
ABSTRACT

MISHRA, SHOBHIT. Design and Implementation of Process Migration and Cloning in
BLCR. (Under the direction of Frank Mueller.)

The reliability of a high performance computing (HPC) environment deteriorates with

an increase in the number of nodes. For large applications, a failure results in the loss

of several hours of execution time. Today, we use application checkpointing to deal with

intermittent failures. Applications are restarted from the last checkpoint if a failure

occurs. However, checkpoint/restart (C/R) is a reactive approach of fault tolerance and

results in high overheads for a large application.

We suggest a proactive approach of fault tolerance by migrating a process from a failing

node to a healthy node. We describe two different mechanisms to move a process from

one physical node to another. In first approach, we halt the process at the failing node

and transfer it to the destination node via sockets. This approach is known as frozen

migration. The second approach, known as live migration, allows the process to run while

the migration is being carried out. We can allow the process to run at the source node

as well as the destination node thus creating a process clone. We rely on an external

agent to detect any imminent failure and trigger the migration process. We use a small

kernel patch to keep track of modified pages. The work is carried out within the latest

release of the Berkley Labs Checkpoint Restart (BLCR) code. The migration utilities

will be integrated into BLCR in future releases. Experimental results demonstrate the

significance of these proactive fault tolerance techniques to improve the reliability in HPC

environments.

c© Copyright 2011 by Shobhit Mishra

All Rights Reserved

Design and Implementation of Process Migration and Cloning in BLCR

by
Shobhit Mishra

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Computer Science

Raleigh, North Carolina

2011

APPROVED BY:

Xiaohui (Helen) Gu Steffen Heber

Frank Mueller
Chair of Advisory Committee

DEDICATION

To my parents.

ii

BIOGRAPHY

Shobhit Mishra was born in Ghazipur, a small town in the state of Uttar Pradesh in

India. He did his schooling in Ghazipur and went to Indian Institute of Information

Technlogy Allahabad for his B.Tech in Information Technology. He joined CSC India

Pvt. Ltd. as a System Administrator and worked there for three years. He came to NC

State in Fall 2009 as a Master’s student in the department of Computer Science. He has

been working under Dr. Frank Mueller as a Research Assistant since August 2010.

iii

ACKNOWLEDGEMENTS

This work would not have been possible without the collective effort of a lot of people.

First and foremost, I would like to thank my advisor Dr. Frank Mueller for showing

confidence in me and giving me the opportunity to work on this project. His guidance

and feedback put me on the right track from time to time. I would like to thank Paul

H. Hargrove at Lawrence Berkley National Laboratory for acting as my mentor. He was

always there to help me when I hit an impasse. I am thankful to Dr. Helen Gu and

Dr. Steffen Heber to serve on my committee. I would also like to thank Chao Wang and

Manav Vasavada for their foundation work on this project. Lastly, I would like to thank

my labmates in the System Research Lab and my family for their support.

iv

TABLE OF CONTENTS

List of Figures . vii

Chapter 1 Introduction . 1
1.1 High Performance Computing (HPC) . 1
1.2 Fault Tolerance . 2
1.3 Berkley Labs Checkpoint Restart (BLCR) 2
1.4 MPI . 4
1.5 Extensions to BLCR . 4

Chapter 2 Motivation, Hypothesis and Contribution 6
2.1 Motivation . 6
2.2 Hypothesis . 7
2.3 Contribution . 7

Chapter 3 Design . 8
3.1 Added Utilities . 8
3.2 Steps of Migration . 9

Chapter 4 Implementation . 12
4.1 Initialization and Restoration: . 12
4.2 Memory Precopy: . 16
4.3 Stop-and-Copy: . 18

Chapter 5 Experiments . 23
5.1 Framework . 23
5.2 Experiments . 23

5.2.1 Instrumentation Techniques . 23
5.2.2 Memory Tests . 24
5.2.3 Other Tests . 26

Chapter 6 Related Work . 28

Chapter 7 Conclusion and Future Work . 30
7.1 Conclusion . 30
7.2 Future Work . 30

