
ABSTRACT

NAGARAJAN, ANITA Analyzing Memory Performance Bottlenecks in OpenMP Programs

on SMP Architectures using ccSIM. (Under the direction of Assistant Professor Frank

Mueller).

As computing demands increase, performance analysis of application behavior has

become a widely researched topic. In order to obtain optimal application performance,

an understanding of the interaction between hardware and software is essential. Program

performance is quantified in terms of various metrics, and it is important to obtain detailed

information in order to determine potential bottlenecks during execution. Upon isolation of

the exact causes of performance problems, optimizations to overcome them can be proposed.

In SMP systems, sharing of data could result in increased program latency due to the

requirement of maintaining memory coherence.

The main contribution of this thesis is ccSIM, a cache-coherent multilevel mem-

ory hierarchy simulator for shared memory multiprocessor systems, fed by traces obtained

through on-the-fly dynamic binary rewriting of OpenMP programs. Interleaved parallel

trace execution is simulated for the different processors and results are studied for several

OpenMP benchmarks. The coherence-related metrics obtained from ccSIM are validated

against hardware performance counters to verify simulation accuracy. Cumulative as well

as per-reference statistics are provided, which help in a detailed analysis of performance

and in isolating bottlenecks in the memory hierarchy.

Results obtained for coherence events from the simulations indicate a good match

with hardware counters for a Power3 SMP node. The exact locations of invalidations in

source code and coherence misses caused by these invalidations are derived. This informa-

tion, together with the classification of invalidates, helps in proposing optimization tech-

niques or code transformations that potentially yield better performance for a particular

application on the architecture of interest.
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Chapter 1

Introduction

Parallel computer architectures have ushered in a new era of computing. With

the introduction of various parallel programming methodologies, interesting opportunities

to explore the hardware-software interaction in these systems have arisen. It has become

essential to investigate the details of mapping parallel programming paradigms to the un-

derlying hardware. The increasing demands of scientific computing necessitate the study of

the causes of suboptimal program behavior on specific architectures. Due to the increasing

processor-memory gap, it is essential to consider the effects of memory latency on observed

performance. Storage hierarchies play an important role in the overall analysis. To this

end, performance tools make a highly useful contribution in determining and isolating per-

formance bottlenecks, which is a prerequisite for exploring, implementing and verifying the

effectiveness of potential optimization opportunities.

1.1 SMP architectures

Shared memory multiprocessor architectures having a global shared address space

are widely used. In these architectures, loads and stores to shared addresses result in

implicit communication. An update to a shared variable is visible to all processors. A node

consists of several processors communicating via a common hardware interconnect. Each

processor has a private cache hierarchy and accesses main memory through the interconnect.
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Caches may also be shared at certain levels between processors. The shared interconnect is

a potential cause of contention in these architectures, leading to performance bottlenecks.

Cache coherence protocols ensure consistency of global shared memory across processors.

The common coherence protocols used are MSI, MESI, Dragon and their variants([8]).

The degree of contention increases with greater sharing of data across processors. This is

caused by increased traffic on the communication medium arising from the need to maintain

coherence. Therefore, on such architectures, it is imperative that the overhead caused by

maintaining coherence should not overshadow the benefits of parallelizing the program.

Figure 1.1 depicts a symmetric multiprocessor architecture with a global bus as

the communication medium. In these multiprocessors, access to main memory is symmetric

from all processors i.e. access to main memory from any processor requires the same number

of cycles.

SHARED BUS

Cache Cache

Hierarchy HierarchyHierarchy

Cache Cache

Hierarchy

P4P1 P3P2

Main Memory

Figure 1.1: SMP architecture with shared bus
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1.2 OpenMP Parallel Programming Paradigm

OpenMP is a portable standard for shared memory parallel programming [6]. It

provides a set of directives and library routines in Fortran and C/C++ to write parallel

applications for shared memory multiprocessors. It follows a fork-join model. The sequential

portion of the code is executed by a master thread. On encountering a parallel construct,

slave threads are created. The master thread and the slave threads execute the section of

code enclosed within the parallel region. At the end of this region, the threads join and the

master thread continues execution. Work-sharing constructs are provided, which distribute

the work in a loop between the parallel threads. Synchronization directives, such as barriers

and critical sections, are also available in this standard.

1.3 Mapping the OpenMP programming model to SMP ar-

chitecture

It is interesting to view how the OpenMP programming model maps to shared

memory multiprocessor architectures. The parallelization directives provide thread-level

parallelism, and these OpenMP threads can execute in parallel on the processors in an

SMP node. On SMP architectures, there exists hardware support for a global physical

address space. Communication is initiated by ordinary loads and stores of shared locations

in the program. Variables accessed by an OpenMP thread are brought into the cache of

the corresponding processor. Coherence protocols implemented in hardware ensure memory

consistency. Thus, the hardware mechanisms provided in shared memory systems minimize

communication and replication overhead for the OpenMP paradigm as compared to other

architectures. Granularity of replication and coherence is determined by the protocols in

hardware. These features make many details transparent to the programmer. Thus, the

OpenMP model complements the SMP architecture well.
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1.4 Performance Analysis Tools

1.4.1 Hardware Performance Counters

Hardware Performance Counters on many microprocessors record a specified set

of events occuring in hardware while an application executes. Interfaces like PAPI [3],

VTune [7] and HPM toolkit [9] are now available to access the counters in order to obtain

counts of these events. They cover a wide variety of platforms. Thus, the behavior and

performance of a program on a particular architecture can be analyzed using these statistics.

The limitation of hardware performance counters lies in the fact that they provide only raw

counts of metrics. The inefficiencies in the application detected from these metrics cannot

be attributed to specific data structures in the source code. They provide a useful source of

analysis, but the extent of detail provided is not sufficient to allow us to pinpoint the exact

causes of performance problems.

1.4.2 Simulators

An extensive range of simulators is available for uniprocessor and multiproces-

sor systems. These include trace-driven simulators like Cprof [20] and MemSpy [22] and

execution-driven simulators like Augmint [24]. Some simulators [27], [18] concentrate on

detailed architectural or instruction-level simulation and present statistics obtained.

1.5 Motivation, Contribution and Organization of Thesis

Our objective is the design of a trace-driven tool that performs incremental mem-

ory hierarchy simulation for OpenMP parallel programs executing on shared memory mul-

tiprocessor systems and provides detailed coherence-related statistics that relate program

behavior to data structures in source code. We do not model instruction-level simulation or

cycle-accuracy. Our interests lie in identifying exact causes of observed coherence behavior

and trying to determine if opportunities for optimization exist. Results can be verified

against hardware performance counters for accuracy.

This thesis presents ccSIM, a cache coherent SIMulator for SMP architectures.

In conjunction with METRIC [21], ccSIM is used for performance analysis of OpenMP pro-
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grams on shared memory multiprocessors. It performs a simulation of memory references

by the processors in an SMP node for a specified cache configuration using traces obtained

through on-the-fly dynamic binary rewriting. Figure 1.2 represents the entire framework.

