with ever more cores
may ensure that theoretical compute performance still follows
past increases (resting from Moore’s law), but they also increas-
ingly present a challenge to hardware and software alike. As
the core count increases, the network-on-chip (NoC) topology
has changed from buses over rings and fully connected meshes
to 2D meshes. The question is which programming paradigm
provides the scalability needed to ensure performance is close
to theoretical peak, where 2D meshes provide the most scalable
design to date.

This work contributes NoCMsg, a low-level message passing
abstraction over NoCs. NoCMsg is specifically designed for
large core counts in 2D meshes. Its design ensures deadlock
free messaging for wormhole Manhattan-path routing over the
NoC. Experimental results on the TilePro hardware platform
show that NoCMsg can significantly reduce communication
times by up to 86% for single packet messages and up to 40%
for larger messages compared to other NoC-based message
approaches. Results further demonstrate the potential of NoC
messaging to outperform shared memory abstractions by up to
93% as core counts and inter-process communication increase,
i.e., we observe that shared memory scales up to about 16 cores
while message passing performs well beyond that threshold on
this platform. To the best of our knowledge, this is the first
head-on comparison of shared memory and advanced message
passing specifically designed for NoCs on an actual hardware
platform with larger core counts on a single socket.

I. INTRODUCTION

The future of computing is rapidly changing as multicore

processors are becoming ubiquitous. While multicores offer

tremendous opportunities to meet processing demand, this

comes at the expense of limited scalability due to on-

chip (interconnect) and off-chip (memory) resource con-

tention. This presents a challenge to server, cloud and high-

performance computing with projections requiring program-

mers to harness node-level parallelism of hundreds of cores.

Contemporary shared memory techniques have been

shown to fall short in scaling, particularly as the single sys-

tem image (SSI) remains the traditional system abstraction.

SSI was a good match for bus-based multiprocessors in the

past. However, bus-based designs do not scale well (even

beyond four processors) and have been replaced by mesh

interconnects (e.g., Hypertransport, Quick Path Interconnect)

with currently up to 16 cores per socket and, for high core

counts, tile-based architectures with 2D meshed network-on-

chip (NoC) interconnects [4], [5], [23], [18], [3].

This work was supported in part by NSF grants CNS-0905181, CNS-
0958311, CNS-1239246 and a subcontract from SecurBoration.

But mesh-based systems with MESI-style coherence pro-

tocols enhanced by coherence filters [17] may limit scalabil-

ity in the number of cores. E.g., the multikernel (aka. Bar-

relfish) follows a distributed kernel paradigm that employs

messages in an off-chip mesh interconnect of Hypertransport

links [8]. It shows that messaging can outperform shared

memory for configurations of just eight processors.

Contributions: This work assesses whether large core

counts with 2D mesh NoCs scale better in performance un-

der a shared memory protocol or under NoC-based message

passing. It further identifies flow control as a major hurdle

in gleaning additional performance from message passing. It

presents techniques within the implementation of an MPI-

like runtime system [11] for NoCs, removes flow control

where it is not needed and assesses the performance impact.

The paper details the design and implementation of

NoCMsg, a low-level message passing abstraction over

NoCs. The design reduces the number of software layers

compared to prior work. NoCMsg builds on the abstraction

of a distributed memory architecture between cores, i.e., it

does not utilize shared data memory at all. It is specifically

designed for large core counts in 2D meshes. Its design

ensures deadlock free messaging for wormhole Manhattan-

path (dimension-ordered) routing over the NoC. This is in

contrast to low-level NoC messaging, where limited message

buffer space may result in deadlock [6] when a pair of

cores sends messages to each other, i.e., they may send

flits of messages until all buffers overflow without ever

draining them by issuing receives. This results in senders

involuntarily stalling their processor pipeline until the trans-

fer can complete. Instead of employing virtual channels that

monopolize NoC links between end points, NoCMsg adap-

tively alternates between sending and receiving by sensing

buffer thresholds. More significantly, NoCMsg is able to

relax communication constraints by exploiting pattern-based

communication common in MPI runtime systems to identify

areas in which flow control is unnecessary.

Experimental results on the TilePro hardware platform

show that NoCMsg has lower latencies and provides higher

throughput for small messages than past NoC-based messag-

ing abstractions. Performance improvements of up to 86%

are observed in communication for single packet messages

and of up to 40% for larger messages. NoCMsg is also

significantly more scalable than prior messaging techniques,

as shown for a subset of the NAS Parallel Benchmarks [7].

Another contribution is the comparison between message

passing and shared memory on the same NoC architecture,

where the former is supported in firmware while the lat-

ter is implemented by NoCMsg in software. Experiments

demonstrate the potential of NoC messaging to outperform

shared memory abstractions, such as OpenMP, up to 93%

beyond 16 cores. To the best of our knowledge, this is the

first head-on comparison of shared memory and advanced

message passing specifically designed for NoCs on an actual

single socket hardware platform with larger core counts.

II. BACKGROUND

NoCs utilize traditional network communication for inter-

processor communication. Data is transferred between cores

as messages. These are broken into fixed sized packets com-

posed of flow control digits (flits). Messages are packetized

and transferred via XY dimension-ordered wormhole routing

in 2D meshes. This design is common to several NoC ar-

chitectures [10], [5]. Contemporary NoCs feature increasing

throughput in communication. This becomes feasible due to

simplistic routing protocols to single cycle per-flit transfer

latencies (in the absence of contention, as we will see).

