
Fixing Register Coloring in VPO to the Power Architecture

A. J. Carpio, C. G. Rawls, B. F. Rayfield
North Carolina State University

Raleigh, NC USA

Abstract
The Very Portable Optimizer (VPO) is an

optimization framework that implements language-
and architecture-independent compiler
optimizations. The Condor team worked on the
recently-added Power port to VPO, concentrating
on problems with the global register coloring
algorithm. Our team located two problems within
the allocator that resulted in incorrect code. The
first dealt with using scratch registers across
function calls. The second was a bug in the
reallocation of function parameter registers. Our
team solved the first problem and found a
temporary solution to the second problem.

Introduction
 The Very Portable Optimizer (VPO) is an
optimization framework created at the University of
Virginia. All optimizations implemented using
VPO operate at the Register Transfer List (RTL)
level. Since all optimizations operate at this level,
the optimizer is language independent.
 VPO is currently being ported to the Power
Architecture from IBM. Therefore, not all
optimizations are implemented or working. In this
report we present the results of our work in fixing
register allocation on the Power architecture.

First Round Testing
 Our initial tests focused on the ctest
directory. We determined the similarities in the
errors by running the testit script and observing the
output. We immediately saw that one common bug
was that multiple calls to printf() resulted in zeros
being output on calls after that first.
 This started us down the road of fixing the
registers being allocated. We chose to then focus
on the test: test007.c. This test was chosen because

it was the simplest to exhibit the errors common to
many tests. Below is the source code:

main()
{
 unsigned char c;

 c = 132;
 printf("%c [v]\n", (unsigned char) 'v');
 printf("%d [132]\n", c);
}

Within the ctest folder, all tests print a value
along with the correct value in brackets. A test had
run correctly when the first outputted value matches
the value in brackets. In the initial register coloring
implementation, test007 outputs the first character
correctly. However, the output of the second
printf() is a zero instead of the value 132. The next
step in our work was to examine the assembly
output for this test, printed here: (author comments
in bold)

#source statement 5
#Value 132 assigned to register 8
 li 8,132
#source statement 6
 li 4,118
 li 5,255
#printf() function loaded
 lwz 6,L0_TC_LBL_FUNC_printf(2)
 lwz 3,L0_TC_LBL_15(2)
 stw 4,56(1)
 lwz 7,56(1)
 and 4,5,7
 stw 2,20(1)
 lwz 5,0(6)
 lwz 2,4(6)
 mtlr 5
#printf() function called
 bclrl 20,0
 lwz 2,20(1)
#source statement 7
#Value register 8 moved to register 4
 mr 4,8
 li 5,255
#printf() function loaded

 lwz 6,L0_TC_LBL_FUNC_printf(2)
 lwz 3,L0_TC_LBL_16(2)
#Register 4 passed to second printf()
 stw 4,56(1)
 lwz 7,56(1)
 and 4,5,7
 stw 2,20(1)
 lwz 5,0(6)
 lwz 2,4(6)
 lwz 11,8(6)
 mtlr 5
#printf() function called
 bclrl 20,0
 lwz 2,20(1)

Investigation revealed that the character was
initially allocated to register 8. Next, the first
printf() function is called and parameters are passed
to it. Then the second function is called, and the
value in register 8 is passed in. After crossing the
first function call, however, the value in register 8
has been changed and is now 0, so test007 fails.

The Power architecture has volatile (caller-
save) and non-volatile (callee-save) registers [1].
Volatile registers are sometimes referred to as
“scratch” registers. When control is passed to
another function, all values in volatile registers must
be assumed to have been changed by the called
function. If a value in a volatile register must be
maintained across a function call, it must be saved
before the call and restored afterwards. A more
efficient strategy is to find all values that must be
maintained across a call and place them in non-
volatile registers, so that the caller does not need to
save and restore them.
 The cancolor() function in assign.c is used
by the register coloring algorithm to find an
appropriate register for a specific live range or blob
of life. The type of register needed is passed in,
along with the ifcheap variable. ifcheap is true if a
register is used infrequently and is a candidate for
assignment to a scratch register. Currently, some
registers are incorrectly assigned to scratch registers
that are live across a function call. In our
modification to cancolor(), these registers are now
assigned to non-volatile registers, because the
ifcheap flag is used to determine which type of
register to use.