METRIC generates compressed trace files by dynamically instrumenting the memory ref-

erences of each OpenMP thread in the executing application binary. These trace files serve

as input to driver threads representing the processors in the system. Each driver thread

performs the simulation for its corresponding trace in parallel. A shared bus serves as

the common interconnect and it uses a MESI bus-based protocol to maintain cache co-

herence. Execution is simulated by implementing the OpenMP semantics, and detailed

statistics for the execution are obtained. Statistics for hits, misses, temporal and spatial

locality, eviction-related information and, most significantly, coherence-related metrics are

provided. The important contribution lies in the simulation of coherence traffic. This helps

to isolate the causes of invalidations and coherence misses leading to increased program

latency. A notable feature is the ability of the simulator to derive cumulative as well as

per-reference statistics. This helps in an in-depth analysis of application behavior on the

platform of interest. Causes of bottlenecks can be accurately determined and can be used

to propose optimization techniques to avoid the detected problems.

Experiments were performed for different interleaved orders of execution with sev-

eral OpenMP benchmarks, and results were validated against statistics obtained from hard-

ware performance counters.

The organization of the thesis is as follows. Chapter 2 gives an overview of the

framework and the interaction between the constituent modules. The design and imple-

mentation of ccSIM is described in detail. The experimental setup is specified in Chapter

3. Chapter 4 discusses and analyzes the results obtained from the experiments for the

benchmarks considered. In Chapter 5, related work is presented, followed by conclusions

and future work in Chapter 6.
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Chapter 2

The Framework: Design and

Implementation

2.1 Instrumentation and Trace Generation

Cache simulation for SMPs is based on address traces collected by METRIC, a

framework for dynamic binary instrumentation of memory references [21]. METRIC inserts

probes through a controller into an executing application to generate highly compressed

address traces.

Dynamic Binary Rewriting: The control program instruments the target

OpenMP application executable using customized extensions of the DynInst binary rewrit-

ing API [4]. These customizations, part of the METRIC framework, have been further

extended to capture traces of OpenMP threads for this work. For each OpenMP thread,

the memory access points (i.e., the loads and stores) are instrumented to capture the ap-

plication access trace.

To reduce the overhead on target execution, METRIC can trade off simulation

accuracy for tracing speed by instrumenting only floating point or integer accesses. It also

allows certain accesses such as local stack accesses to be ignored, since they often do not

perceptibly affect the overall access metrics of the target program.
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Once the instrumentation is complete, the target is allowed to continue. Each

OpenMP thread’s accesses are traced in parallel without interaction with other OpenMP

threads, thus increasing the tracing speed1. For each thread, the instrumentation code calls

handler functions in a shared library. The handler functions compress the generated trace

online and write the compressed trace to stable storage.

OpenMP supports SMP parallelism via compiler directives (#pragma omp or !$OMP).

The compiler-generated functions implementing these directives are instrumented.

2.2 ccSIM: A Multi-Processor Cache Simulator

The compressed access trace generated from the instrumented OpenMP applica-

tion is used for incremental multiprocessor memory hierarchy simulation. A memory access

simulator has been designed and implemented for cache coherent shared-memory multi-

processor systems. The uniprocessor components were derived from MHSim [23]. Next,

implementation details of ccSIM are described.

2.2.1 Simulation Components

A processor is represented by a driver object with a trace file containing entries

corresponding to the sequence of events during its execution (Figure 1.2). Each driver drives

an instance of a uniprocessor cache hierarchy. A scripter is responsible for controlling the

execution of the driver objects. Statistics generated from the memory-hierarchy simulation

provide important feedback about the application behavior and performance. Causes of

bottlenecks on the SMP architecture of interest can be determined from the information

obtained.

2.2.2 Threaded Simulation

A threaded model of hardware simulation is implemented, which represents the

non-determinism in the order of execution of parallel OpenMP threads. Each OpenMP

thread is assumed to be executing on, or bound to, a separate processor. Hence, every
1To ensure that the OpenMP thread ↔ processor mapping is unique, we use the bind processor system

call to bind OpenMP threads to distinct processors.
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driver object maps to a unique processor on an SMP node. Code execution by the OpenMP

threads is simulated as separate threads of control.

Within a single OpenMP parallel region, ccSIM does not impose an explicit or-

dering between arbitrary accesses from different OpenMP threads. However, ccSIM must

implement the semantics of OpenMP constructs which affect the execution order of threads

at synchronization points, i.e., barriers, critical sections, atomic sections and accesses

protected by explicit mutex locks (omp get lock, omp set lock). Entry and exit events for

these constructs are recorded in the trace for each thread.

The scripter enforces synchronization of these threads at OpenMP synchroniza-

tion points. We refer to the program code between two synchronization points in an SPMD

model as a region. At the start of a region, the scripter assigns the number of events to

be processed to each driver corresponding to that region. Every thread then consumes the

events from the corresponding trace file and passes the memory references to its cache hi-

erarchy for simulation of accesses. Barrier events cause the driver threads to synchronize,

thereby ensuring that all access events across all processors before the barrier are processed

before any event after the barrier. Critical and atomic entry/exit events are mapped to

calls to representative Pthread mutex locks [31]. Driver threads processing critical or

atomic entry and exit events acquire and release these locks, thereby preserving the seman-

tics of mutual exclusion. It is straightforward to handle omp get lock and omp set lock

constructs in a similar manner, though we currently do not support them.

The simulator can execute in two modes:

• Interleaved: After the scripter gives control to the threads at the beginning of each

region, the order of execution of threads within a region is not controlled. This leads to

interleaved execution of events from the different threads simulating an average-case,

non-deterministic behavior.

• Pipelined: Beginning with the first thread, each thread simulates the events in its

trace file until it encounters a synchronization point and then passes control to the

next thread. Thus, the order of simulation of events is controlled. This mode results in

forced sequentially ordered execution of the events from each thread with round-robin

scheduling of thread execution simulating a deterministic behavior.

We consider the start and end of critical regions to be synchronization points.

Thus, the references within an OpenMP critical construct form a region. When a thread
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enters this region, it must execute all the references within the region before another thread

is allowed to enter. Since all processors synchronize at the end of the region, a pingponging

effect is simulated for the references in a critical section of code. A comparison of results

from the interleaved and pipelined modes reflects the extent to which program latency is

affected by the non-deterministic orders of execution of OpenMP threads.

..........................

.........................

A[N−1] Write
B[N−1] Read
A[N−1] Read

A[N/2] Write
B[N/2] Read
A[N/2] Read

#pragma omp parallel
{

#pragma omp for
for(i=0; i < N;i++)
{

A[i] = A[i] * B[i];
..........................

.........................

