
Number of
States

Virtual
Qubits

% Correct Physical
Qubits

Av. Chain
Length

Max Length Embed Time
(s)

9 36 14 112 3.111 4 0.0051
11 44 6 136 3.091 6 0.0060
15 60 1 200 3.333 8 0.0091
19 76 0 256 3.368 6 0.0161
25 100 352 3.52 6 0.0224
35 140 480 3.429 8 0.0486
48 192 864 4.5 12 0.0922

We decided to start our investigation with the Map Color and Clique Cover problems due to
their one-hot encoding lending to distinct cells with predictable connections between them.
• First tried DWave’s current Pegasus architecture.
• Tried to find good encodings for maps of 3 and 4 colors
• These cells need the following properties:
• Each cell must be a clique
• Each qubit within the cell connected to every other qubit within the cell
• Corresponding qubits in connected cells must be connected to each other
• Ex: Pr connected to Qr in NchooseK example
• Cell for 3 colors use 4 qubits (bottom left)
• Thicker line indicates a chain, representing one virtual qubit
• Cells have a degree of 4
• Two cells found for 4 colors
• One version uses 8 qubits per cell (bottom center)
• Cells have a degree of 6

• Other version uses 4 qubits per cell (bottom right, unused)
• Cells have degree of 2 or 3
• Additional constraints on placement depending on connectivity
• Cells need to be combined to connect with cells not on the same diagonal

• Minorminer was used to map on our abstract maps and on the full Pegasus map

• Map color problem based on US continental map, starting with Tennessee
• Compared metrics of the mappings: Average/Max chain length, total number of qubits,

embedding time
• Modular (blue) performed worse than standard (red), except in embed time
• Ran some problems on physical machines, compared correctness
• Modular mappings once again underperformed when compared to standard mapping

• Quantum annealers benefit from high qubit connectivity
• “Chains” of physical qubits used to represent single virtual qubits
• Embedding problems onto current topology is NP-Hard
• Previous work[1] shows improvement for specific problem by adding extra structural constraints
• Separates the problem into cells of 2 qubits
• Cells can only be embedded onto certain physical qubits on the Chimera structure
• Similar to the idea behind DWave’s Locally Structured Embeddings

NchooseK is a domain specific, constraint-based language built for automatically setting up
problems for both gate-based machines and quantum annealers[2].

• Good candidates for modular embedding, thanks to constraint-based nature
• NchooseK uses constraints which say “Of N variables, K must be true”
• Constraints take the form nck([N1, …, Nn], {K1, …, Km})
• Many NP problems have been solved with Nchoosek
• One-hot encoding problems particularly suited to this type of embedding

• Several qubits represent one variable
• Qubit measured as |1> indicates “hot” value

• Map coloring problem good example here
• Map coloring uses 2 kinds of constraints, shown below:

• Circles represent variables (regions P and Q)
• Boxes represent constraints, number shows K for that constraint

Modular Embedding of Problems onto Quantum Annealers
Ellis Wilson, Frank Mueller, Scott Pakin
North Carolina State University, Los Alamos National Lab

NchooseK

Methodology

Connectivity of central cells on section of DWave Pegasus architecture
Abstract representation in upper right corner
Thick colored line indicates chain representing single virtual qubit

ResultsNchooseK Usage

• One constraint per node to ensure one color per node:
• nck({a1, a2, …, an}, {1})

• n constraints per edge ensuring two nodes of the same color not connected:
• nck({a1, b1}, {0, 1})

import nchoosek
env = nchoosek.Environment()
P = [‘Pr’, ‘Po’, ‘Pg’, ‘Pb’]
Q = [‘Qr’, ‘Qo’, ‘Qg’, ‘Qb’]
for i in P + Q:
 env.register_port(i)
One color per node
env.nck(P, {1})
env.nck(Q, {1})
No shared color between regions
for idx, p in enumerate(P):
 env.nck([p, Q[idx]], {0, 1})
env.solve()

Motivation

Number of
States

Virtual
Qubits

% Correct # Qubits Av. Chain
Length

Max Length Embed Time
(s)

9 36 25 70 1.944 3 0.1984
11 44 22 86 1.955 2 0.2333
15 60 5 122 2.033 4 0.3123
19 76 4 176 2.358 4 0.5123
25 100 1 252 2.520 5 0.6845
35 140 0 357 2.412 5 1.0033
48 192 0 635 3.307 9 1.4851

• Finding good modular maps is non-trivial
• Modular embedding is faster but worse than full map embedding in this case
• Modular embedding is better in other situations [1]
• Likely better performance with cell size 2 or different necessary connections between cells
• Unable to take advantage of many connections on Pegasus

TABLE: Selected results for 4 color maps of US.
 Top: Modular embedding. Bottom: Standard embedding.
 3 color, clique cover, and DWave Chimera architecture performed similarly.

References/Acknowledgements
Research presented in this paper was supported by the
Laboratory Directed Research and Development
program of Los Alamos National Laboratory under
project number 20210397ER. Los Alamos National
Laboratory is operated by Triad National Security, LLC
for the National Nuclear Security Administration of U.S.
Department of Energy (contract no.
89233218CNA000001). This work was also supported
in part by LANL subcontract 725530 and by NSF
awards DMR-1747426, PHY-1818914, OAC-1917383,
MPS-2120757, and CISE-2217020.

[1] Joseph Fustero, Scott Palmtag, and Frank Mueller
“Quantum Annealing Stencils with Applications to Fuel
Loading of a Nuclear Reactor” in IEEE International
Conference on Quantum Computing and Engineering (QCE),
Oct 2021
[2] Ellis Wilson, Frank Mueller, and Scott Pakin “Combining
hard and soft constraints in quantum constraint-satisfaction
systems” In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and
Analysis (SC '22). IEEE Press, 2022, Article 13, 1–14.https://github.com/lanl/NchooseK

Conclusions

