
A Library Implementation of
POSIX Threads under UNIX

Frank Mueller1 – Florida State University

ABSTRACT

Recently, there has been an effort to specify an IEEE standard for portable operating
systems for open systems, called POSIX. One part of it, the POSIX 1003.4a threads
extension (Pthreads for short) [12], describes the interface for light-weight threads that rely
on shared memory and have a smaller context frame than processes.

This paper describes and evaluates the design and implementation of a library of
Pthreads calls that is solely based on UNIX. It shows that a library implementation is
feasible and can result in good performance. This work can also be used as a comparison of
the performance of other implementations, or as a prototyping, testing, and debugging system
in the regular UNIX environment. Finally, some problems with the Pthreads standard are
identified.

Introduction

Light-weight threads are independent threads of
control within a regular process that share global
data (global variables, files, etc.) but maintain their
own stack, local variables, and program counter.
Threads are referred to as light-weight because their
context is smaller than the context of processes.
Therefore, context switches between threads may be
cheaper than context switches between processes.
Furthermore, threads are an adequate model to
implement Ada tasks and provide a simple but
powerful model for exploiting parallelism in a
shared-memory multiprocessor environment. The
POSIX threads extension specifies a priority-driven
thread model with preemptive scheduling policies,
signal handling, and primitives to provide mutual
exclusion as well as synchronized waiting. Although
the Pthreads draft is not yet a standard and is still
being changed through a balloting process, we will
refer to the document [12] as the ‘‘Pthreads stan-
dard’’. More background on programming with
threads is given in [5, 11] as well as in a previous
paper describing the early stages of this implementa-
tion [17].

This work focuses on the design and implemen-
tation issues of POSIX threads (Pthreads) on the Sun
SPARC architecture. It describes a true library
implementation with a minimal interface to Sun
UNIX 4.3 BSD and evaluates its performance.

This article is structured as follows: An over-
view of previous work in the area precedes the
design decisions and their motivations. Then, a brief
overview of the Pthreads standard is followed by a

1This work was partially funded by the Ada Joint
Program Office, through the U.S. Army CECOM and
Telos Corp.

more detailed discussion of the design and imple-
mentation. Finally, measurements and their evalua-
tions, unresolved problems with the standard, future
work, and summary follow.

Related Work

Cthreads, an early implementation of threads, is
a coroutine-like extension of the language C. A
library implementation was used as a teaching tool
by Cooper [7]. This original notion of Cthreads
lacked priorities, did not handle signals on a per-
thread basis, and supported only non-preemptive
scheduling. The first commercial operating system
to support threads was the Mach OS [23]. Cooper
also provided an implementation of Cthreads based
on Mach threads thereby supporting preemption. An
early library implementation of prioritized preemp-
tive threads at Brown University [14] supports vari-
ous architectures including a multiprocessor and han-
dled signals asynchronously. Lately, some commer-
cial operating systems (e.g., LynxOS [9], SunOS [18,
22]) support Pthreads by using a mixture of library
and kernel implementation, while others such as
Chorus [1] provide more functionality as part of the
kernel. An earlier, partial implementation of
Pthreads on the library level [19] was used as a
base for this project.

Motivation

The Pthreads standard provides a uniform base
for multiprocessor shared-memory applications,
real-time system environments, and a cheap model
for multi-threaded programs on a single processor.
The notion of threads can be used to implement Ada
tasks or to express parallelism within applications at
the level of programming languages. An implemen-
tation of Pthreads can be carried out as:

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 29

A Library Implementation of POSIX Threads under UNIX Mueller

� a kernel implementation, where all functional-
ity is part the the operating system kernel;

� a library implementation, where all functional-
ity is part of the user program and can be
linked in; or

� a mixture of the above.

A kernel implementation simplifies control over
thread operations and signal handling but adds the
overhead of entering and leaving the kernel at each
call. A library implementation can be more efficient
since it does not have to enter the operating system
kernel but it complicates signal handling and some
thread operations, and it also has to deal with two
different scheduler, one for processes (kernel level)
and one for threads (library level).

This study discusses the issues of a true library
implementation which can be used on a SPARC
architecture without specific operating system sup-
port for threads. It has been used successfully in an
effort to implement an Ada runtime system on top of
Pthreads to make the Ada runtime system more port-
able and to show that the overhead of layering a run-
time system on top of Pthreads is not prohibitive.

Pthreads Standard

The Pthreads standard specifies various services
that can be provided to support multi-threaded appli-
cations. Most of the interface specifications leave
many details to the implementation. For example,
support for certain functions and the detection of
some errors is optional. Therefore, Pthreads-
compliant implementations may vary considerably.
This implementation supports the following func-
tionality:

�
thread management: initializing, creating,
joining, exiting, and destroying threads;

�
synchronization: mutual exclusion, condition
variables;

�
thread-specific data;

� thread priority scheduling: priority manage-
ment, preemptive priority scheduling;

� signals: signal handlers, asynchronous wait,
masking of signals, long jumps;

� cancellation: cleanup handlers, different inter-
ruptibility states.

The support is currently being extended to include
process control.

Design and Implementation

The design of Pthreads has been strongly
influenced by constraints of the Pthreads standard,
limitations due to the approach of a library imple-
mentation, and to some extend by the use of SunOS
(UNIX 4.3 BSD) on a SPARC architecture. The
machine-dependent part of the implementation con-
sists of about 400 lines of predominantly assembly
code. The interface consists of a C library with link-
able entry points and can optionally be compiled to
generate a language-independent interface. A

language interface for Ada has already been
designed and tested. Figure 1 illustrates the different
software layers of the design.

UNIX libraries

Pthreads library

C application

UNIX kernel

user mode

kernel mode

Language interface

Language application

Figure 1: Software Layers

An interface allows programs to use Pthreads
services. In case of the programming language C the
library routines of Pthreads are immediately avail-
able. Any other programming language needs a
language interface to the Pthreads library to pass
parameters correctly, perform type conversion and
other language or compiler-dependent adjustments.
The Pthreads library contains a set of routines whose
interface and functionality are defined by the
Pthreads standard. The code of Pthreads routines par-
tially executes as user code and, within critical sec-
tions, operates in the Pthreads kernel mode which
guarantees mutual exclusion between threads. The
implementation uses a number of UNIX standard
library routines and UNIX kernel calls. The design
was driven by the following objectives:

� Preemptability: Scheduling policies such as
round-robin scheduling and asynchronous
events (signals) together with priorities can
only be supported by a preemptive kernel
design.