B[0] Read

A[N/2−1] Write

A[0] Write

B[N/2−1] Read
A[N/2−1] Read

A[0] Read

Parallel Start Parallel Start

} /* end OpenMP for */ Barrier Exit Synchronize Synchronize

Parallel End Parallel End Synchronize} /* end OpenMP parallel */

Barrier Exit

Activate

Source Code Trace Events Simulator Actions

Accesses

A[0],B[0],A[0]

..........................

.........................

.........................

A[N/2−1],B[N/2−1],A[N/2−1]

..........................

.........................

.........................

Simulate Simulate
Accesses

OpenMP Thread 0 OpenMP Thread 1 Simulator Thread 0 Simulator Thread 1

Activate

Synchronize
Deactivate

A[N/2],B[N/2],A[N/2]

A[N−1],B[N−1],A[N−1]

Figure 2.1: Illustration: Trace Events and Simulator Actions

Example: Figure 2.1 shows the trace events and simulator actions for a simple

OpenMP program with two active OpenMP threads. A and B are shared arrays of size N,

and i is a local variable. Static loop scheduling is assumed for the OpenMP for loop. The

entry into the parallel OpenMP region is logged as a trace event and causes the simulator

to activate two driver threads. Accesses generated by each OpenMP thread to the A and

B arrays are logged separately. The driver threads simulate these accesses in parallel, as

shown. When an OpenMP thread exits from the implicit barrier at the end of the for loop,

a barrier exit event is logged for that thread. Detection of a barrier event causes the

driver threads to synchronize. Another synchronization takes place when the parallel end

event is processed. After the OpenMP parallel region ends, the serial phase of the OpenMP

program starts, and only one driver thread (the master thread) will remain active. All

others remain idle till the start of the next parallel phase.
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For each thread, the address of the memory access is mapped to the unique machine

instruction location that generated that access. The access address is also mapped to the

language-level data structure to which it belongs. These mappings allow us to tag cache

access and coherence statistics with higher level abstractions, such as line numbers and

source code data structure identifiers.

2.2.3 Coherence Simulation

The ccSIM component is a multiprocessor multi-level memory hierarchy simulator

(for offline analysis). It has been modeled to simulate a shared-memory multiprocessor

architecture. For our experiments, the memory hierarchy simulated is that of the Power3

processor. Each processor has an L1 and L2 cache. The number of levels of cache is a

configurable parameter in the configuration input file. Goodman’s write-once protocol [12]

has been implemented to maintain cache coherence. This is a write-back invalidate-based

snoopy cache coherence protocol. The transitions in this protocol can be mapped to the

transitions in the MESI protocol of the Power3 processor [26] as shown in Table 2.1. Figure

2.2 is the state transition diagram for the write-once protocol and Figure 2.3 depicts the

transitions for the MESI protocol.

Table 2.1: Mapping transitions of Write-Once protocol to MESI protocol

Write-Once Transitions MESI Transitions
V → I E → I

S → I
R → I M → I
D → I

Write allocate policy is used. Processor references to memory locations propagate

down the cache hierarchy until a hit occurs or a miss in the lowermost level of cache takes

place, causing a bus transaction. A write hit to a location in the private cache hierarchy

of a processor leads to updates in all lower levels of cache. The granularity of coherence,

allocation in cache and data transfer is a cache block. The Power3 L1 cache has a round-

robin cache replacement policy, which has been implemented. Other replacement policies

could be incorporated easily by minor extensions to the simulator. Only data cache is

simulated. Timing is not considered.
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I V

D R

PrRd

PrRd/BusRd

PrWr/BusRdX

PrWr/BusWrOnce

PrRd/ −
BusRd/ −

BusWrOnce/ −
BusRdX/ −

BusRdX/ −

BusRd/ −

PrWr/ −
PrRd/ −
PrWr/ −

BusRdX/BusWB

PrRd/BusWB

I: Invalid

V: Valid

R: Reserved

D: Dirty

Figure 2.2: State Transitions for the Write-Once Protocol

The cache simulator accepts a file specifying the cache configuration parameters as

input. The configurable parameters include the number of cache levels and, for each level,

the set-associativity, set size, number of sets and the line-size.

The shared bus is implemented as a first-in-first-out message queue. Coherence

traffic is simulated as messages on the bus. A message is sent on the bus by a processor

in the event of a miss in its lowest level of cache (L2) or a write access that causes a

hit in its cache (to invalidate that shared location if it is present in the caches of other

processors). Each thread, corresponding to a processor, snoops the bus before it simulates

a memory access and reads all the messages that have been written after the thread’s last

snoop action. If the message is relevant to that processor, then it takes appropriate action.

Cache-to-cache transfers can also be modeled using this approach. A message indicating a

write to a location in one processor causes other processors having that location in their

cache to invalidate the corresponding cache line. Snooped messages that are relevant are
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Figure 2.3: State Transitions for the MESI Protocol

propagated up the cache hierarchy until the shared address affected by the message is not

present at a particular level or the L1 cache level is reached. A list of resident references

is associated with each cache line, which is cleared on an invalidation to or eviction of that

cache block. When a message has been read by all processors in the system, it is removed

from the queue. The structure of the shared bus and the manner in which it is accessed

ensure sequential consistency. Each memory access event includes details relating it back

to the source code of the application. This information is used while simulating accesses

through the memory hierarchy and, thus, metrics can be computed on a data structure

level.
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2.2.4 Metrics

A key metric for the identification of memory performance bottlenecks in a mul-

tiprocessor system is the number of invalidates to lines in the lowermost level of cache of

each processor. This is a major source of coherence traffic, potentially causing the shared

bus to be a bottleneck in a symmetric multiprocessor architecture. These invalidates could

lead to coherence misses, thus increasing memory latency. An increasing number of inval-

idates leading to coherence misses can greatly hamper performance. The main motivation

in reducing the invalidate traffic is to decrease the number of coherence misses. Hence,

classifying misses in a processor is imperative. This will help in determining if efforts to

minimize invalidations caused might be beneficial in reducing the number of misses, thus

improving application performance. The ability to identify coherence misses in the multi-

level memory hierarchy has been incorporated in ccSIM. A coherence miss is caused if the

cache line referenced would have resulted in a hit in cache if it had not been invalidated by

another processor.

Invalidates to cache lines can further be classified as true-sharing invalidates and

false-sharing invalidates in each level of cache. True-sharing invalidates arise from accesses

to the same shared memory location by more than one processor, with at least one access

being a write access. False-sharing invalidates are caused due to accesses to different memory

locations that map to the same cache line on more than one processor. This level of

classification gives a better view of the causes of the invalidates, which helps in determining

the applicability of various techniques for optimization. True-sharing invalidates represent

inherent communication and are a characteristic of the parallel application. False-sharing

invalidates are dependent on the architectural configuration, and granularity of coherence

and data allocation in the cache hierarchy.

With respect to OpenMP parallel programs, another level of classification can

be introduced, which is instrumental in determining the feasibility of using certain opti-

mization techniques to reduce the coherence traffic. This involves determining whether the

invalidates to cache lines occur due to references across synchronization points or between

synchronization points in a parallel program (Figure 2.4).