Unfortunately, without more advanced hardware protocols

or structured software libraries, bare-metal message-passing

can lead to deadlocks. As an example, consider wormhole

routing on the TilePro 64. Wormhole routing describes a

packet transfer strategy, where pathways through the switch-

ing network are opened by the head of the packet and

remain open until the final flit of the packet is seen. The

ramification of this is that packets of other messages crossing

a currently open path remain blocked until this wormhole

is closed. This alone does not result in deadlock as long

as packets transfer successfully. The problem arises when

SRAM buffers reach capacity on a receiving switch and

its attached core is unable to drain the buffer. When this

situation occurs, a crossing packet will be stalled mid-flight,

blocking the packet’s sender and any other cores sending

data that share any portions of that packet’s path.

As an example of a deadlock, consider two tasks shown

in Figure 1 transferring fixed size buffers to each other

concurrently. In the Tilera architecture, the receiving tasks

can buffer up to 127 words. However, when the buffer

becomes full the switching network must wait until flits are

drained before transferring any remaining flits. Exchanging

contiguous buffers of size greater than 127 words will result

in deadlock for the two cores and any messages that need

to traverse the route between these two cores.

Solutions to avoid blocking commonly involve interrupt-

based channel creation. Tilera’s iLib communication library

uses channel creation through protocol messages. Once a

channel is created, the buffer can be transferred. Unfor-

tunately, protocol messages are also subject to deadlock.

Hence, the library must provide a timeout interrupt to break

out of the communication so that the sending process can

drain pending receives before continuing to send packets.

Figure 1. Message Passing Deadlock

III. DESIGN

The objective of our work is to design a close to bare

metal NoC-level messaging protocol without deadlocks and

with reduced flow control to lower overheads.

We assume a generic, generalized 2D mesh NoC switch-

ing architecture similar to existing fabricated designs with

high core counts, which is a viable solution for future

microprocessor design. Notice that even 3D stacking of

memories still assumes a single silicon layer of processing

cores at the top of the stack due to thermal constraints,

likely with a 2D NoC mesh to ensure scalability. Each core

is composed of a compute core, network switch, and local

caches. We describe constraints of such an architecture next

and discuss its relation to our NoC message layer design.

A. NoC Architecture

NoC architectures use the network-on-chip to replace the

conventional system bus or other topologies of connecting

cores. This means that all memory, messaging, and I/O

communication occur over the NoC, often through physi-

cally separate networks to reduce contention. E.g., proces-

sors from Adapteva [1] feature three networks and Tilera’s

TilePro [5] five networks. The Intel SCC [3] only has a

single network and does not natively support coherence over

this network, just messaging. For the purpose of this work,

we focus on the messaging network. In NoCs, messages are

used for inter-processor communication. This deviates from

system-bus networks that only support shared memory as

a means of communication. Similar to traditional networks,

messages are split into packets containing information for

routing within the switching network. A packet contains a

payload of data for the recipient. Our work focuses on 2D

mesh core layouts. Yet, our contributions to flow control

operate irrespective of the switch topology (extending to

future stacked 3D meshes).

(a) Core - Switch Topology (b) Path-Based Back Pressure

Figure 2. NoC Routing over Switches and Links

B. Cores

A compute core interacts with its switch using input and

output queues that are accessed via specialized registers as

depicted in Figure 2(a). When the output queue from the

core to the switch becomes full, subsequent writes to this

queue will stall the pipeline until there is space for the write.

The inverse also holds: when the input queue is empty and

the queue is read, the pipeline stalls until data is available.

C. Switches

Switches are generally composed of multiple sets of input

and output queues attached to a crossbar switch. Each

output queue is mapped to input queues of neighboring

switches to support the flow of flits. In wormhole networks,

header packets create mappings of output queues to input

queues as they traverse the network. The mappings are

revoked as a switch services the tail flit of the corresponding

packet. To enable the detection of open input ports, output

ports maintain a set of N transfer credits. When a flit of

data is placed into an output queue, a credit is consumed.

When that credit is transferred to the subsequent input port,

either between the core and switch or between two separate

switches, the credit is refunded. Credits are checked when

an internal mapping is established between an input queue

and an output queue. If the output queue is unable to receive

any data due to a lack of credits, no additional output data

may be transferred until credits are refunded. This is shown

in Figure 2(b) where core 1 is sending a message to core 4.

Using XY dimension-ordered routing, this message passes

from core 1’s output queue to switch 1’s east output queue.

Each post decrements a credit when the flit of data enters

the queue. Switch 1’s east output queue will then transfer to

switch 2’s input queue, and switch 2 will set the cross bar

to transfer the packet to switch 2’s south output queue, if

enough credits exist in the south output queue. Subsequently,

switch 4’s northern input queue will receive the flits from

switch 2’s southern output queue and refund credits. Switch

4 will then create a mapping of the northern input queue

onto the core’s input queue. Incoming flits into core 4’s input

queue will be automatically buffered in a larger SRAM FIFO

buffer until no more data can be transferred.

D. Credit Monitoring: Back Pressure Check

We assume that output queues maintain a series of credits.

Only if credits are greater than zero can more data be added

to a queue; otherwise, the pipeline will stall. It is these

credits that make up the basis of our flow control technique.

We assert that by checking credits on the sender side’s output

queue, we can avoid deadlock and reduce the cost of sending

messages using virtual channel flow control techniques. In

the following, we characterize back-flow resulting from two

types of blocking in the network. The first is receiver-side

buffer blocking. In this situation, the receiver-side SRAM

buffer has reached capacity and is unable to accept any

more data. This implies that the receiver’s local input queues

are unable to move any data into SRAM, effectively halting

refunds of queue credits to the output queues on the previous

core in the path. Figure 2(b) gives an example where node

4 is unable to receive any more data. This back pressure

can only be resolved if node 4 actively drains the network

to free up space within its hardware buffers. The second

type of back pressure in Figure 2(b) occurs when a switch is

unable to route a packet due to an open wormhole path. The

message sent between cores 1 and 4 is blocking a message

sent from cores 2 to 4. Here, blocking can only be resolved

by ensuring the message between 1 and 4 completes.

