Cell Broadband Engine Overview

Course Code: L1T1H1-02
Cell Ecosystem Solutions Enablement
Class Objectives – Things you will learn

- An overview of
 - Cell history
 - Cell microprocessor highlights
 - Hardware architecture and components
 - Software development environment including standard interfaces, programming models, operating system runtime strategy, system simulator, development tools, …
 - Cell performance characteristics
 - Cell blade server
 - Cell application affinity and target opportunities
Class Agenda

- Introduction to Cell
- Cell Hardware Overview
 - Cell highlights
 - Cell processor
 - Cell processor components
- Cell Software Overview
 - Cell software environment
 - Application development overview
 - Cell programming overview
 - Cell software design considerations
 - Development tools
 - Cell system simulator
 - Optimized libraries
- Cell performance characteristics
- Cell blade
- Cell application affinity

Trademarks - Cell Broadband Engine™ is a trademark of Sony Computer Entertainment, Inc.
Cell History

- IBM, SCEI/Sony, Toshiba Alliance formed in 2000
- Design Center opened in March 2001
 - Based in Austin, Texas
- Single CellBE operational Spring 2004
- 2-way SMP operational Summer 2004
- February 7, 2005: First technical disclosures
- October 6, 2005: Mercury Announces Cell Blade
- November 9, 2005: Open Source SDK & Simulator Published
- November 14, 2005: Mercury Announces Turismo Cell Offering
- February 8, 2006 IBM Announced Cell Blade
Cell
Cell Hardware Overview
Highlights (3.2 GHz)

- 241M transistors
- 235mm²
- 9 cores, 10 threads
- >200 GFlops (SP)
- >20 GFlops (DP)
- Up to 25 GB/s memory B/W
- Up to 75 GB/s I/O B/W
- >300 GB/s EIB
- Top frequency >4GHz (observed in lab)
Cell Features

- **Heterogeneous multi-core system architecture**
 - Power Processor Element for control tasks
 - Synergistic Processor Elements for data-intensive processing

- **Synergistic Processor Element (SPE) consists of**
 - Synergistic Processor Unit (SPU)
 - Synergistic Memory Flow Control (MFC)
 - Data movement and synchronization
 - Interface to high-performance Element Interconnect Bus

64-bit Power Architecture with VMX

- PPE
- SPE
- L1
- L2
- MIC
- BIC
- FlexIO™
- Dual XDR™
Software Overview
Cell Software Environment

- Debug Tools
 - Code Dev Tools
 - Samples
 - Workloads
 - Demos
 - SPE Management Lib
 - Application Libs
- Performance Tools
 - Linux PPC64 with Cell Extensions
- Miscellaneous Tools
 - Verification Hypervisor
 - Hardware or System Level Simulator
- Standards:
 - Language extensions
 - ABI

Development Environment

Execution Environment
Cell Standards

Application Binary Interface Specifications
- Defines such things as data types, register usage, calling conventions, and object formats to ensure compatibility of code generators and portability of code.
 - SPE ABI
 - Linux Cell ABI

- SPE C/C++ Language Extensions
 - Defines standardized data types, compiler directives, and language intrinsics used to exploit SIMD capabilities in the core.
 - Data types and Intrinsics styled to be similar to Altivec/VMX.

- SPE Assembly Language Specification
Application Development Overview

- CellBE Programming Features
- Flexible Program Models
 - Application Accelerator Model
 - Function Offload Model
 - Computation Acceleration
 - Heterogeneous Multi-Threading
Programming Models

Application Specific Accelerators

Acceleration provided by OS or application libraries
Application portability maintained with platform specific libraries
Subsystem Programming Model

Function Offload

- Dedicated Function (problem/privileged subsystem)
 - Programmer writes/uses SPU "libraries"
 - Graphics Pipeline
 - Audio Processing
 - MPEG Encoding/Decoding
 - Encryption / Decryption
 - Main Application in PPE, invokes SPU bound services
 - RPC Like Function Call
 - I/O Device Like Interface (FIFO/ Command Queue)
- 1 or more SPUs cooperating in subsystem
 - Problem State (Application Allocated)
 - Privileged State (OS Allocated)
- Code-to-data or data-to-code pipelining possible
- Very efficient in real-time data streaming applications
Operating System Runtime Strategy