�
Fast Context Switches: The context switch is
the only means by which control is transferred
from one thread to another. A thread’s light
weight should reduce the context switch over-
head.

� Small Critical Sections: The time spent in
critical sections should be as short as possible.
The overhead of entering and leaving critical
sections should also be small.

� No unlimited Stack Growth: If an asynchro-
nous event arrives while executing an inter-
rupt handler, another handler may be pushed
onto the stack and so on ad infinitum. A

30 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

Mueller A Library Implementation of POSIX Threads under UNIX

scheme for handling signals that avoids unlim-
ited stack growth is described below.

� Few Operating System Calls: Since calls to
the operating systems are time-consuming
operations, the use of them should be minim-
ized, especially in time-critical places such as
signal handling and context switches.

�
Language-Independent Interface: The imple-
mentation should support the design of an
interface to Pthreads with a minimum of
dynamic overhead for programming languages
other than C.

Pthreads Kernel
Structures allocated by Pthreads must be pro-

tected from being modified inconsistently during the
handling of asynchronous events (signals). To pro-
vide such a protection the library implementation
guarantees that critical sections of the library code
can only be executed by one thread at a time. The
technique which was used to provide mutual exclu-
sion for this implementation is commonly known as
a monolithic monitor and will be referred to as the
library kernel or simply kernel in the following.

An alternative to using coarse-gained locking,
such as a monolithic monitor, would be to perform
fine-grained locking where a different semaphore is
associated with each global data structure. The latter
approach allows for more concurrency in a multipro-
cessor environment but more operations need to be
performed to guarantee mutual exclusion for each
data structure individually. Since this implementation
is dedicated to a uniprocessor environment, it was
decided to implement a monolithic monitor.

The Pthreads kernel can be entered by setting
the kernel flag. Thereafter, any operations are pro-
tected so that modifications to thread-internal data
structures are guaranteed to be performed in mutual
exclusion with other threads. Another flag, the
dispatcher flag, indicates whether the dispatcher will
be invoked when leaving the Pthreads kernel. The
flag is set when a new thread is scheduled or when a
signals is received while executing in the Pthreads
kernel. To leave the Pthreads kernel, the kernel flag
is simply reset if the dispatcher flag was not set; oth-
erwise the dispatcher is invoked which might result
in a context switch to another thread. This also
allows the implementation to handle signals received
from within the kernel as explained below.
Signal Delivery

The delivery of process-level signals to threads
is closely coupled with the dispatcher. In particular,
signals received while in the kernel are handled dif-
ferently than signals received while executing
instructions outside the kernel although they share a
universal signal handler on the process level.

During the initialization of Pthreads a universal
signal handler is installed for all maskable UNIX
signals. When a signal is caught by the universal

handler and the kernel flag is not set, the kernel is
entered by setting the kernel flag, all signals are
enabled, and a routine is called which first directs
the signal at the appropriate thread and then calls the
dispatcher. The control might not immediately be
transferred back to the same thread if the signal
made a higher priority thread eligible to run.

When a signal is caught while in the kernel, the
received signal is logged and its handling is deferred
until the dispatcher is called. The control is then
immediately transferred back to the interruption
point by returning from the universal signal handler
which also enables signals at the process level again.
Thread States

A thread may be blocked waiting for some
event, ready to execute (but not chosen yet by the
scheduling policy to be dispatched), running
(dispatched), or terminated (cannot be scheduled
anymore). Furthermore, a thread may be detached in
conjunction with any of the above states.

After a detached thread terminates or after a
terminated thread is detached, any memory associ-
ated with the thread can be reclaimed and the thread
may not be referenced any longer.
The Dispatcher

Under normal circumstances, a call to the
dispatcher will select the next thread eligible to run
from the set of ready threads according to the
scheduling policy. If the selected thread differs from
the thread currently running a context switch has to
be performed. A thread context switch on the
SPARC consists of

� saving non-scratch registers of the current
thread which is accomplished on the Sun
SPARC by a trap into the UNIX kernel to
flush the set of active register windows onto
the stack (ST_FLUSH_WINDOWS),

� loading the frame pointer with the top of the
thread’s stack,

� loading UNIX’ global error number with the
thread’s error number,

� loading non-scratch registers and switching to
the frame of the new thread by executing a
restore instruction, and

� transferring control to the new thread.

On the SPARC, the only registers changed dur-
ing a thread’s context switch are those describing the
local state contained in the register windows
(ins/outs and locals). Any global state such as global
registers, floating point registers, and the status word
never need to be updated during a context switch
because these registers are either considered to be
scratch registers (across explicit calls to Pthreads
routines) or are saved by the UNIX (when a signal is
delivered). When a thread which was not inter-
rupted by a signal is dispatched, the context is logi-
cally switched to the local state of the new thread
(see Figure 2). Before the control is transferred

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 31

A Library Implementation of POSIX Threads under UNIX Mueller

free storage

switch to new

handle signals
switch stacks

yes

no

rupted
inter-

rupted
inter-

yes

yes

yes

mask signals

unmask signals

old
done

done
old

enter kernel

leave kernel

yes

pending
signal

save old

exit

Dispatcher

old=new

Figure 2: Flowchart of the Dispatcher: Switch Con-
text from old to new Thread

to the new thread, the kernel and dispatcher flags are
cleared and it is checked whether signals were
caught while in the kernel. If no signals were
caught the control can be transferred to the new
thread; otherwise the signals will be handled as

explained below and another attempt to dispatch a
thread will follow. Since the handling of signals
might change the thread to be dispatched next, the
context switch has to be restarted.

