
PLRU Cache Domino Effects

Christoph Berg
Saarland University, Compiler Design Lab, Saarbrücken, Germany

cb@cs.uni-sb.de

June 9, 2006

Abstract

Domino effects have been shown to hinder a tight prediction
of worst case execution times (WCET) on real-time hardware.
First investigated by Lundqvist and Stenström, domino effects
caused by pipeline stalls were shown to exist in the PowerPC
by Schneider. This paper extends the list of causes of domino
effects by showing that thepseudo LRU (PLRU) cache re-
placement policy can cause unbounded effects on the WCET.
PLRU is used in the PowerPC PPC755, which is widely used
in embedded systems, and some x86 models.

1 Introduction

Embedded systems play a key role in any modern product.
When employed in safety-critical environments like airbag
controllers in cars or fly-by-wire systems in air crafts, thetim-
ing must meet conditions imposed by the environment. The
execution time of the tasks running on the embedded pro-
cessor must always be lower than a given deadline. Timing
analysis is used to derive an upper bound on the execution
time, calledworst case execution time (WCET). Computing
the WCET of a program requires upper bounds for the num-
ber of iterations of all loops in the program. On every path
through the program, the worst case execution times for all in-
structions (or alternatively, basic blocks) has to be computed
and added up. The longest of these paths is then called the
critical path, and its maximum runtime is the WCET.

1.1 Timing Anomalies

In a simple world, timing analysis could just assume the local
worst case for all instructions in a pipeline. When the cache
state is not be precisely known, a memory access not classified
by the abstract cache state as a cache hit would be considered
a cache miss, variable-latency instructions would just take the
longest time, etc. We could then add up all individual times
and get a safe WCET bound.

Unfortunately, this is not safe. Out-of-order pipelines
might reorder instructions such that an longer initial delay
(e.g., a cache miss) could cause an overallfaster completion
of the whole sequence. Similarly, a speedup of an instruction
can lead to a longer runtime for the whole sequence. This

effect is called atiming anomaly, and was first described by
Lundqvist and Stenström [3, 2].

While we can easily get a rough intuition about what a tim-
ing anomaly is, a general, hardware-independent definitionis
difficult, see [4] for a recent result. We will not detail the
definition in this paper.

1.2 Domino Effects

A special case of timing anomalies is thedomino effect, where
– after a (possibly empty) prologue – a sequence of instruc-
tions is executed in a loop and depending on the initial stateof
a component (usually the pipeline, but also the cache, as we
will see later), the loop body runtime will take different values
without convergence. The presence of domino effects means
that we cannot unroll a bounded (or even any) number of iter-
ations of a loop and assume in the analysis that the remaining
iterations behave the same. Schneider was able to demon-
strate actual domino effects caused by the PowerPC PPC755
pipeline [5].

2 Domino Effects in Caches

We will look at cache behavior when a sequence of memory
accesses is repeated indefinitely. We will only consider single
cache sets.1

2.1 FIFO

FIFO caches require very little update logic, a round-robin
counter points the next way to be replaced. The downside is
that this causes domino effects.

Figure 1 shows a 2-way FIFO cache with the access se-
quence a-b-c. Starting with an empty cache leads to a repeated
cache content b-c at the end of each iteration, where each cy-
cle has 3 cache misses (marked by ‘x’ in the figure). Starting
with c-a in the cache leads to a cycle over 2 iterations with a
total of 3 cache misses, alternatingly 1 and 2 per iteration.2

1There are cache architectures where the sets are not independent, but that
only makes timing effects more unpredictable.

2This is the same example as in [2].

1

. . c a
a: a . x c a
b: b a x b c x
c: c b x b c
a: a c x a b x
b: b a x a b
c: c b x c a x
a: a c x c a
b: b a x b c x
c: c b x b c
a: a c x a b x
b: b a x a b
c: c b x c a x

Figure 1: 2-way FIFO cache, empty cache is worst case

2.2 LRU

The LRU update logic is complex, and LRU caches with more
than 4 ways are rare in practice.

LRU caches do not exhibit domino effects. When iterating
a over sequence of instructions, it is easy to see that the cache
contents at the end of the first iteration are the same as at the
end of every other iteration. This “memory-less” property of
LRU makes the cache analysis both easy and precise [1].