References across processors leading to true sharing invalidates within a region can

be distinguished into two classes:

• References not protected by locks: Typically occurs in the single-writer, single/multiple-
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Figure 2.4: Classification of Invalidates

reader scenario where one processor writes to a common location and one or more

processors read from it.

• References protected by locks: Typically occurs in the multiple-writer, single/multiple-

reader scenario where multiple processors write and read from a common location.

While determining opportunities for optimization, it should be noted that invali-

dates arising from references within a region are immediate targets for consideration. In this

case, it is interesting to explore different orders of interleaved execution between processors

and observe the effect on the metrics obtained from the simulation. On the other hand,

true-sharing invalidates caused by references across synchronization points are inherent to

the parallel application.

In addition to these metrics, the simulator also generates per-processor statistics

for hits, misses, temporal and spatial locality, and eviction-related information. It is ex-

tremely beneficial to maximize temporal and spatial locality of data, thus increasing the

number of hits to resident cache lines and potentially reducing program latency caused by

the need to fetch non-resident blocks into cache. Evictor information assists us in locating

conflicting cache lines, which may lead to conflict misses. Evictions and locality are highly

interrelated metrics. A reduction in the number of evictions is likely to result in improved

temporal and spatial locality. Hence, these metrics are also extremely valuable in locating

potential bottlenecks in the program.

For each of the above-mentioned metrics, aggregate numbers for the application

help in an overall analysis of the observed performance. A further breakdown of these

statistics for each reference or for each data structure in the program provides deeper

insight into the behavior of the application. Statistics are computed for each of the globally

shared data structures in order to provide information at a greater level of detail and to
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determine the exact causes of inefficiencies in the memory hierarchy. This enables us to

pinpoint the data structures contributing to latency caused by coherence misses. A detailed

analysis of the compiled metrics helps in determining the particular choice of optimization

techniques for a benchmark.
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Chapter 3

Experimental Setup

Experiments were performed with these seven OpenMP benchmarks: Equation

Solver kernel, Equation Solver with red-black method, the Non-Bonded Force kernel [13],

and four benchmarks from the NAS OpenMP benchmark suite - IS, MG, CG, FT [19]. The

traces obtained and the simulations performed are for a 4-way SMP architecture.

3.1 Characterization Metrics

For each benchmark, the following sets of metrics are recorded per-processor:

1. The proportion of coherence misses contributing to the total misses in each level of

cache;

2. The total number of invalidates caused, the number of true-sharing invalidates and

the number of false-sharing invalidates in each level of cache;

3. The classification of the aggregate invalidates into in-region true-sharing invalidates,

across-region true-sharing invalidates, in-region false-sharing invalidates and across-

region false-sharing invalidates in each level of cache;

4. Further decomposition of the in-region true-sharing invalidates into those that are

caused by references protected by locks and those that are not.
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3.2 Platform

The Hardware Performance Monitor Toolkit [9] version 2.4.2 was used for col-

lecting hardware counter statistics. HPM metrics were obtained by executing the bench-

marks on 4 processors of a single 4-way node of an IBM SP RS/6000 Winterhawk-II

system with Power3-II processors. Dedicated access to the processors was requested in

the command file in order to avoid interference and cache effects due to other appli-

cations. The Power3 processor has a set of 8 hardware counters, which record various

events. The hardware counter metric used for our validation experiments is the number

of invalidates to the lines in the L2 cache. Therefore, the events of interest to us are

PM SNOOP L2 E OR S TO I and PM SNOOP L2 M TO I, which represent the snoop-

based L2 transitions from E or S to I state and the snoop-based L2 transitions from M to

I state, respectively.

The IBM OpenMP compilers, xlc r for OpenMP C and xlf r for OpenMP Fortran,

were used to compile the benchmarks. The compile options used were: -qarch=auto,

-qsmp=omp, -qnosave and the default optimization level, O2.

3.3 Experimental Methodology

In case of the HPM metrics, an average of the values from several runs was con-

sidered. Table 3.1 shows the mean and the confidence interval of the HPM values measured

for each benchmark.

Table 3.1: Mean and Confidence Interval for Total L2 Invalidates from HPM

Benchmark Mean Confidence Interval
EQS 2749 2749 ± 71.5

EQS (Red-Black) 858 858 ± 32.3
IS 6959 6959 ± 531.53

MG 17829.78 17829.78 ± 1238.17
CG 114523.5 114523.5 ± 807.16
FT 369082 369082 ± 9412.55

NBF 157560.3 157560.3 ± 4076.31

The cache configurations modeled are a 64KB 128-way set-associative L1 cache
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and a 8MB direct-mapped L2 cache. The TLB is not simulated.

3.4 Benchmarks / Applications

We utilized the OpenMP version of the following benchmarks:

1. Equation Solver Kernel (EQS with Stencil): This kernel solves a simple partial dif-

ferential equation on a grid using a finite differencing method. Each interior element

is computed using its value and the values of its four neighboring elements. This is

done iteratively until convergence. The equation solver kernel is used in applications

like Ocean, which is part of the SPLASH benchmark suite [30].

2. Equation Solver Kernel (EQS-RB with Red-Black): This is a modified version of EQS.

The grid points are alternately assigned as red and black points.

3. IS [19]: It performs a large integer sort that is used in “particle method” codes.

4. MG [19]: This benchmark uses a V-cycle MultiGrid method to compute the solution

of the 3-D scalar Poisson equation.

5. CG [19]: The kernel uses a Conjugate Gradient method to compute an approximation

to the smallest eigenvalue of a large, sparse, unstructured matrix.

6. FT [19]: It contains the computational kernel of a 3-D fast Fourier Transform (FFT)-

based spectral method.

7. Non-Bonded Force Kernel: This represents the kernel of a Molecular Dynamics sim-

ulation. It computes non-bonded forces due to interactions between molecules. The

NBF kernel is a part of GROMOS [13].

The input data sizes used in the experiments for each benchmark are shown in

Table 3.2.
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Table 3.2: Input data sizes for each benchmark

Benchmark Input Data Size Iterations
EQS 202x202 10

EQS-RB 202x202 10
IS 65536 10 (Class S)

CG 1400 15 (Class S)
MG 32x32x32 4 (Class S)
FT 64x64x64 6 (Class S)

NBF 16384 (# of molecules) 2
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Chapter 4

Results and Analysis

The total number of L2 invalidates obtained from ccSIM in both modes of execu-

tion were validated against the total number of L2 invalidates obtained from the hardware

counters using HPM for each benchmark. The results for this set of experiments are sum-

marized in Table 4.1. The error percentage is reported for the values from the interleaved

mode of the simulator with respect to the HPM values recorded. Figure 4.1 provides a visual

comparison for these validation experiments. In this plot, the statistics for the interleaved

mode of the simulator have been normalized to one for all benchmarks.

