Overview

- Brief introduction to the world of embedded control
 - To a first approximation, desktop CPUs are 0% of the market

- High Level look at two issues
 - Embedded / Internet Gateways
 - An example threat: household thermostats
My Experience in Embedded Systems

How Many CPUs In A Car Seat?

- Car seat photo from Convergence 2004
 - Automotive electronics show
Car Seat Network (no kidding)

◆ Low speed LIN network to connect seat motion control nodes

◆ This is a distributed embedded system!
 • Front-back motion
 • Seat tilt motion
 • Lumbar support
 • Control button interface
 • Connects to body controls network beyond seat for per-driver customization

Microprocessor Unit Sales
All types, all markets worldwide

15 Million PCs per month in 2004 (15,000 on this graph)
Trend: External Connectivity

- Safety critical subsystems will be connected to external networks (directly or indirectly)
 - German proposal: wireless networks control car’s max. speed
 - E-enabled aircraft architecture (next slide)

[Airbus 2004] A-380 scheduled to enter service in 2006

Wargo & Chas, 2003, proposed Airbus A-380 architecture

Passenger laptops are 3 Firewalls away from flight controls!
Deeply Embedded System Gateway

Enterprise system + Embedded System = “Deeply Embedded System”

How Do We Make A Robust, Secure Gateway?

Research Area: Embedded/Internet Gateway

- What happens at the embedded/internet interface?
 - Fault propagation across the gateway presents fundamental challenges

<table>
<thead>
<tr>
<th>Embedded Side</th>
<th>Enterprise Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control-oriented</td>
<td>Transaction-oriented</td>
</tr>
<tr>
<td>Time Triggered</td>
<td>Event Triggered</td>
</tr>
<tr>
<td>Continuous</td>
<td>Discrete</td>
</tr>
<tr>
<td>Real Time</td>
<td>Mostly not Real Time</td>
</tr>
<tr>
<td>Periodic Messages</td>
<td>Aperiodic Messages</td>
</tr>
<tr>
<td>Short Messages</td>
<td>Longer messages</td>
</tr>
<tr>
<td>Roll-forward</td>
<td>Rollback</td>
</tr>
<tr>
<td>Lower cost</td>
<td>Higher cost</td>
</tr>
</tbody>
</table>

GATEWAY
Initial Experiment: Queue overflow

- How having a long queue can cause you to operate on stale data

- Ideal case: Queue is empty in the steady state
- Clumping delay leads to missed deadline for periodic messages
- Need a policy for dealing with having no message to send.
- Now all the messages delivered to the embedded system are 1 period old.
Deeply Embedded Scary Scenario

◆ Consider the lowly thermostat

◆ Trends:
 • Internet-enabled
 • Connection to utility companies for grid load management

◆ Proliphix makes an Internet Thermostat
 • (But it we’re not saying that system has these vulnerabilities!)
 • Somebody else makes one almost exactly like this, deployed July 2005

Waste Energy Attack

◆ “I’m coming home” function
 • Ability to tell thermostat to warm up/cool down house if you come home early from work, or return from a trip
 • Save energy when you’re gone; have a comfy house when you return
 • Implement via web interface or SMS gateway

◆ Attack: send a false “coming home” message
 • Causes increase in utility bill for house owner
 • If a widespread attack, causes increased US energy usage/cause grid failure
 • Easily countered(?) – if designers think to do it!
 – Note that playback attack is possible – more than just encryption of an unchanging message is required!
Discomfort Attack

◆ Remotely activated energy saver function
 • Remotely activated energy reduction to avoid grid overload
 • Tell house “I’ll be home late”
 • Saves energy / prevents grid overload when house empty

◆ Attack: send a false “energy saver” command
 • Will designers think of this one?
 • Some utilities broadcast energy saver commands via radio
 – In some cases, air conditioning is completely disabled
 – Is it secure??
 • Consequences higher for individual than for waste energy attack
 – Possibly broken pipes from freezing in winter
 – Possibly injured/dead pets from overheating in summer

Energy Auction Scenario

◆ What if power company optimizes energy use?
 • Slightly adjust duty cycles to smooth load (pre-cool/pre-heat in anticipation of hottest/coldest daily temperatures)
 • Offer everyone the chance to save money if they volunteer for slight cutbacks during peak times of day
 • Avoid brownouts by implementing heat/cool duty cycle limits for everyone

◆ You could even do real time energy auctions
 • Set thermostat by “dollars per day” instead of by temperature
 – More dollars gives more comfort
 • Power company adjusts energy cost continuously throughout day
 • Thermostats manage house as a thermal reservoir
Energy Auction Attacks – Naïve Version

- **What if someone broke into all the thermostats?**
 - Set dollar per day value to maximum, ignoring user settings
 - Surprise! Next utility bill will be unpleasant
 - Turn on all thermostats to maximum
 - Could overload power grid
 - Pulse all thermostats in a synchronized way
 - Could synchronized transients destabilize the power grid?

Energy Auction Attacks – Scary Version

- **What if someone broke into the energy auction server?**
 - If you set energy cost to nearly-free, everyone turns on at once to grab the cheap power
 - Guess what – enterprise computer could have indirect control of thousands of embedded systems!
 - Someday soon, almost “everything” will be “embedded,” at least indirectly
“Unique” Embedded System Requirements

Embedded systems:

- **Are actually supposed to work**
 - Do you want to perform a workaround for your water heater?
 - Often have 24x7 requirements – zero down time

- **Often are safety critical**
 - Have you ever ridden in a fully automated train/peoplemover? (or an elevator?)

- **Are very cost sensitive & resource constrained**
 - A $0.50 CPU can’t run a “big” OS with full security features

- **Don’t have a sysadmin**
 - Who’s the sysadmin for your DVD player?
 - The owner is often negligent, or even a malicious attacker