2.3 PLRU

Pseudo LRU replacement is a variant of LRU where the
“ages” of the lines in the cache are not linearly ordered, but
arranged in a tree (see Fig. 2). The advantage is that this needs
fewer state bits and hence needs a less complex update logic.
PLRU has an average case performance comparable to LRU,
but the worst case performance, which matters for the WCET
prediction, is worse.

Heckmann has shown that only 3 to 4 ways of an 8-way
PLRU cache can be tracked in cache analysis [1]. This article
adds domino effects to the list of problems with analyzing
PLRU caches.

PLRU definition. PLRU maintains a tree of cache ways.
Every inner tree node has a bit pointing to the subtree that
contains the leaf to be replaced next. Figure 2 shows a 4-
way example. In the left picture, the three state bitsb0, b1, b2

point to the second way to be replaced next. In practice, 8-
way PLRU is used. The replacement logic is the same, with
7 state bits, and an additional level in the tree. For simplicity,
we consider 4-way in this article. Note that 2-way PLRU is
equivalent to 2-way LRU.

On a cache update, and similarly on a cache hit, the state
bits on the path leading to the accessed way will be flipped,
i.e. making them pointing away from that way. The right pic-
ture shows the cache state after the replacement of ‘b’ by ‘e’.
The path to the second way consists of bitsb0 andb1, so these
have been flipped.

0 1

0 1 0 1

0 1

0 1 0 1

b0

b1 b2

b0

b1 b20

a c d

0

0

a b c d e

1

1 0

Figure 2: 4-way PLRU

a b c d 0 0 0
a: a b c d 1 1 0
e: a b e d 0 1 1 x
a: a b e d 1 1 1
f: a b e f 0 1 0 x
a: a b e f 1 1 0
g: a b g f 0 1 1 x
a: a b g f 1 1 1
e: a b g e 0 1 0 x
a: a b g e 1 1 0
f: a b f e 0 1 1 x
a: a b f e 1 1 1
g: a b f g 0 1 0 x
a: a b f g 1 1 0
e: a b e g 0 1 1 x
a: a b e g 1 1 1
f: a b e f 0 1 0 x
a: a b e f 1 1 0
g: a b g f 0 1 1 x

Figure 3: 4-way PLRU cache,b is never evicted

PLRU examples. Figure 3 shows that PLRU does not use
the cache optimally. The access sequence a-e-a-f-a-g contains
only 4 distinct elements, yet 4-PLRU misses for every second
access when started with a-b-c-d in the cache.3

Figure 4 shows that a PLRU cache can take several itera-
tions to stabilize. The fourth iteration is the first that exhibits
3 misses as all the following iterations do.

Figure 5 shows an example with the access sequence i-f-
e-g-i-e-b. The left sequence starts with a-b-c-d in the cache,
the right one with an empty cache. For the first two iterations,
both caches miss on the same accesses (the cache content is
even the same at the end of the first iteration, though in a dif-
ferent order). Starting from the third iteration, the left cache
misses 3 times per iteration, the right cache only 2 times.

2.4 Avoiding Domino Effects

There is no generally safe initial cache state in the context
of domino effects as any state can cause non-converging loop
runtimes. With a given program and initial state, we can prove
the presence or absence of effects, but in many embedded sys-
tem context, modifying the program is infeasible, and the ini-
tial state can also be unknown or undefined. Modifying the

3Example similar to Fig. 3 in [1].

2

b e c a 0 0 0
c: b e c a 0 0 1
a: b e c a 0 0 0
b: b e c a 1 1 0
e: b e c a 1 0 0
b: b e c a 1 1 0
c: b e c a 0 1 1
d: b d c a 1 0 1 x
c: b d c a 0 0 1
a: b d c a 0 0 0
b: b d c a 1 1 0
e: b d e a 0 1 1 x
b: b d e a 1 1 1
c: b d e c 0 1 0 x
d: b d e c 1 0 0
c: b d e c 0 0 0
a: a d e c 1 1 0 x
b: a d b c 0 1 1 x
e: a e b c 1 0 1 x
b: a e b c 0 0 1
c: a e b c 0 0 0
d: d e b c 1 1 0 x
c: d e b c 0 1 0
a: d a b c 1 0 0 x
b: d a b c 0 0 1
e: e a b c 1 1 1 x
b: e a b c 0 1 1
c: e a b c 0 1 0
d: e d b c 1 0 0 x
c: e d b c 0 0 0
a: a d b c 1 1 0 x
b: a d b c 0 1 1
e: a e b c 1 0 1 x
b: a e b c 0 0 1
c: a e b c 0 0 0
d: d e b c 1 1 0 x

Figure 4: 4-way PLRU cache, convergence in the forth cycle

compiler not to produce code exhibiting domino effects seems
impossible, given the simplicity of our FIFO examples.