Heterogeneous Multi-Threading Model
- PPE Threads, SPE Threads
- SPE DMA EA = PPE Process EA Space
- OS supports Create/Destroy SPE tasks
- Atomic Update Primitives used for Mutex
- SPE Context Fully Managed
 - Context Save/Restore for Debug
 - Virtualization Mode (indirect access)
 - Direct Access Mode (realtime)
- OS assignment of SPE threads to SPEs
 - Programmer directed using affinity mask
- SPE Compilers use SPE Management Lib.
CELL Software Design Considerations

- **Two Levels of Parallelism**
 - Regular vector data that is SIMD-able
 - Independent tasks that may be executed in parallel

- **Computational**
 - SIMD engines on 8 SPEs and 1 PPE
 - Parallel sequence to be distributed over 8 SPE / 1 PPE
 - 256KB local store per SPE usage (data + code)

- **Communicational**
 - DMA and Bus bandwidth
 - DMA granularity – 128 bytes
 - DMA bandwidth among LS and System memory
 - Traffic control
 - Exploit computational complexity and data locality to lower data traffic requirement
 - Shared memory / Message passing abstraction overhead
 - Synchronization
 - DMA latency handling
Typical CELL Software Development Flow

- Algorithm complexity study
- Data layout/locality and Data flow analysis
- Experimental partitioning and mapping of the algorithm and program structure to the architecture
- Develop PPE Control, PPE Scalar code
- Develop PPE Control, partitioned SPE scalar code
 - Communication, synchronization, latency handling
- Transform SPE scalar code to SPE SIMD code
- Re-balance the computation / data movement
- Other optimization considerations
 - PPE SIMD, system bottle-neck, load balance
Development Tools
Code Development Tools

- **GNU based binutils**
 - gas SPE assembler
 - gld SPE ELF object linker
 • gld extensions for embedding SPE object modules in PPE executables
 - misc bin utils (ar, nm, ...) targeting SPE modules
 - hosted on Linux IA32, Linux PowerPC

- **GNU based C/C++ compiler targeting SPE**
 - From STI Partner
 - retargeted compiler to SPE
 - Supports common SPE Language Extensions and ABI (ELF/Dwarf2) object output

- **Cell Broadband Engine Optimizing Compiler (IBM Proprietary)**
 - Based on the highly optimizing IBM XL C/C++ for PowerPC
 - IBM XL C retargeted to generate SPE assembler code (including vector intrinsics) - highly optimizing
 - Prototype – XL C Compiler supporting CellBE Programmer Productivity Aids
 • Single Source compilation using OpenMP directives (PPE and SPE object code generated)
 • Auto-Vectorization (auto-SIMD) for VMX and SPE
 • Auto-Parallelization across SPEs
 • Local Store software managed caching model
 - Hosted on Linux/x86, Linux on Power, and Windows/x86
 - An alpha version of IBM XL C for CBE hosted on Linux/x86 is available on IBM Alphaworks
 • C language support for PPE and SPE
 • C++ language support for PPE
Debug Tools

- **CellBE system simulator**
 - Executable availability on AlphaWorks

- **GNU gdb**
 - ptrace and spe_ptrace enabled
 - Multi-core Application source level debugger supporting PPE multithreading, SPE multithreading, interacting PPE and SPE threads
 - Three modes of debugging SPU threads
 - Attach to SPE thread
 - Launch mode – launch a new debug session for each SPE thread
 - Pass-thru mode – follow execution into SPE thread

- **RISCwatch**
 - Low level hardware (JTAG) debugger
Prototype Performance Tools

- **pmcount**
 - Tool to access to HW performance counters

- **Performance inspector**
 - Suite of GPL based performance analysis tools extended to support SPE threads
 - tprof – timer based analysis tool
 - ptt – per thread time
 - ai – above idle
 - post – report generator
 - a2n – address to name

- **Oprofile**
 - System level profiler
SPE Performance Tools

- **Static analysis (spexlc_timing)**
 - Annotates assembly source with instruction pipeline state

- **Dynamic analysis (CellBE System Simulator)**
 - Generates statistical data on SPE execution
 - Cycles, instructions, and CPI
 - Single/Dual issue rates
 - Stall statistics
 - Register usage
 - Instruction histogram
Cell Performance Characteristics
Why Cell processor is so fast?