Table 4.1: HPM on Power3 vs. ccSIM

Benchmark EQS EQS-RB IS MG CG FT NBF
HPM 2748 857 6959 17830 114524 369082 157560

ccSIM-Intl 2663 837 7306 17601 125332 359008 137452
ccSIM-Pipe 2651 832 7407 17710 124492 349659 137502

% Error 3.09 2.33 -4.99 1.28 -9.44 2.73 12.76

The results indicate a close match between invalidations recorded by performance

counters on the Power3 and invalidations obtained in simulation experiments by ccSIM.

Moreover, both interleaved and pipelined modes result in very close numbers of invalidates.

Since results are quite accurate, we conjecture that simulation of address traces in inter-

leaved mode is valid as an aggressive way of asynchronously feeding traces in parallel to

simulator components, as done by ccSIM. Recall that traces from different processors are
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Figure 4.1: L2 Invalidates: HPM vs. ccSIM

synchronized at OpenMP synchronization points such as barriers, but not within a region

delimited by consecutive synchronization points. In the next section, it will be shown that

ordering of accesses for simulation does matter between critical sections.

4.1 Modes of Simulation

So far, we have considered simulation across synchronization points and concluded

that loosely coupled simulations capture the actual coherence traffic. Here, we will consider

the handling of critical sections inside parallel section, as found in the NBF benchmark.

Recall from Section 2.2 that execution in critical sections is treated as a “pingpong” serial-

ization: Only one trace may proceed in its entirety within a critical section. Upon unlocking,

a synchronization is forced, which allows a blocked thread simulating another processor to

enter its critical section and so on. Hence, we ensure the execution of one critical section

per processor before resuming past the barrier point to reflect SPMD behavior. In the

following, results were obtained without “pingpong”, i.e., we do not consider the exit point

of an OpenMP critical construct to be a synchronization point.

Figure 4.2 is a comparison of L2 invalidates obtained from the various modes

simulated for NBF and the corresponding value from HPM. The results indicate that a
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Figure 4.2: L2 Invalidates comparison: NBF

closer match of the actual behavior (HPM on the Power3) is observed with “pingpong”.

Figure 4.3 depicts the statistics for in-region true-sharing invalidates with and without

simulation of pingpong serialization in critical sections. Metrics are plotted on a log scale.

The number of true-sharing invalidates occurring within a region is much higher (at least

an order of a magnitude) when pingponging is simulated, which contributes in large part

to the accuracy of simulations. This demonstrates the necessity of pingpong serialization

in simulations. Next, we consider the results for the benchmarks and general trends for the

benchmark suite.

4.2 Characterization of Benchmarks

The simulation results are not only accurate with respect to actual executions;

we also obtain detailed classifications indicating the cause of invalidations as well as the

corresponding location in the program.
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Figure 4.3: NBF: with and without pingpong

4.2.1 MG

Figures 4.4(a) to 4.4(e) represent the behavior of the MG benchmark observed

by ccSIM. Figure 4.4(a) shows that coherence misses are rare in L1 while they consti-

tute 55–63% of total misses in the second level of cache. The size of the L1 cache causes

uniprocessor misses to completely dominate the misses occurring in this level. The total

misses and coherence misses are almost uniform across processors, which is common for

SPMD programming styles. Small variations are typically due to imbalanced sharing of

data across sharing boundaries, such as in stencil problems and grid-based calculations.

Inner processors have more neighbors, resulting in a larger number of invalidates. Hence,

the number of invalidates, depicted in Figure 4.4(b), are higher in processors two and three

since this metric amplifies these variations. Detailed access simulation by ccSIM also al-

lows us to distinguish the cause of invalidates as true-sharing and false-sharing invalidates.

True-sharing invalidates dominate in all the processors. Within these classes, we can fur-

ther determine whether invalidates resulted from two references crossing a synchronization

point (across multiple regions) or not (within a synchronization region), as depicted in Fig-

ure 4.4(c). True-sharing invalidates mainly arise from references occurring across regions.

False-sharing invalidates are rare and are mostly due to references within a region. We
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can further classify in-region invalidates into two classes: Those due to references within a

critical section (while holding a lock) and those outside of critical sections (without holding

a lock). Figure 4.4(d) indicates that in-region true-sharing invalidates are due to accesses

without locks. Finally, not all invalidates may lead to subsequent misses, but ccSIM allows

us to determine if an invalidate is followed by a miss, as depicted in Figure 4.4(e). The

percentage of invalidates leading to misses is significant (around 50–70%) in the L1 cache

and very high (approximately 95%) in the L2 cache.

4.2.2 CG

Figures 4.5(a) to 4.5(e) depict the results for CG. Figure 4.5(a) illustrates that

most of the misses in the L1 cache are uniprocessor misses; however, in the L2 cache, a very

high percentage of misses are caused due to invalidates to shared data. The total number

of misses, the number of coherence misses and the number of invalidates across processors

is almost uniform. Most invalidates are due to true sharing, as seen in Figure 4.5(b). This

is caused by references across regions (see Figure 4.5(c)) while any in-region true sharing

is due to accesses without locks depicted in Figure 4.5(d). False-sharing invalidates mainly

occur due to references across regions. 90% of the invalidates in L1 cache and 99% of the

invalidates in L2 cache result in misses in the correponding levels of the memory hierarchy

(see Figure 4.5(e)).

4.2.3 IS

Figures 4.6(a) to 4.6(e) represent the statistics recorded for IS. Approximately 38–

62% of misses in the second level of cache are due to invalidates caused by the coherence

protocol (Figure 4.6(a)). This percentage is very low in the L1 cache. The number of

misses is almost uniform across processors. From Figure 4.6(b), it can be seen that the

true-sharing invalidates generated in the L2 cache of processors 1 and 4 are higher than in

processors 2 and 3. This graph shows an insignificant number of false-sharing invalidates

across processors. The true-sharing invalidates are mainly caused across regions, as depicted

in Figure 4.6(c). Processor 4 exhibits a higher number of in-region true-sharing invalidates

than the other processors (Figures 4.6(c) and 4.6(d)).
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(a) Misses (b) Invalidates

(c) Region-wise Classification of Invalidates (d) In-Region True-Sharing Invalidates

(e) Invalidates causing Misses

Figure 4.4: Results for MG
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(a) Misses (b) Invalidates

(c) Region-wise Classification of Invalidates
(d) In-Region True-Sharing Invalidates

(e) Invalidates causing Misses

Figure 4.5: Results for CG
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(a) Misses (b) Invalidates

(c) Region-wise Classification of Invalidates (d) In-Region True-Sharing Invalidates

(e) Invalidates causing Misses

Figure 4.6: Results for IS
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4.2.4 FT

Figures 4.7(a) to 4.7(e) depict the results for FT. Figure 4.7(a) shows that L2

coherence misses are the cause of 55–68% of misses at this level. These are mainly caused

by true-sharing invalidates resulting from references across regions. Invalidates caused due

to false-sharing contribute to a very low percentage of total invalidates, as depicted in

Figure 4.7(b). False sharing dominates across regions (Figure 4.7(c)) while true sharing

within regions is due to accesses without locks 4.7(d). The behavior of this benchmark

with respect to the considered metrics is uniform across processors. The percentage of total

invalidates that cause coherence misses is between 60 and 70% in the first level of cache and

91–93% in the second level of cache (see Figure 4.7(e)).