At first glance, it might seem that for PLRU, we can im-
prove our knowledge of the cache state by not just taking into
account the ordering of the blocks in the cache but also in-
clude the tree state bits. However, we can reorder the ways
such that the tree bits always point left, and modify the cache
update accordingly. As with FIFO caches, we will have
domino effects in this simplified cache.

3 Summary

Timing anomalies and domino effects cause the complexity of
timing analysis to grow. Several causes are known, this article
adds PLRU caches to the list.

To achieve better predictability, some embedded system de-
signers lock all but two PLRU ways, leaving a 2-way LRU
subset. We are currently working on cache models that will
hopefully be able to extract more precise information from a
non-locked cache despite the presence of timing anomalies.

a b c d 0 0 0 0 0 0
i: i b c d 1 1 0 x i . . . 1 1 0 x
f: i b f d 0 1 1 x i f . . 1 0 0 x
e: i e f d 1 0 1 x i f e . 0 0 1 x
g: i e f g 0 0 0 x i f e g 0 0 0 x
i: i e f g 1 1 0 i f e g 1 1 0
e: i e f g 1 0 0 i f e g 0 1 1
b: i e b g 0 0 1 x i b e g 1 0 1 x
i: i e b g 1 1 1 i b e g 1 1 1
f: i e b f 0 1 0 x i b e f 0 1 0 x
e: i e b f 1 0 0 i b e f 0 1 1
g: i e g f 0 0 1 x i g e f 1 0 1 x
i: i e g f 1 1 1 i g e f 1 1 1
e: i e g f 1 0 1 i g e f 0 1 1
b: i e g b 0 0 0 x i b e f 1 0 1 x
i: i e g b 1 1 0 i b e f 1 1 1
f: i e f b 0 1 1 x i b e f 0 1 0
e: i e f b 1 0 1 i b e f 0 1 1
g: i e f g 0 0 0 x i g e f 1 0 1 x
i: i e f g 1 1 0 i g e f 1 1 1
e: i e f g 1 0 0 i g e f 0 1 1
b: i e b g 0 0 1 x i b e f 1 0 1 x
i: i e b g 1 1 1 i b e f 1 1 1
f: i e b f 0 1 0 x i b e f 0 1 0
e: i e b f 1 0 0 i b e f 0 1 1
g: i e g f 0 0 1 x i g e f 1 0 1 x
i: i e g f 1 1 1 i g e f 1 1 1
e: i e g f 1 0 1 i g e f 0 1 1
b: i e g b 0 0 0 x i b e f 1 0 1 x

Figure 5: 4-way PLRU cache, domino effect starting in the
third iteration

References

[1] R. Heckmann, M. Langenbach, S. Thesing, and R. Wil-
helm. The influence of processor architecture on the de-
sign and the results of WCET tools.IEEE Proc., 91(7),
July 2003.

[2] T. Lundqvist.A WCET Analysis Method for Pipelined Mi-
croprocessors with Cache Memories. PhD thesis, School
of Computer Science and Engineering, Chalmers Univer-
sity of Technology, 2002.

[3] T. Lundqvist and P. Stenström. Timing anomalies in
dynamically scheduled microprocessors. Number 20 in
IEEE Real-Time Systems Sym. (RTSS’99), Dec. 1999.

[4] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian,
J. Eisinger, and B. Becker. A definition and classification
of timing anomalies. 6th Intl Workshop on Worst-Case
Execution Time (WCET) Analysis, July 2006.

[5] J. Schneider.Combined Schedulability and WCET Anal-
ysis for Real-Time Operating Systems. PhD thesis, Uni-
versiẗat des Saarlandes, Dec. 2002.

3