Our design addresses this in a generalized fashion via a

polling work loop that cycles between computation, send-

ing, and receiving of data. The underlying credit checking

scheme is specific to Tilera, but any other resource manage-

ment could be used in its place, e.g., co-processor failure

registers for non-blocking transfers.

IV. IMPLEMENTATION

Our high-level design has been implemented in NoCMsg

on the Tilera platform, yet our general design from Sec-

tion III extends to any 2D mesh NoC architectures. NoCMsg

provides an MPI-like API with modified semantics to specif-

ically unleash the potential of NoC efficiency, e.g., by inte-

grating credit-checking flow control and optional elimination

of flow control. This results in significant performance im-

provements when an application or internal message-passing

runtime routines allow the omission of flow checking.

The difference between flow- and non-flow control com-

munication is seen in the following API prototypes, which

underline the close resemblance between NoCMsg MPI.

A regular “Send” operation even mimics the flow control

constraints (in terms of blocking requirements) of its equiv-

alent MPI call. In contrast, “Xsend” eliminates flow control

altogether, i.e., it differs fundamentally in the underlying

semantics and operates at the architectural level instead of

utilizing operating system / MPI runtime capabilities. (The

sync parameter is explain next.)
NoCMsg_Send(void *buf, uint32_t size,

NoCMsg_Datatype dt, uint32_t dest,

NoCMsg_Comm comm) // flow control

NoCMsg_Xsend(void *buf, uint32_t size,

NoCMsg_Datatype dt, uint32_t dest,

NoCMsg_Comm comm, bool sync) // no flow control

A. Point-to-Point Messages

The basis of NoCMsg is factored around asynchronous

work loops during which sends and receives are issued

based on the availability of resources. These asynchronous

messages provide building blocks for synchronous commu-

nication, collective operations, and barriers. As previously

described, point-to-point messages are subject to deadlock

in the absence of flow control due to the nature of the NoC

switching architecture. As such, we employ back pressure

monitoring to ensure absence of deadlock for any message

transactions. This is ensured by implementing a work loop

broken into two alternating operations for asynchronous

communication.

(1) Trysend implements conditional sending of a message.

During the send of a packet of flits, the output queue’s

available credits are inspected. We then place as many flits

in the output queue as credits are available, i.e., credits are

queried for each and every transfer. If no credits are left,

control is returned to the work loop.

(2) Tryreceive implements conditional data reception. The

MPI ready-send specification for point-to-point sends and

receives requires synchronization between any send/receive

pairs [11]. For synchronous communication, this means a

send will not be completed until the sender has seen an

acknowledgment from the receiver. In asynchronous com-

munication, send and receive will initiate communication,

yet may return from the API call before the operation

completes. Should a matching sender-side MPI Wait() call

follow, then a similar acknowledgment has to first be seen by

the sender. An MPI Wait() after an asynchronous receive, on

the other hand, simply indicates that the receive completed.

These requirements for acknowledgments and completion of

calls ensure ordering within the packet stream with respect

to a given sender/receiver pair. When MPI Wait calls are

present, this can be exploited for flow control elimination.

NoCMsg introduces so-called synchronous non-flow con-

trolled messages that diverge from MPI in terms of their

semantics. Its objective is to exploit common communi-

cation patterns found in the implementation of collectives

within the message-passing runtime but also in application

codes. Synchronous non-flow controlled communication is

supported for send and receive operations for (a) regions

between collective communication and (b) within the im-

plementation of barriers if no flow control is required.

We identify these patterns based on (a) the communication

object of collectives and (b) the analysis of communication

patterns in benchmarks.

The implementation of non-flow controlled transfers re-

quires a small setup overhead to synchronize the sender

and receiver if the buffer is larger than a packet. This is

shown in the code presented above: The non-flow controlled

calls feature a synchronization boolean and execute a send

that bypasses any credit checking. This has the side effect

of avoiding data congestion, which increases performance.

After this synchronization, full messages can be transferred

without the use of any interrupts or credit checking. A

drawback of exposing flow-control free operations is that

semantic correctness, when utilized, is not dynamically

checked. A developer could choose this capability to op-

timization and subsequently introduce errors to the program

logic that may result in communication deadlock. To avoid

such semantic violations, we promote an inspector-executor

step detailed next. (Static or dynamic checkers could also

be utilized but are beyond the scope of this paper.)

�

�

�

�

�

�

�

�

�

	

��

��

��

��

�
�
��
����
��
�
��
�

�
�
��
�	

��
�

��
�
�
�

	
�
���

�
�����	

��

�
�
��
����
��
�
��
�

�
�
��
�	

��
�

��
�
�
�

	
�
���

�
�����	

��

�
�
�������

��
�
�	

��
�

��
�
�
�

	
�
����
�
��
��

�
�
�������

��
�
�	

��
�

��
�
�
�

	
�
����
�
��
��

�
�
��
����
��
�
��
���
�
��
�
	
�	
�
���

�

�
�	

��
�

��
�
�
�

	
�
�����

	
����
	
��

�

�
�
��
����
��
�
��
���
�
��
�
	
�	
�
���

�

�
�	

��
�

��
�
�
�

	
�
�����

	
����
	
��

�

�
�
�������

��
�
�	

��
�

��
�
�
�

	
�
����
�
��
��

�
�
�������

��
�
�	

��
�

��
�
�
�

	
�
����
�
��
��

�
�
��
����
��
�
��
���
�
��
�
	
�	
�
���

�

�
�	

��
�

��
�
�
�

	
�
�����

	
����
	
��

�

�
�
��
����
��
�
��
���
�
��
�
	
�	
�
���

�

�
�	

��
�

��
�
�
�

	
�
�����

	
����
	
��

�

Figure 3. Profile Detected Communication Regions

The challenge is to identify if flow control can be safely

removed in certain message transfers. To this end, we

profiled applications to identify regions of code with suitable

communication patterns. A NoCMsg profiling run produces

information about sender and receiver, code region mapping,

and communication type, i.e., synchronous or asynchronous.