4.2.5 EQS

The statistics recorded for the equation solver kernel are shown in Figures 4.8(a)

to 4.8(e). It can be seen from Figure 4.8(a) that misses in the first level of cache are not

caused by coherence. These are predominantly uniprocessor misses. Coherence contributes

to 4–27% of misses in the L2 cache across other processors. Processor 1 incurs a higher

number of misses (Figure 4.8(a)) and a significantly greater number of invalidates in the

second level of cache (Figure 4.8(b)) when compared to the other processors. In Figure

4.8(c) it is observed that these invalidates in processor 1 are caused across regions. The

large number of invalidates in Processor 1 is due to the initialization of the entire shared

global data structure by this processor. In the other processors, invalidates occur across

as well as within regions. A very small number of false-sharing invalidates is seen. The

in-region true-sharing invalidates are not protected by locks (Figure 4.8(d)). From Figure

4.8(e) it can be inferred that 90–98% of invalidates in the L2 cache cause coherence misses

in processors 2, 3 and 4. In the L1 cache, this effect of invalidates on misses is not seen.

4.2.6 EQS-RB

The statistics obtained for this benchmark are shown in Figures 4.9(a) to 4.9(e).

Figure 4.9(a) shows that coherence misses contribute to 17–28% of the total misses in the L2

cache. In the first level of cache, the effect of coherence on misses is not observed. The total

number of misses is similar across processors (Figure 4.9(a)). Processors 2 and 3 exhibit



30

(a) Misses (b) Invalidates

(c) Region-wise Classification of Invalidates (d) In-Region True-Sharing Invalidates

(e) Invalidates causing Misses

Figure 4.7: Results for FT
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(a) Misses (b) Invalidates

(c) Region-wise Classification of Invalidates (d) In-Region True-Sharing Invalidates

(e) Invalidates causing Misses

Figure 4.8: Results for EQS
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a larger number of invalidates and coherence misses than processors 1 and 4. From this,

we can conclude that in processors 2 and 3, the degree of sharing of global data is greater

than in the others. Processor 4 has a negligible number of invalidates in the L1 cache as

compared to the others(Figure 4.9(b)). Figure 4.9(c) shows that in all processors, true-

sharing invalidates, which dominate the invalidate traffic, are mainly caused across regions.

A small number of lines is invalidated due to false-sharing. Only few in-region true-sharing

invalidates (without lock) are observed, as seen in Figure 4.9(d). Figure 4.9(e) shows that

approximately 95% of the invalidates in the L2 cache lead to misses, however, this effect is

not seen in the first level of cache.

For all benchmarks, with the exception of NBF, we observe similar trends in the

ratio between total misses and coherence misses and the ratio between L1 and L2 misses.

We find that true-sharing invalidates dominate with these highly tuned benchmarks and,

within these, most accesses cross regions. The remaining in-region accesses occur without

locks. Finally, a large portion of invalidates, particularly in L2, will subsequently result in

a coherence miss.

4.2.7 NBF

Figures 4.10(a) to 4.10(e) represent the results obtained from ccSIM by simulated

execution of this benchmark. NBF contains a critical section with updates of shared data

inside a parallel region. This region exploits a “pingpong” serialization for critical sections,

as explained in subsection 2.2. During simulation, only one trace may proceed in its entirety

within a critical section. At the end of the critical section, an implicit barrier is enforced,

which ensures that all processor traces will have alternated in simulating one critical section

each before resuming past the barrier point. For this pingpong mode, it is observed that

a significant percentage of misses in L1 and L2 caches arise due to coherence (see Figure

4.10(a)). In the L1 cache, true-sharing invalidates dominate, but a significant number of

false-sharing invalidates also occur (shown in Figure 4.10(b)). We also observe that true-

sharing causes most invalidates in L2 cache. A majority of the true-sharing invalidates take

place within regions, as depicted in Figure 4.10(c). Specifically, the L2 cache shows a signif-

icant number of across-region true-sharing invalidates. In contrast, almost all false-sharing

invalidates result from references across regions (see Figure 4.10(c)). Locks protect the ref-

erences that cause true-sharing invalidates within regions (see Figure 4.10(d)). Processor
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(a) Misses (b) Invalidates

(c) Region-wise Classification of Invalidates (d) In-Region True-Sharing Invalidates

(e) Invalidates causing Misses

Figure 4.9: Results for EQS-RB
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1 has a lower number of total misses as compared to the other processors. The behavior

with respect to the other statistics is similar across processors. In all processors, 95% of the

invalidates result in coherence misses in both levels of cache (shown in Figure 4.10(e)). The

coherence results obtained for NBF indicate opportunities for optimizations with respect to

in-region true-sharing with locks (critical sections), but only more detailed simulation can

provide conclusive information to determine beneficial transformations.

4.3 Per-Reference Statistics

In this section, per-reference statistics obtained for the NBF benchmark are pre-

sented and analyzed. These values are shown for each processor and in each level of cache

in Tables 4.2 to 4.9.

Table 4.2: NBF(Data Structures): Processor1 L1cache

Ref CohMiss InRegTSInv AcrRegTSInv InRegFSInv AcrRegFSInv
f Read 30706 23735 0 0 8456
f Write 0 23735 0 0 8456

Table 4.3: NBF(Data Structures): Processor1 L2cache

Ref CohMiss InRegTSInv AcrRegTSInv InRegFSInv AcrRegFSInv
f Read 31677 23735 7936 1 1001
x Read 768 0 1532 0 6
f Read 384 56 200 0 0
f Write 0 56 200 2 0
f Write 0 23735 7936 1 1000

From the statistics generated on a per-data structure level, it is observed that in

the L1 cache, all coherence misses occur on accesses to the data structure, f. It is the target

of all true-sharing and false-sharing invalidates in the first level of cache. Data structure,

x, incurs an insignificant number of invalidates in L1 cache. All true-sharing invalidates of

f occur within a region and these references are protected by locks. In the second level of

cache, f and x are invalidated, but references to f dominate coherence traffic with a higher

number of invalidates and coherence misses than x. While invalidates to f occur from in-

region as well as across-region references, x is mainly invalidated due to references occuring

across synchronization points. Other global data structures exhibit an insignificant number
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(a) Misses (b) Invalidates

(c) Region-wise Classification of Invalidates (d) In-Region True-Sharing Invalidates

(e) Invalidates causing Misses

Figure 4.10: Results for NBF
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Table 4.4: NBF(Data Structures): Processor2 L1cache