When an interrupted thread is chosen to be
dispatched, the universal signal handler will still be
pending on top of the thread’s stack. Therefore, the
dispatcher disables all signals before initiating the
context switch. When the thread regains control it
will return from the universal signal handler, enable
all signals again, and return to the UNIX interrupt
frame which will restore the global state (global
registers, floating point registers, and the the status
word). It is essential to disable signals before
switching to the context of an interrupted thread to
avoid unbounded stack growth. Otherwise the
universal signal handler could be interrupted by yet
another instance of the universal signal handler (and
so on) before the thread can return from the first
instance of the handler.
Signal Handling

Process level signals are deferred until the
dispatcher is called if they were caught while in the
Pthreads kernel. Otherwise, they are handled
immediately. Signal handling determines the receiv-
ing thread and the action to be taken for the signal.
The recipient is determined according to the so-
called signal delivery model which describes when a
thread receives a signal and how conflicts between
multiple threads are resolved. This implementation
uses the following conflict resolution (beginning with
the highest precedence):

1. If the signal is specifically directed at a
thread, this thread is the recipient; else

2. if the signal is delivered synchronously, direct
it at the thread which caused it; else

3. if the signal was caused by a timer expiration,
direct it at the thread which armed the timer;
else

4. if the signal was caused by an I/O completion,
direct it at the thread which requested I/O;
else

5. if any thread has the signal unmasked, direct
it at such a thread; else

6. pend the signal on the process level until a
thread becomes eligible to receive it.

The choice of an arbitrary thread is sufficient in
step 5 to comply with the Pthreads standard. This
implementation performs a linear search of a list of
all threads until either all threads are exhausted in
the search or a thread is found which has the signal
unmasked. (The routine sigwait is just another
case where the signal is unmasked).

If a thread is selected as the recipient of a sig-
nal an action will be selected as follows (beginning
with the highest precedence):

1. If the thread masked the signal, pend the sig-
nal on the thread; else

32 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

Mueller A Library Implementation of POSIX Threads under UNIX

2. if the signal is the alarm signal and was
caused by a timer expiration, the selected
thread either becomes ready if it was
suspended or it is position at the tail of the
ready queue if the timer expiration was furth-
ermore caused by time-slicing; else

3. if the thread suspended in a call to sigwait,
the thread becomes ready and signals
specified in the call to sigwait are masked
for the thread; else

4. if a handler has been registered for the signal,
a fake call will be installed for the selected
thread, signals are masked according to the
mask specified in sigaction, and the
thread becomes ready; else

5. if the signal is the cancellation signal (see
section ‘‘Thread Cancellation’’), a fake call to
pthread_exit is pushed onto the threads
stack and the thread becomes ready; else

6. if the action defined on the signal is to ignore
the signal, take no action and discard the sig-
nal; else

7. if the action defined on the signal is the
default action, perform the default action on
the process.

Interruptibility

State Type
Action

disabled any SIGCANCEL pends on thread until cancellation is enabled

enabled controlled SIGCANCEL pends on thread until interruption point is reached

enabled asynchronous Cancellation is acted upon immediately

Table 1: Action taken upon Cancellation Request

Fake Calls
Thread signal handlers (user handlers) installed

by a call to sigaction are invoked through a
mechanism called fake call. A fake call pushes a
frame on top of a thread’s stack and sets up the
frame to act as if a function had been called expli-
citly by the thread.

The use of fake calls as a mechanism to invoke
user handlers is motivated by the constraint that user
handlers have to execute at the priority level of the
corresponding thread. Rather than making an explicit
call to the user handler when a process signal is
received, the execution of the user handler has to be
deferred until the receiving thread is dispatched. This
is enforced through the use of fake calls.

Figure 3 illustrates the mechanism of fake
calls. User code is interrupted by a signal causing
the operating system to create a new frame which
saves the state at the interruption point and invoke
Pthreads’ universal signal handler which calls the
dispatcher. The dispatcher changes to the temporary
stack (as indicated by an arrow) but remains active.
While executing on the temporary stack the signal is

directed to a thread (in this case the interrupted
thread), and a new frame, a wrapper, is created on
top of the thread’s stack (indicated by another
arrow). The program counter and stack pointer of
the thread have to be updated to reflect the new
frame of the fake call, which will execute the
wrapper when the thread regains control. The
wrapper takes the following actions:

thread’s stack

wrapper

dispatcher

universal

signal handler

UNIX frame

handling interrupt

temporary stack

push fake call

determine thread

to receive signal

dispatcheruser code

user handler

Figure 3: Fake Call onto same Thread
� If the user handler interrupted a conditional

wait, the mutex is reacquired and the condi-
tional wait terminated;

� the thread’s error number is saved;
� the user handler is called;
� the thread’s error number is restored;
� the requested per-thread signal mask is

restored and pending signals on the thread and
process are handled if now enabled;

� the control is either transferred back to the
interruption point or to an instruction whose
address can optionally be specified by the user
handler.

The ability to redirect control to some specified
address is a feature not required by the Pthreads
standard but rather left open as implementation
defined. Nevertheless, this feature is essential for
the Ada runtime system: When a synchronous signal
is received, one needs to return from the user
handler and restore the previous frame before pro-
pagating the exception corresponding to the signal.
The Ada runtime system also makes use of the sig-
nal code which, in some cases, distinguishes

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 33

A Library Implementation of POSIX Threads under UNIX Mueller

between different causes of the same synchronous
signal.
Thread Cancellation

A thread may be cancelled by calling
pthread_cancel. The cancellation is handled as
a request for sending a special (internal) signal
SIGCANCEL to a thread. Depending on the inter-
ruptibility state of the receiving thread, an action
will be taken upon a cancellation request according
to Table 1.

Interruption points are functions defined in the
Pthreads interface which may suspend a thread
indefinitely (e.g., conditional waits) with the excep-
tion of locking a mutex. Locking a mutex should not
be an interruption point to allow for efficient imple-
mentations. An interruption point can also be
created by calling pthread_testintr.

If a cancellation request is acted upon, the
interruptibility state of the receiving thread is
changed to disabled, all other signals are disabled
for this thread, and a fake call to pthread_exit
is pushed onto the thread’s stack.
UNIX Interface

To maximize the performance of a true library
implementation, calls to the operating system kernel
need to be minimized. The overhead associated with
entering and leaving the UNIX kernel makes kernel
calls expensive operations. This implementation
makes use of about 20 UNIX services most of which
are used for initialization of the Pthreads library and
a few other non-time-critical stages. However, there
are a few exceptions.

� When a context switch is performed on the
SPARC the register windows of the current
thread are flushed via a system trap instruc-
tion. The register windows of the new thread
will be loaded when the restore instruction is
executed which causes a window underflow
trap. These two traps consume most of the
time required for a context switch and are
inherent to any context switch on the SPARC.

� Thread creation/termination involves
allocation/deallocation of heap space which
sporadically may result in kernel calls to
sbrk. This could be avoided in most cases
by preallocating a pool of thread control
blocks and stacks. Thus, dynamic memory
allocation would only be performed when the
pool space is exhausted at creation time.