This data is the basis for the construction of unique com-

munication flow graphs for each region, where collective

operations and barriers mark region boundaries. This data

is subsequently analyzed to detect communication patterns

that inhibit flow-control elimination (e.g., due to cycles). The

approach is conservative in that regions that may require

flow control are excluded when in question. For example,

asynchronous communication that crosses a collective, i.e.,

an asynchronous send before the barrier on one side with

a matching receive after the corresponding barrier on the

other side, will be excluded. On the positive side, special

patterns, such as pairwise exchanges (send/receive pairs) are

detected and subsequently optimized via ordering by rank to

eliminate flow control. Figure 3 shows an example of a set

of detected patterns. In the figure, bars show barriers or other

collectives that separate different regions of code. Regions

of code are marked to indicate the type of communication

they contain.
for i = 1 .. n for i = 1 .. n

MPI IRecv(,stencil[i], , req); NoCMsg Xchng(,stencil[i],);
MPI Send(,stencil[i],); NoCMsg Barrier();
MPI Wait(req,);

(a) Original Code (b) Flow Control Removed

Figure 4. Flow Elimination for NAS Benchmark CG (Stylized)

A concrete example is given in Figure 4, which depicts a

stylized code excerpt from the NAS benchmark CG before

and after flow control elimination. Before, a non-blocking

receive followed by a blocking send and a wait (for receive

completion) are issued per rank/core. The dynamic profile

indicated that CG uses a 2D neighbor communication pattern

(“stencil”) of pairwise independent exchanges. After flow

elimination, exchanges are followed by a barrier, where the

exchange initiates a receive followed by a send if the local

rank is lower than the destination, otherwise vice versa.

Notice that the barrier separates rounds of pairwise neighbor

communication and thus contributes to a contention free

NoC. Such flow elimination would not have been legal if

nodes were subject to multiple receives per round as this

could result in low-level deadlocks as described before.

B. Collectives

Collective operations offer significant opportunities to

eliminate flow control since one can make safe assertions

about the content of the network messages in flight at a

given point in time for NoC communication. This assumes

that the NoCMsg program is the only program executing

on the NoC (or, at the very least, is contained in a hard-

walled NoC grid) effectively isolating the grid network ports.

Collectives communicate data among all processes of a

group. As an example, consider two common collectives,

broadcast and reduction. Their semantics require no flow

control to exchange messages.

The first criterion for flow control elimination is that

there is a single known sender or a single known receiver.

Broadcast and reduction meet this criterion. The second

criterion is the presence of synchronization prior to the col-

lective and that no asynchronous communication is in flight.

This guarantees absence of in-flight point-to-point messages

before non-monitored message transfers are triggered.

Alltoall and alltoallv are most demanding (in terms of net-

work contention) and allow the elimination of flow control.

Based on the particular internal send and receive orders in

these collectives, it is possible to guarantee flow-control free

communication for pairwise core transfers. A single receiver

is acquiring data from all cores at any given time in our

design ensuring deadlock freedom due to the acyclic pattern.

C. Barriers

Our current implementation of collectives requires prior

synchronization of execution for deadlock free communica-

tion. We have created a new barrier interface specifically

for this purpose that also improves performance over a

shared memory barrier design. In order to provide scalable

barriers, we implemented tree-based barriers that distribute

the work evenly among nodes and thus improve balance

by reducing the cycle differences upon barrier completion.

Our Tilera implementation utilizes rooted n-ary trees to this

end. The root of this tree is placed in the center of the

NoCMsg grid to minimize latency (hops). The process of

synchronization is simple: Children notify their parents when

they have entered the barrier, up to the root. Once the root

has received notifications from all children, it broadcasts a

notification back down the tree by sending to its children

and exits, as do the children. To guarantee isolation for

processes that have not yet entered the barrier, we use a

separate SRAM buffer. This also eliminates the need to

use the standard packet header, which would unnecessarily

increase the size of a synchronization packet. Flow control

is not needed in barriers as the prerequisite of entering into

a barrier is that all outstanding sends and receives on the

local core are complete. The synchronization packet is small

enough to fit into the output queue, i.e., the core can drop

an entire synchronization packet into its output queue. It can

subsequently begin a blocking send operation that halts the

core’s pipeline until synchronization packets become avail-

able. This technique significantly reduces synchronization

costs when all cores are ready (see Section VI).

D. Network Partitioning

Flow-control elimination should be considered in the con-

text of network partitioning. The techniques discussed in this

work assume run-to-completion tasks and absence of cross

communication from outside task sets. This does not mean

that outside task sets are unable to use these links, only that

they cannot address messages to nodes within an external

task set. However, utilization of these switches by outside

task sets can create additional communication contention

affecting performance. With this in mind, tasks are mapped

within grids to reduce the possibility of perturbation of

results by parallel task deployments in our experiments.

V. FRAMEWORK

Experiments were conducted on a Tilera TilePro proces-

sor, namely a 700MHz 64-core version (TilePro 64) with

floating point emulation in software [5]. Programs were

compiled with Tilera’s MDE 3.03 tool chain at the O3

optimization level with Tilera’s C/C++/Fortran compilers

that also support OpenMP.