Ref CohMiss InRegTSInv AcrRegTSInv InRegFSInv AcrRegFSInv
f Read 30705 25856 0 0 6470
f Write 0 25856 0 0 6470

Table 4.5: NBF(Data Structures): Processor2 L2cache

Ref CohMiss InRegTSInv AcrRegTSInv InRegFSInv AcrRegFSInv
f Read 31656 25856 6083 0 762
x Read 768 4 1534 0 2
f Read 414 73 183 0 0
f Write 0 73 183 2 0
f Write 0 25856 6083 0 762

Table 4.6: NBF(Data Structures): Processor3 L1cache

Ref CohMiss InRegTSInv AcrRegTSInv InRegFSInv AcrRegFSInv
f Read 30701 23180 0 0 8970
f Write 0 23180 0 0 8970

Table 4.7: NBF(Data Structures): Processor3 L2cache

Ref CohMiss InRegTSInv AcrRegTSInv InRegFSInv AcrRegFSInv
f Read 31669 23180 8451 1 1050
x Read 768 2 1534 0 4
f Read 370 58 198 0 0
f Write 0 23180 8451 1 1050
f Write 0 58 198 2 0

of invalidates and coherence misses in L2 cache.

With this detailed information, one can conclude that f is the cause of coherence-

related bottlenecks during the execution of the NBF benchmark. Optimizations could

be implemented to reduce the latency caused by this data structure, and ccSIM can be

used to verify if improvements in performance are obtained. A reduction in the in-region

true-sharing invalidates caused to data structure f could potentially reduce the number of

coherence misses, leading to improved performance.

Eviction-related statistics on a per-data structure basis are also significant in de-

termining if there is scope for further optimization.
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Table 4.8: NBF(Data Structures): Processor4 L1cache

Ref CohMiss InRegTSInv AcrRegTSInv InRegFSInv AcrRegFSInv
f Read 30710 25533 0 0 6774
f Write 0 25533 0 0 6774

Table 4.9: NBF(Data Structures): Processor4 L2cache

Ref CohMiss InRegTSInv AcrRegTSInv InRegFSInv AcrRegFSInv
f Read 31628 25533 6357 0 809
x Read 768 2 1534 0 4
f Read 408 106 150 0 0
f Write 0 106 150 2 0
f Write 0 25533 6357 0 809

4.4 Opportunities for Transformations

In this section, we demonstrate how ccSIM can be used to detect and isolate

coherence traffic bottlenecks, and we derive opportunities for transformations leading to

reduced coherence traffic and, thereby, potential performance gains. For illustration, we

use the NBF kernel described in the previous section. A full access trace was obtained for

the OpenMP NBF kernel. The OpenMP environment was set to four threads and static

scheduling (OMP NUM THREADS = 4, OMP SCHEDULE STATIC).

4.4.1 Analysis

Consider the results for NBF again. Figure 4.11(a) shows the breakdown of misses

for L1 and L2 caches for each processor obtained by ccSIM. We observe that almost all

L2 misses and a significant number of L1 misses are coherence misses. A coherence miss

is caused when a processor accesses a cache line that was invalidated due to a write from

another processor. However, a large number of invalidations does not necessarily imply a

large number of coherence misses, since the invalidated cache lines may not be referenced

by the processor again before being flushed out of the cache. Figure 4.11(b) compares the

coherence misses with the invalidations received for the L1 and L2 caches of each processor.

We observe that a significant number of invalidations resulted in coherence misses, especially

in the L2 cache. This indicates that minimizing the total number of invalidations will reduce

the magnitude of coherence misses correspondingly. The large number of invalidations and
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(a) Break-down of misses for each processor

(b) Comparison of Invalidates with Coherence Misses

Figure 4.11: Overall metrics for NBF

coherence misses cause significant coherence traffic, affecting the scalability and throughput

of the application.

We have now detected that a coherence bottleneck exists. We can use the per-

reference coherence and cache statistics generated by ccSIM to determine the cause of the

bottleneck. Table 4.10 shows the per-reference statistics on processor one for the three major

references for the original code and two optimization strategies (serialized and round-robin)

discussed in the following. Only L2 cache statistics are shown.

We observe that access metrics across all processors are uniform. The f Read ref-

erence on line 166 of the source code has an exceptionally high miss rate in all processors.
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Table 4.10: Comparison of per-reference statistics for each optimization strategy

Invalidations
Line Ref Optimization Misses Miss % Coherence True False
No. Strategy Ratio Misses Total In Across In Across

Region Region Region Region
166 f Read Original 31100 0.99 96.78% 31101 24389 5874 0 838

Serialized 2050 1.0 50.30% 2048 2048 0 0 0
Round-robin 2050 0.87 43.01% 2048 6 2042 0 0

132 x Read Original 1540 0.35 49.87% 1538 2 1536 0 0
Serialized 1540 0.35 49.87% 1538 0 1538 0 0
Round-robin 1540 0.35 49.87% 1538 0 1532 0 6

309 f Read Original 383 0.74 100% 256 52 204 0 0
Serialized 512 1.0 100% 256 0 256 0 0
Round-robin 512 1.0 100% 256 0 255 0 1

Moreover, more than 95% of the misses for this reference are coherence misses. The invali-

dation data shows that the large number of in-region invalidates are the primary cause for

these misses. The relation of this reference to the source code indicates that line 166 is of

interest:

#pragma omp parallel
...
for (i = 0; i < natoms; i++) {

#pragma omp critical
f[i] = f[i] + flocal[i];

}

The for loop updates the global shared array f with values from the local private

copy flocal for each OpenMP thread. The large number of invalidations attributed to

f Read reference is due to the ping-ponging of the shared f array between processors as all

of them try to update the global f array simultaneously.

4.4.2 Optimizing Transformations

We have isolated the coherence bottleneck to the updates of the shared global array

f. We shall discuss two ways of reducing the number of coherence misses. One method

eliminates the ping-ponging of the f array by serializing the updates to the array f since
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they require mutually exclusive writes. This is achieved by moving the critical section to

encompass the entire for loop instead of the single update. The modified code is shown

below.

#pragma omp parallel
...
#pragma omp critical
for(i = 0; i < natoms; i++) {

f[i] = f[i] + flocal[i];
}

Moving the critical statement outside the loop also reduces the number of times

that the mutual exclusion region must be entered and exited, decreasing the execution

overhead. Table 4.10 indicates that the total number of misses and invalidates has decreased

over an order of a magnitude as a result for f Read on line 166. Half of the overall misses are

due to coherence misses, and all coherence misses are now in-region due to the placement

of the critical section.