7.2.1 Integration with OpenMPI . 31
7.2.2 Cloning . 31
7.2.3 Using WB Approach . 31
7.2.4 Using File Descriptors . 32

v

References . 33

vi

LIST OF FIGURES

Figure 1.1 Application running with and without checkpointing 3

Figure 3.1 Overall flow of the process migration 11

Figure 4.1 Overall flow of the cr restore utility 13
Figure 4.2 Dirty bit tracking scheme . 17
Figure 4.3 Migration with precopy . 19
Figure 4.4 Migration without precopy . 20
Figure 4.5 Sequence of data sent during precopy 22
Figure 4.6 Sequence of data sent during stop-and-copy 22

Figure 5.1 Stop-and-Copy Timings with a Stride of One 25
Figure 5.2 Stop-and-Copy Timings with a Stride of Ten 25
Figure 5.3 Timings for Live and Frozen Migration 26

vii

Chapter 1

Introduction

1.1 High Performance Computing (HPC)

HPC uses several parallel processing techniques to solve advanced computational prob-

lems quickly and reliably. HPC is widely used in scientific computing applications like

weather forecasting, molecular modeling, complex system simulations, etc. Traditional

supercomputers are custom made and very expensive. A cluster, on the other hand,

consists of loosely coupled off-the-shelf components.

Special programming techniques are required to exploit HPC capabilities. The most

common programming paradigm in such machines is message passing. Each node is al-

located a small part of the overall problem and they communicate through coordinated

message passing. Message Passing Interface (MPI) implementations provide scalabil-

ity and portability without compromising performance and is the de-facto standard for

HPC applications. There are several MPI implementations available today. OpenMPI

[13], MPICH [3], and WINMPICH [19] are some of the most common implementations.

Since the frequency scaling in a uniprocessor system has hit a wall, more and more

researchers are turning to HPC for scientific computations. As of June 2011, ten su-

percomputers have crossed the Petaflop barrier in max performance and thirteen have

crossed in peak performance [1]. Development of parallel applications, however, is sig-

nificantly different from sequential programming. More and more applications are being

rewritten to efficiently run on HPC machines.

1

1.2 Fault Tolerance

A fault may be defined as a deviation from normal or expected behavior such that it

causes an application failure. A fault marks an underlying inconsistency in the hardware

or software. Software faults are caused by application or operating system bugs. Hard-

ware faults may occur because of the hardware component failure or due to hardware

limitations. Such faults include but not limited to I/O error, faulty RAM, network fail-

ure, disk corruption, and machine overheating. In our work, we mainly focus on fail-stop

hardware failures that can be detected by an external monitoring agent.

Since the advent of Supercomputers, the number of cores in HPC machines has bur-

geoned into hundreds of thousands of cores. Huge scientific applications like climate

modeling and molecular modeling with highly parallelized algorithms can take several

hours to complete. A number of HPC clusters use off-the-shelf components to achieve

this massive computational power. Reliability data of contemporary machines indicates

the frequency of failure in large installations. The mean time between failure (MTBF) is

in the range of 6.5 to 40 hours [16]. This points to the high probability of a job failure due

to hardware/software failures during execution. For large processes, a job failure may

lead to restarting the process from the beginning and thus wasting a significant amount

of processing time. In addition to processing delays, this would also result in excessive

use of power for duplicate computation.

Fault tolerance may be defined as the ability of a system to complete the designated task

in the presence of hardware and software failures. It also includes graceful degradation

and sensible program termination. It involves detecting the error and taking appropriate

measures to handle it. There may be several fault tolerance actions like exiting the pro-

gram and error reporting or continuing the execution on a different node. An efficient

fault tolerance policy can save significant execution time and drastically reduce the power

consumption.