OpenMP experiments run with enabled coherence (L3

on). The L3 is called a virtual cache since the processor has

local L1 and L2 caches, where portions of the L2 caches

of all cores can optionally be combined into a distributed

(virtual) L3 cache. The L3 cache is directory based (uses

address hashing) and supported by the memory dynamic

network (MDN). Notice that the MDN has twice the band-

width of the user dynamic network (UDN). Even though this

puts NoCMsg at a bandwidth disadvantage relative to shared

memory, NoCMsg over UDN comes out ahead beyond 16

cores, as will be shown.

Experiments comparing NoCMsg and OperaMPI were

conducted under disabled cache coherence (hash-based dis-

tributed virtual L3 turned off). All messages are routed over

the UDN. OperaMPI [14] implements the MPI 1.2 standard

[12] for C. It is layered over Tilera’s iLib, an inter-tile

communication library that utilizes the UDN NoC network.

We ported iLib and OperaMPI from MDE 2.0 to 3.03 for

a fair comparison. We make OperaMPI compatible with

Fortran by adding wrappers. The iLib library is vendor-

supplied and allows developers to easily take advantage of

many of the features provided by the Tilera architecture,

including message passing. Point-to-point messages are di-

rectly supported by iLib and closely resemble the equivalent

MPI semantics. Internally, iLib utilizes interrupt-based vir-

tual channels and complex packet encodings to synchronize

senders and receivers for establishing point-to-point con-

nections. However, iLib only supports a limited number of

collective operations, namely broadcast and barrier. Hence,

OperaMPI creates virtual overlaps (e.g., trees for reductions)

to implement more complex MPI collectives such as all-to-

all communication, all-gather/scatters, reductions etc.

Experiments were conducted for the NAS Parallel Bench-

mark (NPB) codes [7] Version 3.3 for OpenMP, OperaMPI

and NoCMsg. Inputs were modified to allow weak scaling

[13] within L2 sizes: As the number of cores is increased,

overall problem input sizes are proportionally increased as

well so that the core-specific data remains constant and fits

into the L2 cache of a local core. Constraining the problem

to L2 exposes the overheads of NoC-level communication

for these benchmarks without being skewed by off-chip

memory references, which otherwise dominate. Hence,

the L2 fit of data allows the assessment of asymptotic

behavior of multicores with near-perfect locality (e.g., for

perfect multi-level tiling) instead of being skewed by off-

chip memory bandwidth of a given architecture.

We also ported a term frequency/inverse document fre-

quency (TF*IDF) benchmark for document clustering based

on prior work [24], which follows a map-reduce paradigm

[9]. Its inputs also follow the weak scaling paradigm for L2

resident data sets.

VI. EXPERIMENTAL RESULTS

We evaluate NoCMsg by comparing shared memory and

message passing using micro benchmarks and application

benchmarks on the Tilera. We refer to shared data memory

whenever we use the term shared memory here. Instructions

have little to no impact on data for tested benchmarks since

instruction cache are warmed up first.

A. Microbenchmarks

We compared message passing over the UDN with shared

memory transfers over the coherence interconnect in a

bandwidth micro-benchmark. Figure 5 indicates that shared

memory incurs roughly twice the cost of message passing

(both without hashing). UDN messages follow a one-sided

push model (sender initiated) while shared memory accesses

are pull based (receiver initiated) and require at least two

messages for a single transfer. Hash-based distributed caches

reduce the shared memory overhead but the overhead still

remains higher than sending messages without hashing, es-

pecially for larger transfers. (Notice: Hashing interferes with

larger messages while reducing overhead for shorter ones

as long as the transferred data fits into local caches.) The

differences between shared memory and message passing

become even more significant as the distance (hop count)

between cores in the NoC increases and as NoC contention

increases. These results indicate that message passing has

the potential to outperform shared memory transfers with

superior scaling characteristics of the former over the latter.

Figure 5. Shared Memory/Messages NoC Bandwidth
L3 hashing results in a uniformly distributed address space

over the virtual L3 cache where core affinity is determined

by a hash function. Hashing can thus significantly increase

the performance of shared memory by reducing the average

distance to cached data and by increasing cache capacity

of L3 to the aggregate of all L2 caches. However, this

performance increase does not come for free. Even accesses

to small data structures that might otherwise fit into L2 are

redirected to remote L3. Furthermore, performance benefits

come at the cost of jitter since accesses to distributed L3

have variable hop counts (NUCA) over the NoC. Figure 6

shows the effects of data transfer in terms of jitter. In both

message and shared memory transfers where home cache

hashing is turned on. There is noticeable jitter even in the

absence of contention due to additional tasks. In a shared-

memory system design, both the operating system and the

application increasingly suffer from such latencies as the

core count increases. While the total amount of jitter may

be small for single-threaded code, jitter has the potential to

aggregate as the number of cores increases. This may result

in unbalanced execution where more and more cores remain

idle prior to global synchronization (e.g., barriers). We term

this effect perturbation, discussed it in the next experiments.

Figure 6. Shared Memory/Messages NoC Jitter [1MB Xfer]

B. NAS Parallel Benchmarks

We chose NPB since OpenMP and MPI versions exist for

each code, much in contrast to other parallel benchmarks

that only provide shared memory codes. In contrast to NPB’s

default strong scaling inputs, we used our own weak scaling

(a) IS (b) LU (c) SP

(d) CG (e) FT (f) MG

Figure 7. NPB Weak Scaling Results

inputs [13] where the data set per core is of fixed size. This

weak scaling input size is shown on the secondary y-axis in

each of the following figures. Weak scaling ensures that the

computational work per core remains the same as the number

of cores cooperating in a parallel application is increased.