� It is most crucial to minimize the use of ker-
nel calls when signals are caught or handled;
in particular, calls to sigsetmask need to
be minimized and signals should be blocked
for the shortest interval possible to avoid the
loss of signals at the UNIX process level.
This implementation uses two calls to sig-
setmask for each signal received by the pro-
cess.

Synchronization
The Pthreads standard specifies a ‘‘mutex’’

object, a data structure for mutually exclusive access
of shared data structures and condition variables for
synchronization between threads. Other synchroni-
zation methods such as counting semaphores [3] can
be easily implemented on top of these primitives
[17].

A thread may acquire (lock) an unlocked
mutex. Thereafter, mutual exclusion between
threads in the same process is guaranteed, until the
mutex is unlocked provided that other threads guard
critical sections by the same mutex. If a thread tries
to lock a mutex which is already locked, the thread
suspends. If a thread unlocks a mutex and other
threads are waiting on the mutex, the waiting thread
with the highest priority will acquire the mutex. To
simplify implementations, a thread cannot be can-
celled while in controlled interruptibility when it
suspends due to mutex contention to guarantee a
deterministic state of the mutex in cleanup handlers.

A mutex should only be locked for the shortest
possible time to minimize contention. For example,
one should protect access to data structures shared
between threads by mutexes. But one should not
lock a mutex, perform an action which might cause
suspension of the thread, and then unlock the mutex,
since contention is likely to occur while the thread
holding the mutex suspends.

To allow synchronization between threads and
suspension over a longer (possibly unbounded) time
interval, the standard introduces condition variables.
A mutex and a predicate based on shared data are
associated with a condition variable. When a thread
wants to synchronize with another thread, it locks
the mutex, tests the predicate and, if the predicate
evaluates to false, suspends on a conditional wait.
When the thread is reactivated, it reevaluates the
predicate and so on until the predicate becomes true.

The reevaluation of the predicate is essential
since spurious wakeups on a multiprocessor and
wakeups due to asynchronous events may cause the
thread to resume execution while the predicate still
evaluates to false.

When a thread enters a conditional wait with
the associated mutex locked, the mutex is unlocked
atomically with the suspension of the thread. Simi-
larly, the mutex is atomically relocked when thread
resumes execution. Thus a mutex is always in a
known state even when signals interrupt a condi-
tional wait since the mutex will be reacquired before
any interrupt handler starts executing.

A condition variable is typically signaled by a
thread after the thread changes the state of some
shared data allowing the associated predicate to
evaluate to true. When a condition variable is sig-
naled, at least one of the threads blocked on it
become ready. If more than one thread is blocked

34 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

Mueller A Library Implementation of POSIX Threads under UNIX

on a condition variable, the thread with the highest
priority will become ready. In particular on multipro-
cessors, an implementation that allows multiple
threads become unblocked on signaling a condition
variable may be more efficient.

Mutexes should be implemented to provide
mutual exclusion in the most efficient way possible.
Ideally, a simple test-and-set instruction should be
sufficient. Unfortunately, this would result in several
deficiencies:�

The standard also specifies more complex
optional protocols such as priority inheritance
to avoid priority inversion (see section ‘‘Prior-
ity Inversion: Inheritance and Ceilings’’).
Priority inheritance requires that the owner-
ship of the mutex be recorded atomically with
the locking operation.�

Hardware implementations of test-and-set
instructions often perform worse than restart-
able atomic instruction sequences for mutual
exclusion on a uniprocessor [4].

The priority inheritance protocol requires that if
a high priority thread suspends on a mutex due to
contention with a low priority thread which holds the
mutex, the low priority thread inherits the high prior-
ity until it unlocks the mutex. Thus, the ownership
association of a mutex allows the high priority
thread to boost the priority of the thread holding the
mutex. This will be discussed in more detail later.
But first, several implementation options for record-
ing the ownership of a mutex atomically with lock-
ing the mutex shall be considered.

A restartable atomic sequence is guaranteed to
be atomic by augmenting the signal handler. If such
a sequence was interrupted by the signal handler, the
atomic sequence is restarted in the signal handler;
otherwise no action in taken. For the implementation
of the mutex lock, it is thereby guaranteed that there
be an owner associated with every locked mutex at
any given time.

This scheme does not extend to multiproces-
sors. Rather, test-and-set instructions become essen-
tial as they are the only means to guarantee atomic
updates of memory. But restarable atomic sequences
can be used to record ownership in conjunction with
a test-and-set instruction on multiprocessors by let-
ting the contending thread spin until the bounded
interval between locking the mutex and setting the
owner must have passed for the acquiring thread
[15].

On the SPARC, the test-and-set instruction is
about as fast as a restartable atomic sequence [4]. It
was therefore decided to use the test-and-set instruc-
tion for mutual exclusion but executed it inside a
restartable atomic sequence which also included the
recording of the ownership. Such a sequence consists
of 7 instructions in our implementation (see Figure
4), two instruction more than required by SunOS 5.0

[15]. Sun reserves a hardware register to contain the
current thread ID at any time which saves an address
calculation and a load required in our implementa-
tion. Since this hardware register is reserved for
internal use by the SPARC Application Binary Inter-
face [21], such properties cannot be guaranteed by
our implementation for any register without changing
the operating system kernel.

ldstub [%o0+mutex_lock],%o1
tst %o1
bne mutex_locked
sethi %hi(_kern),%o1
or %o1,%lo(_kern),%o1
ld [%o1+pthread_self],%o1
st %o1,[%o0+mutex_owner]

Figure 4: Atomic Sequence to Lock a Mutex and
Record the Owner

An additional atomic instruction besides the test-
and-set instruction would have avoided these prob-
lems: Consider a compare-and-swap) which atomi-
cally tests some memory word and sets it to the
value of a specified register if the memory location
contained zero. Let the condition flags also be set
by the testing. Then this instruction could be used to
record ownership instead of the restartable atomic
sequence. Such an approach removes the overhead
induced on signal handlers by atomic sequences. But
the compare-and-swap instruction would need two
more cycles to execute than the test-and-set to per-
form the comparison and decide whether to update
the memory word. This does not seem critical
though since a test-and-set instruction will always be
followed by a test and a conditional branch instruc-
tion to check on the success of the operation. The
encoding in 32 bits is the same for both the test-
and-set and compare-and-swap instruction since a
memory location and a register will be specified in
both cases. Therefore, a compare-and-swap instruc-
tion should be provided in the instruction set of any
processor.
Ada Interface and Binding

A system-level interface between the Pthreads
C library and the language Ada has been imple-
mented. This interface has been used to implement
an Ada runtime system which is able to map Ada
tasks onto threads due to the similarity of their pro-
perties. The runtime system can be easily ported to
other systems that support Pthreads except for a few
implementation-dependent features of Pthreads (e.g.,
use of signal context record). An Ada binding for
Pthreads (user-level interface), on the other hand, is
more complex than a bare language interface.
Several services provided by Pthreads interfere with
the Ada language definition, in particular the han-
dling of signals. We are currently engaged in an
effort to define a suitable subset of Pthreads opera-
tions as a safe Ada binding [10].