Key Architectural Reasons

- Parallel processing inside chip
- Fully parallelized and concurrent operations
- Functional offloading
- High frequency design
- High bandwidth for memory and IO accesses
- Fine tuning for data transfer

Staging

L2 - 4 outstanding loads + 2 prefetch

Data

SPU - 16 outstanding loads per SPU
Theoretical Peak Performance

- FP (SP)
- FP (DP)
- Int (16 bit)
- Int (32 bit)

Billion Operations / sec

PowerPC® 970MP 2.5 GHz
Cell Broadband Engine™ 3.2 GHz
Cell BE Performance Summary

<table>
<thead>
<tr>
<th>Type</th>
<th>Algorithm</th>
<th>3.2 GHz GPP</th>
<th>3.2 GHz Cell</th>
<th>Cell Perf Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPC</td>
<td>Matrix Multiplication (S.P.)</td>
<td>24 Gflops (w/SIMD)</td>
<td>200 GFlops* (8SPEs)</td>
<td>8x</td>
</tr>
<tr>
<td></td>
<td>Linpack (S.P.)</td>
<td>16 Gflops (w/SIMD)</td>
<td>156 GFlops* (8SPEs)</td>
<td>9x</td>
</tr>
<tr>
<td></td>
<td>Linpack (D.P.): 1kx1k matrix</td>
<td>7.2 GFlops (IA32/SSE3)</td>
<td>9.67 GFlops* (8SPEs)</td>
<td>1.3x</td>
</tr>
<tr>
<td>graphics</td>
<td>Transform-light</td>
<td>170 MVPS (G5/VMX)</td>
<td>256 MVPS** (per SPE)</td>
<td>12x</td>
</tr>
<tr>
<td></td>
<td>TRE</td>
<td>1 fps (G5/VMX)</td>
<td>30 fps* (Cell)</td>
<td>30x</td>
</tr>
<tr>
<td>security</td>
<td>AES encryp. 128-bit key</td>
<td>1.03 Gbps</td>
<td>2.06 Gbps** (per SPE)</td>
<td>16x</td>
</tr>
<tr>
<td></td>
<td>AES decryp. 128-bit key</td>
<td>1.04 Gbps</td>
<td>1.5 Gbps** (per SPE)</td>
<td>11x</td>
</tr>
<tr>
<td></td>
<td>TDES</td>
<td>0.12 Gbps</td>
<td>0.16 Gbps** (per SPE)</td>
<td>10x</td>
</tr>
<tr>
<td></td>
<td>DES</td>
<td>0.43 Gbps</td>
<td>0.49 Gbps** (per SPE)</td>
<td>9x</td>
</tr>
<tr>
<td></td>
<td>SHA-1</td>
<td>0.85 Gbps</td>
<td>1.98 Gbps** (per SPE)</td>
<td>18x</td>
</tr>
<tr>
<td>video</td>
<td>mpeg2 decoder (CIF)</td>
<td>----</td>
<td>1267 fps* (per SPE)</td>
<td>--</td>
</tr>
<tr>
<td>processing</td>
<td>mpeg2 decoder (SDTV)</td>
<td>354 fps (IA32)</td>
<td>365 fps** (per SPE)</td>
<td>8x</td>
</tr>
<tr>
<td></td>
<td>mpeg2 decoder (HDTV)</td>
<td>----</td>
<td>73 fps* (per SPE)</td>
<td>--</td>
</tr>
</tbody>
</table>

Notes: * Hardware measurement ** Simulation results

Key Performance Characteristics

- Cell's performance is about an order of magnitude better than GPP for media and other applications that can take advantage of its SIMD capability
 - Performance of its simple PPE is comparable to a traditional GPP performance
 - its each SPE is able to perform mostly the same as, or better than, a GPP with SIMD running at the same frequency
 - key performance advantage comes from its 8 de-coupled SPE SIMD engines with dedicated resources including large register files and DMA channels

- Cell can cover a wide range of application space with its capabilities in
 - floating point operations
 - integer operations
 - data streaming / throughput support
 - real-time support

- Cell microarchitecture features are exposed to not only its compilers but also its applications
 - performance gains from tuning compilers and applications can be significant
 - tools/simulators are provided to assist in performance optimization efforts
Cell Blade
The First Generation Cell Blade

1GB XDR Memory Cell Processors IO Controllers IBM Blade Center interface
Cell Blade Overview

- **Blade**
 - Two Cell BE Processors
 - 1GB XDRAM
 - BladeCenter Interface (Based on IBM JS20)

- **Chassis**
 - Standard IBM BladeCenter form factor with:
 - 7 Blades (for 2 slots each) with full performance
 - 2 switches (1Gb Ethernet) with 4 external ports each
 - Updated Management Module Firmware.
 - External Infiniband Switches with optional FC ports.