Second Round Testing
 After fixing the local variables being
allocated to scratch registers even though they were
labeled not cheap, all of the tests in ctest worked.
However, when we expanded our testing to the
other directories, we found that the misc directory
had several tests that failed to compile.
 Further inspection required analyzing the
assembly output of a test in misc. Word count,
wc.c, seemed like the simplest to follow in assembly
form. Stepping through the debugger line by line
with the assembly we came across the problem.
Whenever the function wcp() was called, it took
four arguments. However, Those four arguments
were not saved to non-scratch registers. The
assembly code was trying to load the arguments
from the registers that they were passed to the
function, but the values were used across function
boundaries, resulting in the same output problems
that were fixed earlier. This was causing a zero to
always be printed in the second column and a
negative one in the third column while the correct
value was printed in the first column.
 Having this knowledge in hand, we
proceeded to view debug output to determine what
it was doing. The graph-coloring algorithm had
allocated a non-scratch register to each parameter.
However, another function had changed the
function after this optimization. Inserting
dump_function() statements into VPO allowed us to
determine that fixentry() was altering the function.
 Then, we inserted dump_function() calls and
printf()s. We then found the section that derives the
parameters from the registers and implements a
renaming mechanism. This mechanism was
renaming the allocated non-scratch registers to the
scratch registers.
 This mechanism is similar to the other
architectures so we compared it to the MIPS
architecture, one very similar to the Power. This
didn’t immediately yield any clues. The decision to
rename though was based upon the isused flag of
each register. So our attention turned to this
variable. Currently, the values are not correct. This
is where we currently stand. If we insert the

following code at the beginning of fixentry() in
regs.c:

for (rnum = 0; rnum < MAXREGS; rnum++)
 isused[rnum] = TRUE;

most of the tests that did not work before begin to
work. The word count program works as now the
parameters are stored in non-scratch registers.
However, the problem still exists with the sum of all
totals when it performs word count on multiple
files. This shows that either our temporary solution
causes other problems with the register allocator or
there are further VPO problems that we have not yet
pinpointed.
 Since that solution was a simple hack we
needed to find out where this variable was set and
where we should then set it ourselves. Before we
started our project, only local_register_assignment()
located in assign.c altered this variable. This
indicated that any allocations made during coloring
OR linear allocation were not being noted for future
use in fixentry.
 To fix this we added three lines of code to
locals.c that set the appropriate element of isused to
TRUE when cancolor or canreplace returns true.

if (cancolor(type, allocate, reg, ifcheap)) {
 /*
 * Let fixentry know that this register
 * is used in this function.
 */
 isused[regtoindex(type, regnum(reg))] =
TRUE;

This allowed us to remove the hack that fixed
register renaming. This also fixed many of the
problems that the global linear allocator was
running into.

Remaining Issues
 There were bound to be issues that could not
be resolved. Below is a table listing most of the
remaining issues. We first focused on ctest because
those tests contained no conditional branches and
were thus easier to debug. Once the compiler was
able to build working versions of these programs we
expanded our testing to other directories.

Directory Coloring Linear
ctest All tests work All tests work

avdhoot All tests work All tests work
cache error in compiled

program.
error in compiled
program.

cq S626.c has error
message:
Vpo (s_add):
unallocated item
‘r[158]’

Output differs
from gcc.
Otherwise, this
test works.

espresso Error in compiled
test.

Error in compiled
test.

jpeg Error in compiled
program.

Error in compiled
program.

misc Sieve has errors.
Related to
allocation of an
array on the stack.
It forces the scalar
variables to be
placed at offset
32820 and beyond.
Fm-part fails to
run.

Same.
An infinite loop is
introduced in
diag05.c

msim All tests work All tests work
others All tests work All tests work

Conclusion
 VPO is designed to be a portable
optimization framework, allowing a programmer to
develop a port for a specific machine architecture
and immediately benefit from all the optimizations
already implemented by VPO. However, it is not
always easy to create a full port to VPO, and
problems can arise. Our team investigated
problems with the register-coloring algorithm in the
Power port to VPO. The team found two separate
issues with the register allocator that was producing
incorrect code. At the end of our project, the team
has: a complete fix for the first problem of
allocating volatile registers where non-volatile
registers are needed, and a temporary fix to the
second problem of incorrectly reallocated parameter
registers. The fixes allow a high percentage of the

powerpc-vpo test cases to run correctly. When the
temporary fix is finalized, it will provide a much
more stable global register-coloring algorithm for
the Power port to VPO.

References
1. “PowerPC Assembly.” IBM developerWorks.
<http://www-
106.ibm.com/developerworks/library/l-ppc/>

Website
http://www4.ncsu.edu/~ajcarpio/791A/condor.htm