Note that all of these benchmarks except IS and TF-IDF

operate on floating point or complex data types. The TilePro

64 does not contain any floating point pipelines, i.e., floating

point calculations are realized via software emulation. This

leads to more time spent in computation vs. inter-processor

communication, which gives shared memory an advantage

(due to a reduced fraction of communication) over message

passing as discussed next.

Results for the integer bucket sort benchmark IS, the only

integer benchmark for NPB, are depicted in Figure 7(a).

The weak scaling input is 64KB per core (horizontal line

above bars corresponding to the secondary y-axis). The

primary y-axis indicates wall-clock time of the benchmark

run for different numbers of threads/cores. NoCMsg (left

bars) is roughly at par with shared memory (right bars) up

to 4 processors but then significantly outperforms shared

memory. This is due to dominating frequent collectives

(alltoall[v]) relative to the computational part. We not only

observe significantly higher performance but also lower

perturbation of NoCMsg starting at just 8 processors. The

execution time under OpenMP increases quadratically while

that under NoCMsg remains close to linear as the processor

count increases with over a twelve-fold speedup at 32 cores.

Figures 7(b) and 7(c) show results for the two NPB codes

LU and SP. Both solve non-linear partial differential equa-

tions using standard solver techniques. In both benchmarks,

the weak scaling input is 4KB per core (see horizontal

line corresponding to the secondary y-axis). Shared mem-

ory (right bars) provides faster performance than message

passing (left bars) for low core counts. This is due to

the fact that the shared memory network has twice the

bandwidth of the UDN (for messages). At 16 cores, inter-

processor communication and L3 contention start to hurt

performance due to perturbation, indicated by the range

of execution times depicted through the error bars. For

LU at 32 cores, perturbation becomes more frequent. For

SP at 49 cores, the worst measured perturbation is almost

50% greater than the average performance. The perturbation

shown across all of these results is caused by increased

wait times for shared memory accesses as inter-processor

communication increases with the core count. It ultimately

results in unbalanced computation and idle cores around

global synchronization via collectives, e.g., barriers.

CG estimates eigenvalues using the conjugate gradient

method. FT is a Fast Fourier Transform solver for par-

tial differential equations. The results for CG and FT in

Figures 7(d) and 7(e) are similar to those of LU and SP.

However, CG and FT exhibit less computation and more

inter-processor communication. Both benchmarks show that

inter-processor communication eventually dominates results

under core scaling resulting in considerably fluctuating time

perturbation, even though a significant amount of com-

putational power is expended on software emulation of

floating point operations. OpenMP thus shows significantly

worse performance and larger perturbation (error bars) for

higher core counts. Perturbation from L3 contention in both

benchmarks becomes dominant at 16 and 32 cores.

Figure 7(f) depicts the results for MG, a multigrid approx-

imation benchmark for discrete Poisson equations. MG is the

only benchmark without enough inter-processor communi-

cation to generate an effect on performance. This benchmark

was extremely limited in sizes due to a communication

pattern that grew with the number of processes. It is also an

(a) FT (b) CG (c) IS

Figure 8. NoCMsg vs. OperaMPI

extremely memory intensive benchmark resulting in large

performance benefits of OpenMP over NoCMsg at two

cores. But these benefits rapidly diminish at larger core

counts. Once again, this benchmark shows a trend toward

high perturbation under OpenMP with increasing core count.

This indicates that subsequent increases in process/thread

count beyond 32 might lead to decreased performance for

MG, just as in the other NPB codes. Unfortunately, due to

hardware limitations and power of two constraint in core

counts of the MG code, we were unable to test at 64

processes/threads.

Benefits of message passing for larger core counts are

dominated by savings in communication time for all NAS

benchmarks, illustrated as stacked bars for computation and

communication as lower/upper part, respectively, of the bars

in Figure 9.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

N
oC

M
sg−LU

O
peraM

PI−LU
’

N
oC

M
sg−FT

O
peraM

PI−FT

N
oC

M
sg−C

G

O
peraM

PI−C
G

N
oC

M
sg−IS

O
peraM

PI−IS

N
oC

M
sg−M

G

O
peraM

PI−M
G

N
oC

M
sg−SP

O
peraM

PI−SP

S
ec

o
n

d
s

Communication Time

CPU Time

Figure 9. NPB Code: NoCMsg vs. OperaMPI over 32 Processors

The performance differences between the NPB floating-

point codes and the integer code IS underline the potential

of this architecture for other codes (NPB and beyond). If

a pipelined floating point unit were added, the performance

of these benchmarks would increase significantly creating

an even even wider gap between OpenMP and NoCMsg

as communication would become more dominant relative to

computation.

C. Flow Control Elimination

Our next set of experiments focuses on the elimina-

tion of flow control for easily identifiable coding patterns

mostly inside of collectives utilized by the NPB codes.

Initial findings indicate that while our flow-control method

is portable, synchronization requirements within the MPI

specification coupled with flow control resulted in NoCMsg

and the interrupt-based OperaMPI to perform at par for

virtually all of the benchmarks. However, as detailed in

the design section, the implementation of collectives in the

runtime and application-side point-to-point communication

provide opportunities to relax synchronization constraints by

employing flow-control free communication. Figures 8(a),

8(b), and 8(c) show the benchmark results just for the

communication time of FT, CG and IS after varying amounts

of flow control were removed in a safe/conservative manner

(cf. design section).

The primary communication in FT is an alltoall collective.