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 35

A Library Implementation of POSIX Threads under UNIX Mueller

It is suggested by the Pthreads standard that
several Pthreads routines be implemented as C mac-
ros. Unfortunately, this is a severe limitation to the
language-independent approach taken otherwise.

Most notably, cleanup handlers are suggested to
be implemented as a pair of macros:
pthread_cleanup_push opens a new lexical
scope, declares a cleanup structure automatically,
and links it to a thread-specific cleanup stack.
pthread_cleanup_pop restores the previous
state of the cleanup stack and closes the lexical
scope. Since this implementation depends on the
creation of lexical scopes it cannot be incorporated
as a function call into a language interface. Another
layer would have to be included to embed the macro
call into a regular C function. Furthermore, the
current cleanup structure could no longer be allo-
cated as a local variable within the new lexical
scope but would have to become a global variable.
Finally, to guarantee that the two operations occur as
a pair in the same lexical compiler support would be
needed.

Time[µsec]

Sparc 1+ Sparc IPXPerformance Metric

Sun Ours Lynx

enter and exit Pthreads kernel 0.4 7.5

enter and exit UNIX kernel 18

mutex lock/unlock, no contention 1 5

mutex lock/unlock, contention 51

semaphore synchronization 158 101 55 75

thread create, no context switch 56 25 12

setjmp/longjmp pair 59 49 29

thread context switch (yield) 37 38

UNIX process context switch 123 41

thread signal handler (internal) 52

thread signal handler (external) 250

UNIX signal handler 154

Table 2: Performance Metrics

It was decided to avoid C macros for interface
implementations in general. This trades the overhead
of function calls otherwise not needed by C applica-
tions for the generality and language-independence
of the interface. Such an approach seemed favorable
over implementation-specific solutions.

Measurements and Evaluation

The Pthreads standard suggests a set of perfor-
mance metrics based on the set of routines defined in
the interface. Table 2 shows selected measurements
used in previous studies. The measurements for our
implementation were taken on a Sun SPARC 1+

(column 3) and on a Sun SPARC IPX (column 4)
under SunOS 4.1 using dual loop timing analysis.
Some measurements are compared to those reported
for SunOS [18] (column 2) taken on a Sun SPARC
1+. Others are compared to the results reported for
a pre-release of LynxOS (column 5) taken on a Sun
SPARC IPX.

The benefit of a library implementation is indi-
cated by the fact that to enter and exit the Pthreads
kernel is considerably faster than to enter and exit
the UNIX kernel. (The latter metric was obtained by
timing a getpid call.) This is still true for the
comparison with Lynx although their performance
shows some improvement over traditional UNIX ker-
nels.

The metrics included a pair of mutex lock and
unlock operations, first under the assumption the a
mutex is requested while unlocked, and second the
interval between an unlock by thread A and the
return from a lock operation by thread B (which was
suspended while A held the mutex). Mutexes are a
mechanism designed for fine-grain locking and
should consequently only be held for a short time. A
thread should therefore seldom suspend on a mutex
lock. Thus, it should be attempted to maximize the
performance of mutex operations without contention.
Semaphore synchronization refers to one Dijkstra P
operation plus one V operation and were imple-
mented on top of mutexes and condition variables
[17]. Neither Lynx operations for synchronization
nor Sun’s ‘‘unbound thread synchronization’’ via
semaphores is reported to perform as well as ours.

Further measurements were taken for creating a
new thread (excluding the context switch time). The
thread control block and stack were pre-cached in a
memory pool to avoid dynamic memory allocation.

36 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

Mueller A Library Implementation of POSIX Threads under UNIX

Sun’s ‘‘unbounded thread creation’’ corresponds to
this test as it makes the same assumptions. Compar-
ing the measurements, thread creation of this imple-
mentation seems to be faster than Sun’s.

The performance of a pair of setjmp and
longjmp operations gives a lower bound on the
overhead of a context switch but a true context
switch involves some additional overhead as indi-
cated by the measurements. Again, this implementa-
tion exceeds the speed reported by Sun but matches
Lynx’. Little tuning is possible for the context
switch on the SPARC since most of the time is spent
in the kernel traps to save and restore registers. Also
notice that UNIX process context switches are con-
siderably slower than thread context switches. For
LynxOS the performance of context switches hardly
differs between processes and threads. (The UNIX
process context switch time was measured by timing
the execution of two alternating processes which
activate each other by exchanging signals minus the
time required for process signal delivery.)

The measurements taken for signal handling
reflect the time it takes from sending a signal until
the signal is received. Since this implementation is
build on top of the somewhat slow signal handlers
provided by UNIX, external signal handling for
threads (i.e., signals directed at the process and
demultiplexed to threads) is a time-consuming opera-
tion. The performance of internal signal handling
(i.e., signals directed at a thread for within the pro-
cess) indicates that a faster implementation might be
possible if the operating system kernel was
redesigned. This suggests either that threads be
implemented as part of the operating system such
that signals can be handled within the kernel or that
the kernel/user interface allows the kernel to send
the signal to the correct user thread directly [16].

Overall, this implementation seems to match
and in some cases exceed the performance reported
by commercial implementations.

