
Embedded software certification under a
software engineering methodological

perspective

Luca Pazzi∗

Riccardo Corrado
University of Modena and Reggio Emilia
Via Vignolese 905, I-41100, Modena, Italy

Luigi Luppi
LUPPI & ASSOCIATI

V.le Corassori 54, I-41100, Modena, Italy

1 Introduction

Embedded systems pose a lot of challenges to the research community, both
to academia and to industry. Moreover, the ever increasing diffusion of em-
bedded devices in everyday life will soon bring the problematics of their safety
certification to the attention of national as well as supranational institutions,
which are, of course, already committed towards the safety certification of
the products which are commercialized within their country-member bound-
aries. The European Union, for example, since the emanation of directive
2001/95/CE, is trying to bring commercial products sold within its bound-
aries towards a unitary and standardized level of safety. It may be observed
that such a directive does not indicate explicitly any specific product typol-
ogy, hence it leaves room for new product classes, such as embedded systems.

∗Corresponding author, e-mail: pazzi@unimo.it

1



If national and supranational institutions are the natural seat of the new
certification process, the rest of the feasible scenarios is still under deep fog.
It is indeed necessary to face the following issues:

1. The very notion of safety for both human-controlled and automatic
embedded devices is still under investigation. If, on the hardware front,
the systemic notion of reliability is a well acquainted topic, on the
embedded software front it is well known that system safety is very
different from system reliability, since it is well known that a reliable
system is not necessarily a safe system;

2. Even in the case of a widely accepted notion of safety, it is necessary to
have some methodological guidelines in order to drive the certification
process;

2 Towards a new notion of safety

The quest for a notion of safety suitable for embedded system certification
is, in our opinion, essentially a software engineering problem. It may be
observed that, at the moment:

• no tools or methodologies exist for determining, in all cases, whether a
system is safe [1]. Although model checking made steps ahead in order
to face more complex problems, it is still limited by the exponential
growth of the number of global states of the system;

• current methodologies rely on Harel’s Statecharts [2] model of compu-
tation, which has not a definite semantics;

• current methodologies lack any form of modularization; in this sense
it is not possible to encapsulate part of a system, ascertain its safety,
and to assemble it, by a safety preserving methodology, with other safe
modules in order to get a safe system.

It is therefore rather straightforward to draft a methodology able to over-
come the problems above; such a methodology should:

1. be truly modular, which in turn means that it should:

2



(a) allow for safe modules, that is safety should be certifiable of a
single module;

(b) allow for modular safe assembly of safe modules;

2. underpin a computational model having a clear and computable se-
mantics;

3. underpin a conceptual paradigm which is able to deal with a world of
stimuli and responses in which embedded software is called to operate.

3 Towards a methodology-based safety certi-

fication

As observed, the different countries as well as their respective supranational
organisations have the institutional duty to pave the way towards safety
certification. Since we prospected that a notion of system security requires
the adoption of methodological instruments, at least two scenarios may be
likely hypothesized. A methodology may be indeed chosen by a certifying
institution if it is able to ascertain the safety of a system under:

1. some scientifically indisputable result, such, for the example, one or
more theorem proofs;

2. some weaker scientifical result, such as those coming from statistical
evidence, in the same way evidence-based medicine operates.

The certifying institution may adopt either directly a single methodology,
or a set of methodologies, each possibly owned by selected certifying firms,
which become official (institutional) certifying entities;

In both cases, the certification process is consequently officially recognized
by one or more countries, and as such it is likely to be adsorbed in the body of
laws of each country. In case a country is not ready to choose one of the two
scenarios above, it may be the case for a third one, in which a methodology
which can be shown to be reliable and winning on the market, creates a de
facto standard, and as such it may be likely used in a court of law to plead
for the not-liability of a manufacturer who adopted it.

Whichever the road that will be chosen, we observe that a new market
and business opportunities spring for certification firms, private and public

3



research institutions as well as lawyers and patent agencies. It may in fact
observed that, in case one or more methodologies are adopted by a country,
and in case such methodologies are patented, then the certification process
may become a huge font of revenues for the patent holders.

4 Conclusion

Embedded software and system certification requires, as a prerequisite, the
solution of pure software engineering problems. The main challenge consists
in shifting from traditional structured programming, which may be shown
to be not adequate for the new application field, towards a new state-based
modular programming, which has yet still to come. Such a new paradigm
will have necessarily to surpass Harel’s model of computation, which is indeed
not semantically well founded, as well as to give effective software tools, such
as modularity and composability of safety assurance.

Finally, as observed, both the expected growth of the market as well as the
feasible revenues coming from finding and patenting effective methodologies
should convince research institutes in promoting investments in the field.

References

[1] Bruce Powel Douglass. Real-time UML: Developing Efficient Objects for
Embedded Systems. Addison-Wesley, 1998.

[2] D. Harel. Statecharts: A visual formalism for complex systems. Science
of Computer Programming, 8:231–274, 1987.

4