Such collectives allow elimination of flow control since

all processes participate. After eliminating flow control,

significant improvements to the communication performance

of NoCMsg were observed (see Figure 8(a)). The primary

reason for the scalability of NoCMsg is that the minimum

cost transfer is very small for flow-control free communi-

cation (on the order of just a few cycles). OperaMPI incurs

much higher overheads (factor 7X − 8X) due to interrupts

and protocol messages.

Figure 8(b) shows communication time results for CG.

CG has several regions where synchronized MPI commu-

nication can be replaced with flow-control free communi-

cation. Since CG exclusively transfers data as a series of

exchanges, it can guarantee that flow control free communi-

cation can be utilized, i.e., message ordering is guaranteed

due to the application and NoC characteristics. By replacing

these regions with flow-control free exchanges, improve-

ments up to 40% are observed for NoCMsg at 32 processes.

Notice that there is a synchronization requirement in CG

when transitioning from 8 to 16 processes due to a changing

communication pattern resulting in a significant increase

in communication cost due to additional synchronization

messages. From 16 to 32 processors, communication times

stabilize again.

Results for IS are depicted in Figure 8(c). IS features

several patterns where flow control can be reduced without

major modification to the application. The most significant

one is in the implementation of the alltoallv collective. This

function represents the majority of communication in IS.

Flow control elimination results in a 62% improvement in

communication performance at 32 processes.

(a) NocMsg vs. OpenMP (b) NoCMsg vs. OperaMPI

Figure 10. Integer Application Benchmark TF*IDF

For the remaining NPB codes, the communication patterns

and use of collectives provided limited opportunities to elim-

inate flow control. Their performance behavior is dominated

by MPI synchronization and flow control. Hence, we observe

equivalent communication times for OperaMPI and NoCMsg

for SP, LU, and MG and omit figures due to that fact.

We also evaluated TF*IDF, a document classification

technique to identify important terms over large sets of

documents. TF*IDF is broken into two separate algorithms.

TF (term-frequency) classifies unique terms and their oc-

currence frequencies on a per-file basis. IDF (inverse doc-

ument frequency) combines TF data and accounts for term

frequencies over the full set of documents. This problem

is traditionally used in data mining. Two challenges in

this problem are the large amount of required dynamic

memory allocation and the reduction of IDF data in a parallel

implementation.

In our first TF*IDF experiment, we compared the wall-

clock time for NoCMsg to OpenMP (see Figure 10(a)).

We observe a disparity between performance that is almost

a factor of 9X at 20 processes. This is primarily due to

the required synchronization for heap allocation (C++ new)

of STL calls for OpenMP. Heap allocation is protected

by a lock to ensure thread safety. This lock contention

results in inferior scalability for OpenMP due to increasing

number of threads contending for the lock by spinning on

shared memory inflicting high coherence protocol traffic.

NoCMsg does not experience this problem since it features

a distributed execution paradigm of separate address spaces.

The OpenMP problem could be addressed algorithmically

by pre-allocating heap data at initialization time (similar to

NPB codes). But the TF*IDF algorithm does not adhere

itself to pre-allocated data as data structures are dynami-

cally determined and allocated, which is common for many

C++/STL codes. One could implement private heaps for the

TF calculation, yet would have to switch to global ones

for IDF, where the problem remains. We did not go this

route as we wanted to assess the benefits of TF*IDF without

excessive changes to the application or system libraries.

Our second TF*IDF experiment compares the communi-

cation costs of NoCMsg and OperaMPI (see Figure 10(b)).

Since TF*IDF largely works on map-type data of terms

and frequencies, data must be serialized for messaging. This

communication is structured as a tree-based reduction where

flow control is not necessary. This is largely responsible for

the 12% improvement of NoCMsg at 20 processes.

VII. RELATED WORK

Singh et al. [20] and Suh et al. [21] report the per-

formance of FFTW and FFT/CRBlaster, respectively, on

the Tilera Maestro platform. Serres et al. [19] report on

the performance of UPC implemented over GasNet plus

Pthreads/OperaMPI on a TilePro 64. UPC versions of NPB

2.2 under class A show better performance for Pthreads

than MPI for benchmarks with significant communication

components under strong scaling experiments (input class

A). Martin et al. [16] report on techniques for integrating

coherence state and semantics into shared caches to increase

scalability. However, the authors acknowledge that these

techniques will not improve scalability for all algorithms and

that techniques such as message passing are here to stay.

Additionally, this paper focuses solely on coherence with

little mention of additional performance degradation due to

NUMA/NUCA architectures integrated within many-cores.

We compare shared memory against message passing and,

in contrast to this past work, assess the effect of enabling

coherence for the former while disabling it for the latter.

Furthermore, we conduct weak scaling experiments, which

reveal the potential and limitations of multicore architectures

in terms of parallelization speedup in scenarios where on-

chip caches are fully utilized. Finally, we determine the

benefits of message passing at the lowest possible level in

software instead of multi-layer protocols.

Prior work compared MPI and OpenMP for shared-

memory multiprocessors [15] but not for on-chip NoCs of

multicores, which is our focus. NoCMsg follows addresses

scalability problems via message passing, not just for shared-

memory multiprocessors as the Multikernel [8] but for

multicores in our case. It takes ideas like NoC-level message

passing from Factored Operating Systems [22] to another

level in supporting low-level NoCMsg as a basis for scalable

NoC communication without deadlocks.

Flow control elimination is utilized by iWarp[2], a proto-

col that works at an OS level to reduce the overhead of TCP.

The major difference is that NoCMsg operates directly at the

hardware level without OS intervention, that NoCMsg is a

library, not a protocol, and that NoCMsg benefits directly

from application-level flow elimination.

VIII. CONCLUSION

This work presents NoCMsg, a specialized MPI library

designed to take advantage of network-on-chip architec-

tures to improve scalability and performance, over a base

MPI implementation up to 86% and, more significantly,

shared memory abstractions such as OpenMP up to 93%.