Perverted Scheduling: Testing and Debugging

Debugging on multiprocessors is typically more
complex, more expensive (since a whole set of mul-
tiprocessors might be blocked), and errors might not
always be reproducible. This library implementation
can be helpful to detect and analyze errors in a
uniprocessor environment before an application is
tested on a multiprocessor. Two types of errors can
be distinguished, serial errors which occur in unipro-
cessor environments and parallel errors which are
inherent to parallel execution. Debugging the former
type of errors is well understood. But errors of the
latter type are often hard to detect. This implemen-
tation of Pthreads has been extended for debugging
purposes to optionally provide perverted scheduling,
a set of scheduling policies which simulate parallel
execution on multiprocessors. The following set of

perverted scheduling polices has been implemented:
�

Mutex Switch: On each successful locking of
a mutex, a context switch is forced by reposi-
tioning the current thread at the tail of its
priority queue. The thread at the head of the
ready queue executes next.

� Round-Robin Ordered Switch: On leaving the
Pthreads kernel, a context switch is forced by
repositioning the current thread at the tail of
the lowest priority queue. The thread at the
head of the ready queue executes next.

�
Random Switch: On leaving the Pthreads ker-
nel, a context switch is forced if the next
binary random number produced by some
pseudo random-number generator is true. In
this case, the current thread is repositioned at
the tail of the lowest priority queue and the
next thread to execute is selected by randomly
choosing a thread from the ready queue.

The above policies may not always conform with
priority scheduling as defined in the Pthreads stan-
dard. In fact, for the latter two a lower priority
thread may execute while a higher priority thread is
ready. But on a multiprocessor, the execution of
high and low priority threads might occur in parallel.
By alternately executing high and low priority
threads, this implementation tries to simulate parallel
execution using concurrency.

Perverted scheduling policies are easier to deal
with than time-sliced round-robin scheduling since in
the time-slicing case context switches are caused by
timer expirations. In multiprogramming environ-
ments timer expirations may vary according to a pro-
cessor load and in a debugging environment timer
expirations may further vary depending on debug-
ging actions. Thus, errors which occur during time-
sliced round-robin scheduling may not be reproduci-
ble.

The perverted scheduling policies have been
used to test the robustness of our implementation of
an Ada runtime system based on Pthreads. Several
errors were detected which did not show up under
the FIFO scheduling policy. But none of the errors
were inherent to multiprocessors, they could have
occurred on a uniprocessor as well with a different
(and legal) ordering of execution of threads. Varying
the initialization of random number generators for
the random switch policy also proved to be a simple
but powerful way to influence the ordering of threads
during execution. Still, more experience has to be
gained to understand all the benefits of perverted
scheduling.

Open Problems

Several problems regarding the POSIX standard
have to be resolved. One problem, the use of C mac-
ros as discussed in a previous section, suggests that
greater emphasis should be placed on language-
independence.

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 37

A Library Implementation of POSIX Threads under UNIX Mueller

Non-Blocking Kernel Calls
UNIX does not provide non-blocking

equivalents of some blocking system calls, for exam-
ple for the interface to directories in the file system.
Other non-blocking interfaces for I/O, for example,
do not provide the correct semantics with regard to
POSIX when interrupted by signals.

Inheritance Protocol Ceiling Protocol (via SRP)

of thread holding mutex when a high
priority thread suspends on the mutex
lock

of the current thread when the mutex
is acquired

Boost Priority

set to max(own prio, prio of
contending threads) by the contending
thread

set to prio ceiling of mutex by
locking thread

Boost Prio Level

Lower Priority on unlocking mutex on unlocking mutex
set to max(own prio, prio of
contending threads of other mutexes
remaining locked)

set to level before acquiring the
mutex

Lower Prio Level

linear search of locked mutexes
(unlock)

push/pop of ceiling values (stack)Implementation

adjusts dynamically to prio level of
threads at lock static, prio ceiling set
to at least

max(prio of threads locking mutex) at
initialization

Adaptability

sum of longest critical section of
lower prio threads

tighter: longest critical section of
lower prio threads

Bound on Inversion

Table 3: Properties of Synchronization Protocols

P3

P1

P2

priority

time

P3

P1

P2

priority

time

P3

P1

P2

priority

time
lock mutex lock mutex unlock mutex

and suspendand suspend lock mutex

t1t1t1

unlock mutexlock

try to lock mutex

mutex remains locked

try to lock mutex

(a) no protocol (b) inheritance protocol (c) ceiling protocol

Figure 5: Dealing with Priority Inversion

Marsh and Scott [16] have made suggestions
to overcome some problems associated with user-
level threads by defining a generic interface between
operating system kernel and user level. This inter-
face provides fast communication between the kernel
and user-level activity. For example, when issuing
non-blocking I/O request the kernel associates the
request with a user-provided datum (the calling
thread) such that the user-level thread scheduler can
be notified of the I/O completion in conjunction with
this datum. This obviates signal demultiplexing at
the user level which should increase the response to
asynchronous events considerably without unduly
complicating the operating system kernel.

Priority Inversion: Inheritance and Ceilings
Combining priorities and critical sections may

cause priority inversion, a situation where a higher
priority thread cannot preempt the lower priority
thread executing a critical section. Priority inversion
may result in unacceptably long delays within mul-
tithreaded operating system kernels (microkernels)
[8] and user applications. Furthermore, it might not
be possible to guarantee timing constraints of real-
time systems.

Consider the example in Figure 5(a). A solid
line indicates that a thread is executing and a grey
box over a thread shows that the thread holds a
mutex. A low priority thread P1 locks a mutex and
is preempted at t1 by a high priority thread P3.
Thread P3 then tries to lock the same mutex and
blocks since the mutex is held by P1. At t1, a
medium priority thread P2 also has become ready
and starts to execute when P3 suspends. Thread P2
does not contribute to the progress of P3 since P3
will not resume its execution until P1 releases the

38 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

Mueller A Library Implementation of POSIX Threads under UNIX

mutex. Thus, the priorities of P2 and P3 are
inverted, the lower priority thread P2 continues its
execution without giving the higher priority thread
P3 any chance to regain control.

Several protocols have been suggested to over-
come priority inversion. The Pthreads standard
specifies two protocols, priority inheritance [20] and
priority ceiling emulation which can be implemented
efficiently using SRP (stack resource policy [2]). A
short comparison between the two protocols is given
in Table 3. While the implementation of ceilings
via SRP is considerably more efficient, priority
inheritance can adjust to dynamic changes of priori-
ties which cannot be anticipated and may perform
better when contention is rare. For the ceiling proto-
col, the priority ceiling of a mutex has to be initial-
ized at compile time to a at least the maximum
priority of all threads that may lock this mutex.
Thus, priority ceilings are associated with the syn-
chronization object (mutex) while priority inheri-
tance is concerned with the priority of threads.