Although this reduces the number of coherence misses, the above method does

not exploit the potential for parallel updates to separate parts of the f array by different

threads. Hence, we consider an alternate transformation. We can exploit parallelism by

partitioning the array f into number of segments. Each thread updates a distinct segment

until all segments are updated. We call this scheme the round-robin update scheme. The

modified code is shown below as pseudocode.

i=0;
for each thread {

1. segment_number = i + thread_id;
2. update segment
3. synchronize w/ other threads (barrier)
4. i = (i+1) MOD max_segments

}//run till all segments are updated

Table 4.10 indicates that for f Read on line 166, the round-robin barrier approach

results in identical reductions in the total number of misses and invalidates as seen in the

serialized version. But now, coherence misses are across-region due to the placement of the

barrier (except for six startup references).

A comparison of L2 cache coherence metrics for these two optimizations strategies

with the original code is shown in Figure 4.12. Statistics are shown only for processor one
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Figure 4.12: Coherence Misses (Transformed)

and are very similar for the other processors. In the original code, the f Read reference

was the most significant cause of coherence misses. Both optimization strategies discussed

above drastically reduce the coherence misses for this reference, thereby decreasing the total

number of coherence misses by an order of magnitude. Table 4.11 depicts the wall-clock

execution time (a) for the routine that updates the shared array f, (b) for the remainder and

(c) for the entire program. We observe that the transformations radically reduce execution

time. For both the serialized and round-robin schemes, 3 milliseconds are spent in the

update routine vs. close to 5 seconds prior to the transformations. These savings are

the combined result of reductions in coherence traffic and reduced overhead for OpenMP

runtime calls. The overall savings are marginally higher for the serialized version as opposed

to the round-robin updates with barriers. We attribute these difference to slight variations

outside of the transformed code section.

Table 4.11: Wallclock Times (Seconds)

Code Original Serialized Round-robin
Segment
f-Update 4.981 0.003 (99.9%) 0.003 (99.9%)
Other 2.141 2.076 (3%) 2.190 (-2.28%)
Overall 7.122 2.079 (70.8%) 2.193 (69.2%)
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Chapter 5

Related Work

Analyzing causes of inefficiencies in utilizing the memory hierarchy has been a

popular area of research. The approaches range from detailed simulation of hardware models

in order to derive inferences about the hardware-software interaction to program analysis

and optimization techniques on the software side.

Trace-driven and execution-driven approaches are used for modeling memory sys-

tem performance for uniprocessors and multiprocessors. A framework typically consists of

an instrumenting tool which is used in collaboration with a memory hierarchy simulator to

provide details of program performance on hardware. Cache simulators are associated with

particular instrumentation tools depending on the type of input that they process.

DineroIV [15] and Tycho [16] are trace-driven uniprocessor cache simulators. Diner-

oIV simulates multilevel caches, classifies misses and mainly provides hit and miss infor-

mation. Timing is not simulated. Tycho simulates various uniprocessor cache designs

simultaneously to evaluate tradeoffs. CPROF [20] is a cache profiler which relates cache

misses to the source code and data structures.

Execution-driven simulators include Cacheprof(Valgrind) and Augmint. Valgrind

[29] supports detailed cache profiling for programs executing on x86 platforms. It performs

in-depth simulation of the instruction and data caches and associates the misses in the

memory hierarchy to lines in code. Augmint [24] is a multiprocessor simulator for Intel

x86 platforms. These simulators are restricted to specific platforms due to the extensive

functional simulation.
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Among other simulators, SimOS [27] is a complete machine simulator for unipro-

cessor and multiprocessor systems, while RSIM [18] simulates instruction-level parallelism

and a great level of detail in hardware. MTool [11] is also a useful tool for shared memory

multiprocessors, but it does not have the ability to relate metrics to data structures.

MemSpy [22], which is built over the TangoLite trace collector [14] associates

statistics obtained through simulation with data structures in source code. Our objectives

are similar, though our framework differs in the instrumentation mechanism. MemSpy uses

static annotation of source code, while we use dynamic instrumentation.

Interfaces like VTune [7] on Intel x86 platforms, PAPI [3] and the HPM toolkit

[9] are now available to access hardware performance counters on several platforms. These

counts, which reflect hardware events, provide only cumulative statistics. Also, a limited

number of events are available and only certain events can be tracked simultaneously.

With regard to shared memory parallel programs, synchronization and scheduling

overheads in OpenMP have been quantified [5], implementation of OpenMP constructs on

various platforms has been investigated [2] and performance characteristics of OpenMP

benchmarks have been analyzed [1]. An interesting approach to performance analysis was

pursued by instrumenting the SMP system interconnect to observe and record hardware

activity [25]. OMPtrace is a tool that dynamically instruments OpenMP applications and

derives metrics from hardware counters [10]. Optimization techniques have been explored

at various levels. Hu et al. illustrate the effectiveness of data reordering in improving the

performance of fine-grained irregular benchmarks on different platforms [17]. Recent work

includes development of various techniques for compiler optimization of applications [28].

Our objective is the simulation of OpenMP parallel program execution on shared

memory multiprocessor architectures using dynamic instrumentation. We do not concen-

trate on cycle-accuracy or detailed instruction simulation. Our goal is to detect and isolate

bottlenecks caused due to coherence and to provide aggregate as well as per-data structure

statistics. Invalidations caused due to cache coherence and the resulting coherence misses

are of particular interest to us for proposing optimization techniques. The invalidations

have been further classified to help in a more detailed assessment of program behavior.
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Chapter 6

Conclusions and Future Work

In this thesis, ccSIM, a simulator to assist in detection of memory performance

bottlenecks in OpenMP programs on SMP architectures was introduced. ccSIM is driven by

traces obtained through on-the-fly dynamic binary rewriting of OpenMP programs execut-

ing on an SMP node. It performs simulation of memory references for a specified multilevel

memory hierarchy configuration for shared memory multiprocessor systems. A threaded

model of simulation is employed, in which threads representing processors execute in par-

allel. Significant coherence-related metrics are generated by simulation of coherence traffic.

Results from interleaved orders of execution were recorded and analyzed. In addition to

aggregate metrics for the application, detailed information is provided on a per-reference

basis, relating all statistics to data structures in source code. This is an important contri-

bution in terms of isolating exact locations in the code that contribute to overall program

latency. When this is achieved, it can be determined if these bottlenecks could be eliminated

or reduced by code transformations. Optimization techniques may be proposed based on

the comprehensive statistics generated.

Experiments were performed for various OpenMP benchmarks and the results

obtained were validated against statistics obtained from hardware performance counters on

the architecture of interest. The comparison showed good accuracy of simulation. For one

benchmark, the per-reference statistics were discussed and analyzed.

The essential prerequisite to eliminating bottlenecks in parallel programs is to

determine the precise causes of the observed performance. ccSIM, in conjunction with
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METRIC, provides a useful framework to achieve this goal.

The incorporation of optimizations based on inferences drawn from the generated

metrics and verification of these code transformations using the framework as well as hard-

ware counters will be an important and significant task. It would be interesting to observe

and explore the extent of improvements possible in various benchmarks. Architectural vari-

ations like shared caches and support for other memory coherence protocols can be easily

plugged in and used to experiment with behavior on different platforms.
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