NoCMsg improves scalability by providing a polling-based

message passing implementation. Our results indicate that as

processor counts and problem sizes increase, even on-chip

solutions that employ shared memory are not as scalable

as their message passing counterpart. We further develop

methods for synchronization and flow control that guarantee

deadlock free communication, both of which are essential to

communication performance. We demonstrate that commu-

nication analysis and pattern-based code replacement around

collectives and other code regions of benchmarks allow the

elimination flow control in a safe but conservative manner.

These contributions provide significant benefits in perfor-

mance in terms of wall-clock time, particularly with respect

to communication overheads. Overall, this study shows the

potential for message passing for current experimental and

forthcoming mainstream large-scale multicores. It indicates

that shared memory scales up to about 16 cores while

message passing performs well beyond that threshold. While

the concrete threshold of cores is platform dependent, the

NoC contention problem is universal for meshes. In practice,

hybrid OpenMP programs with 16 threads combined with

message passing between OpenMP regions may be a viable

solution and are subject to our ongoing work beyond the

scope of this paper.

REFERENCES

[1] Adapteva processor family.
www.adapteva.com/products/silicon-devices/e16g301/.

[2] A remote direct memory access protocol specification.
tools.ietf.org/html/rfc5040.

[3] Single-chip cloud computer.
blogs.intel.com/research/2009/12/sccloudcomp.php.

[4] Tera-scale research prototype: Connecting
80 simple sores on a single test chip.
ftp://download.intel.com/research/platform/terascale/tera-
scaleresearchprototypebackgrounder.pdf.

[5] Tilera processor family. www.tilera.com/products/-
processors.php.

[6] Tilera user architecture reference. www.tilera.com.

[7] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan,
and S. K. Weeratunga. The NAS Parallel Benchmarks. The
Int’l Journal of Supercomputer Applications, 5(3):63–73, Fall
1991.

[8] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania. The
multikernel: a new os architecture for scalable multicore
systems. In Symposium on Operating Systems Principles,
pages 29–44, 2009.

[9] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. In Symposium on Operating
Systems Design and Implementation, pages 137–150, 2004.

[10] D.-R. Fan, N. Yuan, J.-C. Zhang, Y.-B. Zhou, W. Lin, F.-L.
Song, X.-C. Ye, H. Huang, L. Yu, G.-P. Long, H. Zhang, and
L. Liu. Godson-t: An efficient many-core architecture for
parallel program executions. Journal of Computer Science
and Technology, 24:1061–1073, 2009. 10.1007/s11390-009-
9295-3.

[11] M. P. I. Forum. MPI: A Message-Passing Interface Standard
Version 3.0, 09 2012.

[12] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable implementation of the MPI message
passing interface standard. Parallel Computing, 22(6):789–
828, Sept. 1996.

[13] J. L. Gustafson. Reevaluating Amdahl’s law. Communications
of the ACM, 31(5):532–533, May 1988.

[14] M. Kang, E. Park, M. Cho, J. Suh, D.-I. Kang, and S. P.
Crago. Mpi performance analysis and optimization on
tile64/maestro. In Workshop on Multi-core Processors for
Space — Opportunities and Challenges, July 2009.

[15] G. Krawezik and F. Cappello. Performance comparison of
mpi and openmp on shared memory multiprocessors: Re-
search articles. Concurr. Comput. : Pract. Exper., 18(1):29–
61, Jan. 2006.

[16] M. M. K. Martin, M. D. Hill, and D. J. Sorin. Why on-chip
cache coherence is here to stay. Commun. ACM, 55(7):78–89,
July 2012.

[17] A. Moshovos, G. Memik, A. Choudhary, and B. Falsafi.
Jetty: Filtering snoops for reduced energy consumption in
smp servers. In High Performance Computer Architecture,
pages 85–96, 2001.

[18] K. Sankaralingam, R. Nagarajan, P. Gratz, R. Desikan, D. Gu-
lati, H. Hanson, C. Kim, H. Liu, N. Ranganathan, S. Sethu-
madhavan, S. Sharif, P. Shivakumar, W. Yoder, R. McDonald,
S. Keckler, and D. Burger. The distributed microarchitecture
of the trips prototype processor. In Int’l Symposium on
Microarchitecture, Nov. 2006.

[19] O. Serres, A. Anbar, S. Merchant, and T. El-Ghazawi. Experi-
ences with upc on tile-64 processor. In 2011 IEEE Aerospace
Conference, pages 1–9, 2011.

[20] K. Singh, J. P. Walters, J. Hestness, J. Suh, C. M. Rogers,
and S. P. Crago. Fftw and complex ambiguity function
performance on the maestro processor. In IEEE Aerospace
Conference, pages 1–8, 2011.

[21] J. Suh, K. Mighell, D.-I. Kang, and S. Crago. Implementation
of fft and crblaster on the maestro processor. In IEEE
Aerospace Conference, pages 1–6, march 2012.

[22] D. Wentzlaff and A. Agarwal. Factored operating systems
(fos): the case for a scalable operating system for multicores.
SIGOPS Oper. Syst. Rev., 43:76–85, April 2009.

[23] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Ed-
wards, C. Ramey, M. Mattina, C.-C. Miao, J. F. B. III, and
A. Agarwal. On-chip interconnection architecture of the tile
processor. IEEE Micro, 27:15–31, 2007.

[24] Y. Zhang, F. Mueller, X. Cui, and T. Potok. Large-scale multi-
dimensional document clustering on gpu clusters. In Int’l
Parallel and Distributed Processing Symposium, Apr. 2010.