Consider the example in Figure 5(b) with the
inheritance protocol. P1 inherits P3’s priority when
P3 tries to lock the mutex. Thus, P1 runs until it
unlocks the mutex and lowers its priority to the ori-
ginal level. P3 then continues to execute since it
has the highest priority and can now acquire the
mutex. Priority inversion is avoided since P2 does
not get to run.

Action Pi Pc Comment

1 lock(inht) 0 0 no contention for inht
2 lock(ceil) 1 1 ceil has prio ceiling 1
3 ... 2 2 contention for inht, inherit prio 2
4 unlock(ceil) 2 0 protocol divergence
5 unlock(inht) 0 0

Table 4: Mixing Inheritance and Ceiling Protocol

With the ceiling protocol in Figure 5(c), the
priority ceiling of the mutex matches (or even
exceeds) P3’s priority since P3 is the highest priority
thread locking the mutex. Thus, when P1 locks the
mutex, its priority is raised to the ceiling level.
When P1 unlocks the mutex, its priority is lowered
to the original level. Although P3 has become ready
at t1 it can only preempt P1 when the mutex
becomes unlocked due to the priority ceiling. Later
on, P3 locks the mutex and its priority is boosted to
the ceiling value. Priority inversion is avoided since
P2 never runs. Notice that this protocol tends to
require fewer context switches than the inheritance
protocol and mutexes are locked for a shorter time.

Several observations regarding the Pthreads
standard were made when trying to implement the
forementioned protocols:

� The inheritance protocol and the ceiling proto-
col can be implemented independently. But

the Pthreads standard allows ceilings only in
the presence of inheritance, which seems to be
too restrictive and should be changed.

� The ceiling protocol can be implemented
much more efficiently (using a stack [2]) if
critical sections are nested properly. Thus, if
mutexes are unlocked in a different order than
they were locked, the behavior should be
undefined for at least the ceiling protocol.
Also, if the ceiling of a mutex is not set to the
level of the highest priority thread which may
lock it, the effect should be undefined. The
Standard does not specify such restrictions.

� The implementation of different protocols
compromises efficiency. There is only one
routine for locking and one for unlocking a
mutex defined in the interface. The different
protocols are identified by attributes. A simple
mutex lock (no protocol) could have been
implemented with a test-and-set instruction.
But it now requires an additional check of the
attributes. It seems preferable to provide dif-
ferent interfaces for each protocol since the
actions taken in each case vary considerably.

� The relation of priority scheduling and lower-
ing a thread’s priority on unlocking the mutex
is ambiguous. It is not clear if a thread will be
placed at the tail of its priority level queue as
required by the priority scheduling policy or
at the head.
The latter approach seems preferable since a
priority boost effects a thread only tem-
porarily. It is not the choice of the thread to
change its priority. Rather, the thread is
forced into a higher priority. Consequently,
neither should any other thread at the same
priority level be scheduled instead of the
current thread when the priority is reset to the
initial level due to the ceiling protocol, nor
should the effected thread by penalized for
boosting its priority. Furthermore, context
switches can potentially be avoided.

� The protocols for inheritance and ceiling do
not mix well. In particular, if critical sections
with different protocols were nested, the
implementation of the ceiling protocol would
degrade to that of the inheritance protocol
since priority levels would not follow the
stack principle (LIFO) anymore. If the ceiling

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 39

A Library Implementation of POSIX Threads under UNIX Mueller

protocol is to be implemented using a stack,
the nesting of critical sections using the dif-
ferent protocols for ceiling and inheritance has
to be prohibited.

The example in Table 4 illustrates the last
point. Consider mutex inht with inheritance protocol
and mutex ceil with ceiling protocol. The priority of
the thread using inheritance protocol Pi differs from
the usage of the ceiling protocol Pc in step 4. If the
ceiling protocol was implemented as a stack, it
would restore the priority prior to locking mutex
ceil. But this leads to priority inversion for mutex
inht. If, on the other hand, a linear search was per-
formed on an unlock regardless of protocols, the
priority would remain boosted until step 5 and
unbounded inversion could be avoided. Thus, the
linear search of the inheritance protocol would have
to be performed for the ceiling protocol as well if
the protocols were mixed.

Future Work

The current status of the implementation still
lacks shared mutexes and condition variables which
can be used across processes. Such objects could
either be implemented on top of existing interprocess
communication primitives or by allocating a mutex
object in a shared data space. The latter approach
should achieve better performance. Nevertheless,
enforcing mutex protocols across process boundaries,
for example to inherit priorities, seems inefficient in
a library implementation since the libraries of the
two processes would have to communicate
somehow.

It may sometimes be useful to create a new
thread but defer its activation, also referred to as
lazy thread creation. If threads were used within
medium and fine-grain models of parallelism,
thousands of threads might be in existence at the
same time. Clearly, system resources such as stack
space will not suffice for all threads. It may there-
fore be desirable to create a thread but delay its
activation including resource allocation until the
thread is ‘‘needed’’ by some other thread, for exam-
ple due to synchronization. An attribute passed at
creation time could indicate that the activation is to
be deferred.

The current implementation allocates heap
space for the stack and thread control block (TCB)
at creation time. This accounts for about 70% of the
thread creation time. Thus, thread creation could be
sped up considerably if a memory pool for TCB and
stack was established as was done by other thread
implementors.

A major obstacle to the use of threads is to
make C libraries reentrant for threads. Several
library calls use global state information, some inter-
faces are non-reentrant, macros have to be modified,
and interruption due to signals has to be considered

without sacrificing much performance [13]. This
issue has not been addressed yet to supplement our
implementation with a thread-safe C library among
others.

A programming environment for threads should
also provide debugging facilities with support for
multi-threading [6]. Information could be extracted
from the thread control block and made available to
the user. Context switches could become visible to
the user. For example, when a context switch is
about to occur, the user could choose whether to
continue debugging after the suspension point of a
thread or whether to change into the context of
another thread. In addition, separate debugging win-
dows could be allocated for each thread within a
process.

The implementation could be extended to sup-
port multiprocessors. Several changes would have to
be made to the Pthreads kernel. Most notably, the
monolithic monitor would have to be replaced by
fine-grain locking of shared data structures to minim-
ize contention between different processors while
operating in the kernel mode. Otherwise, the advan-
tages of a multiprocessor could not be fully
exploited.