- **Typical Configuration (available today from E&TS)**
 - eServer 25U Rack
 - 7U Chassis with Cell BE Blades, OpenPower 710
 - Nortel GbE switch
 - GCC C/C++ (Barcelona) or XLC Compiler for Cell (alphaworks)
 - SDK Kit on http://www-128.ibm.com/developerworks/power/cell/
Cell Application Affinity
Cell Broadband Engine
- Non-homogeneous coherent multi-Processor
 - Dual-threaded control-plane processor
 - 8 independent data-plane processors
 - Thread-level parallelism
- SIMD processing architecture
 - 128-entry, 128-bit register files
 - Pipelined execution units
 - Branch hint
 - Data-level parallelism
- Rich integer instruction set
 - Word, halfword, byte, bit
 - Boolean
 - Shuffle
 - Rotate, shift, mask
- Single-precision floating point
- Double-precision floating point
- 256KB SPU local stores
 - Asynchronous DMA/main memory interface
 - Channel interface
 - Single-cycle load/store to/from registers
- High-bandwidth internal bus
 - 96 bytes transferred per clock
 - 100+ outstanding transfers supported
- Coherent bus interface
 - Up to 30GB/s out, 25 GB/s in
 - Direct attach of another Cell
 - Can be configured as non-coherent
- Non-coherent bus interface
 - Up to 10GB/s out, 10 GB/s in
- 25+ GB/s XDR memory interface

Accelerated Functions
- Signal processing
- Image processing
- Audio resampling
- Noise generation
- Sound oscillation
- Digital filtering
- Curve and surface evaluation
- FFT
- Matrix mathematics
- Vector mathematics
- Game Physics / Physics simulation
- Video compression / decompression
- Surface subdivision
- Transform-light
- Graphics content creation
- Security encryption / decryption
- Pattern matching
- Language parsing
- TCP/IP offload
- Encoding / decoding
- Parallel processing
- Real time processing
- ...

Target Applications
- Medical imaging / visualization
- Drug discovery
- Petroleum reservoir modeling
- Seismic analysis
- Avionics
- Air traffic control systems
- Radar systems
- Sonar systems
- Training simulation
- Targeting
- Defense and security IT
- Surveillance
- Secure communications
- LAN/MAN Routers
- Network processing
- XML and SSL acceleration
- Voice and pattern recognition
- Video conferencing
- Computational chemistry
- Climate modeling
- Data mining and analysis
- Media server
- Digital content creation
- Digital content distribution
Target Opportunities for Cell Blade

- Aerospace & Defense
 - Signal & Image Processing
 - Security, Surveillance
 - Simulation & Training, …

- Petroleum Industry
 - Seismic computing
 - Reservoir Modeling, …

- Public Sector / Gov’t & Higher Educ.
 - Signal & Image Processing
 - Computational Chemistry, …

- Finance
 - Trade modeling

- Medical Imaging
 - CT Scan
 - Ultrasound, …

- Industrial
 - Semiconductor / LCD
 - Video Conference

- Communications Equipment
 - LAN/MAN Routers
 - Access
 - Converged Networks
 - Security, …

- Consumer / Digital Media
 - Digital Content Creation
 - Media Platform
 - Video Surveillance, …

- Consumer

- Public Finance

- Industrial

- Communications

- Petroleum Industry

- A&D

- Assets

- Cell
Samples / Workloads / Demos

- Numerous code samples provided to demonstrate system design constructs
- Complex workloads and demos used to evaluate and demonstrate system performance
 - Terrain Rendering Engine
 - Subdivision Surfaces
 - Physics Simulation
 - Geometry Engine

Terrain Rendering Engine

Geometry Engine

Physics Simulation

Subdivision Surfaces
Summary

- Cell ushers in a new era of leading edge processors optimized for digital media and entertainment.
- Desire for realism is driving a convergence between supercomputing and entertainment.
- New levels of performance and power efficiency beyond what is achieved by PC processors.
- Responsiveness to the human user and the network are key drivers for Cell.
- Cell will enable entirely new classes of applications, even beyond those we contemplate today.