Conclusion

It was shown that a true library implementation
of Pthreads is possible and feasible. The discussed
implementation supports preemptability, fast context
switches between threads, small critical sections,
avoids unlimited stack growth, uses few operating
system calls, and provides a language-independent
interface. The implementation seems to exceed the
performance of other, kernel-supported implementa-
tions, and has been used successfully as a base to
implement the tasking portion of an Ada runtime
system which passes validation tests for tasking.

The overhead of separate signal handling for
each thread complicates the the design and imple-
mentation considerably. Some of the advantages of
light-weight threads may have been lost due to the
requirements of Pthreads. Furthermore, several prob-
lems related to language-independence and mutex
protocols in particular have to be resolved in future
drafts of the standard. It remains to be seen if the
Pthreads standard will gain wide acceptance under
these circumstances.
Acknowledgments

I would like to thank the following people: Ted
Giering and Pratit Santiprabhob for their valuable
help and cooperation during the design. Ted Baker
for his suggestion for early locking of mutexes for
condition variables and his comments about mutex
protocols. Viresh Rustagi for the implementation of
asynchronous I/O and round-robin scheduling. Bill
Gallmeister for providing comparative metrics for
LynxOS.

40 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

Mueller A Library Implementation of POSIX Threads under UNIX

Availability
The source code of Pthreads is available for

non-commercial use via anonymous ftp from
ftp.cs.fsu.edu (128.186.121.27) in the file
/pub/PART/pthreads.tar.Z – other material
such as related publications can be found in the
same directory.

Bibliography

[1] Francois Armand, Frederic Herrmann, Jim
Lipkis, and Mark Rozier. Multi-threaded
processes in CHORUS/MIX. In Proceedings of
EEUG Conference, pages 1-13, Spring 1990.

[2] T.P. Baker. Stack-based scheduling of realtime
processes. Real-Time Systems, 3(1):67-99,
March 1991.

[3] M. Ben-Ari. Principles of Concurrent and Dis-
tributed Programming

[4] Brian N. Bershad, David D. Rerdell, and John
R. Ellis. Fast mutual exclusion for uniproces-
sors. In Proceedings of the Annual Symposium
on Architectural Support for Programming
Languages and Operating Systems, pages 223-
233, October 1992.

[5] A. D. Birrell. An introduction to programming
with threads. Research Report 35, DEC Sys-
tems Research Center, 1989.

[6] Deborah Caswell and David Black. Imple-
menting a mach debugger for multithreaded
applications. In Proceedings of the USENIX
Conference, pages 25-40, Winter 1990.

[7] E. Cooper and R. Draves. C threads. TR
CMU-CS-88-154, Carnegie Mellon University,
Dept. of CS, 1988.

[8] J. Eykholt, S. Kleiman, S. Barton, R. Faulkner,
A. Shivalingiah, M. Smith, D. Stein, J. Voll,
M. Weeks, and D. Williams. Beyond multipro-
cessing ... multithreading the SunOSkernel. In
Proceedings of the USENIX Conference, pages
11-18, Summer 1992.

[9] Bill O. Gallmeister and Chris Lanier. Early
experience with POSIX 1003.4and POSIX
1003.4a. In Proceedings of the IEEE Sympo-
sium on Real-Time Systems, pages 190-198,
1991.

[10] E.W. Giering and T.P. Baker.
POSIX/Adareal-time bindings: Description of
work in progress. In Proceedings of the Ninth
Annual Washington Ada Symposium. ACM,
July 1992.

[11] E.W. Giering and T.P. Baker. Using POSIX-
threads to implement Adatasking: Description
of work in progress. In TRI-Ada ’92 Proceed-
ings, pages 218-529. ACM, 1992.

[12] IEEE. Threads Extension for Portable Operat-
ing Systems (Draft 6), February 1992.
P1003.4a/D6.

[13] Michael B. Jones. Bringing the c libraries with
us into a multi-threaded future. In Proceedings
of the USENIX Conference, pages 81-91,
Winter 1991.

[14] Thomas W. Doeppner Jr. Threads – a system
for the support of concurrent programming. TR
CS-87-11, Brown University, Dept. of CS,
1987.

[15] S. Khanna, M. Sebree, and J. Zolnowsky.
Realtime scheduling in SunOS 5.0. In
Proceedings of the USENIX Conference, pages
375-390, Winter 1992.

[16] Brian D. Marsh, Michael L Scott, Thomas J
LeBlanc, and Evangelos P. Markatos. First-
calss user-level threads. In Symposium on
Operating Systems Principles, pages 110-121,
October 1991.

[17] Frank Mueller. Implementing POSIXthreads
under UNIX: Description of work in progress.
In Proceedings of the Second Software
Engineering Research Forum, pages 253-261,
November 1992.

[18] M. L. Powell, S. R. Kleiman, S. Barton, D.
Shah, D. Stein, and M. Weeks. SunOSmulti-
thread architecture. In Proceedings of the
USENIX Conference, pages 65-80, Winter
1991.

[19] Ganesh Rangarajan. A library implementation
of POSIXthreads. Master’s Project Report,
Florida State University Department of Com-
puter Science, July 1991.

[20] Lui Sha, Ragunathan Rajkumar, and John P.
Lehoczky. Priority inheritance protocols: An
approach to real-time synchronization. IEEE
Transactions on Computers, 39(9):1175-1185,
September 1990.

[21] Inc. SPARC International. The SPARC Archi-
tecture Manual: Version 8. Prentice Hall,
Englewood Cliffs, New Jersey, 1992.

[22] D. Stein and D. Shah. Implementing light-
weight threads. In Proceedings of the USENIX
Conference, pages 1-10, Summer 1992.

[23] A. Tevanian, R. F. Rashid, D. B Golub, D. L.
Black, E. Cooper, and M. W. Young.
MACHthreads and the UNIXkernel: The battle
for control. In Proceedings of the USENIX
Conference, pages 185-197, Summer 1987.

Author Information

Frank Mueller is currently pursuing his Ph.D.
in Computer Science at Florida State University. His
interests as a student and research assistant include
compilers, computer architecture, Ada, real-time sys-
tems, and concurrent programming. His U.S. mail
address is Florida State University; Department of
Computer Science, B173; Tallahassee, FL 32306-
4019. His e-mail address is mueller@cs.fsu.edu.

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 41

42 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