1.3 Berkley Labs Checkpoint Restart (BLCR)

There are many approaches to enable fault tolerance in an HPC environment. One of the

widely used methods is Checkpoint/Restart (C/R). C/R involves saving the context of a

job/application at regular intervals and restarting the application from a saved context

if a failure occurs. This approach saves significant time because we do not have to start

2

the job from scratch.

For example, consider an application with 10 nodes and 15 hours of execution time.

Further assume a checkpoint scheme to save the application context every hour. If the

application fails after 10 hours then we restart the application from the last checkpoint

instead of running it again from the beginning. See figure 1.1.

10

hours

Application

Without Checkpointing

10

hours

Application

With Checkpointing

Spare node

8

hours

Figure 1.1: Application running with and without checkpointing

There have been several frameworks for the application-level and system-level C/R.

BLCR is a hybrid kernel/user implementation for C/R. It is developed and maintained by

3

the Future Technologies Group at Lawrence Berkley National Laboratory (LBNL). It is a

robust, production-quality implementation that checkpoints a wide range of applications.

It does not require any change in the application source code and works for several

architectures and Linux distributions. BLCR has been integrated with a number of

MPI implantations namely LAM/MPI, OpenMPI and MPICH to checkpoint and restart

parallel applications running on multiple nodes. Researchers at North Carolina State

University have been working on various extensions of BLCR [33] [34] [35].

1.4 MPI

The Message Passing Interface (MPI) is an application programming interface (API) that

allows processes to communicate with each other by passing messages. It is widely used

in the HPC environment and is a de-facto standard for parallel programming in computer

clusters and supercomputers. In the MPI programming model, a computation comprises

one or more processes that communicate by sending and receiving messages. Processes

can use point-to-point or collective communication operations to send a message. MPI

also has message probe routines to support asynchronous communication. In most MPI

implementations, a fixed number of processes are created at program initialization. All

these programs together are referred as a job in a cluster. MPI uses language independent

specifications for calls and language bindings.

1.5 Extensions to BLCR

Checkpoint and restart of a parallel application has its own overheads. These overheads

are directly proportional to the number of nodes involved. They also depend on disk I/O

speed, network bandwidth and the size of the application. The size of the checkpoint

file depends on the size of the application and the frequency of checkpoints. Large

applications tend to have a higher checkpoint frequency that results in considerable disk

and bandwidth overhead.

To reduce the checkpoint/restart overhead, several extensions are designed for BLCR at

the NCSU systems research group. The first extension is an in-place rollback feature in

BLCR to reduce the overhead by reusing existing resources at the time of restart. The

second extension is the incremental checkpointing. It aims to minimize the disk usage

4

by saving only the modified pages. The third extension is live migration of a process

from one node to another using network sockets. This extension works via node-to-node

transfer i.e. there is no need to save the context file on a disk. Instead of checkpointing

the complete job, it moves a single process from a node to another node thus saving the

disk usage and bandwidth. We shall look at this extension in later sections.

In this thesis, we propose two different methods of moving a process from one physical

node to another node. We propose an approach to stop a process at one node and migrate

it to the other node. We use several BLCR library functions and techniques to do so.

We also propose an alternative approach to allow the process to run at the source node

while it is being migrated to the destination node. We can choose to kill the process

at the source node once migration is complete or to let it run on the source as well as

the destination node. The second method is also known as cloning. We also propose a

modular approach for the implementation of the two approaches that would allow the

user to choose between live and frozen migration/cloning.

5

Chapter 2

Motivation, Hypothesis and

Contribution

2.1 Motivation

We have worked on several extensions of BLCR. The first extension was an in-place

process rollback. On any failure, BLCR kills all the processes and moves the checkpoint

image of the failing process to a spare node and restarts the application from the previous

checkpoint. Since we kill even the healthy processes and resubmit the entire MPI appli-

cation again, this method has a significant overhead in terms of time because other jobs

in the queue will be executed before this resubmitted job gets a time slice. The second

extension was incremental checkpointing. Incremental checkpointing checkpoints only

the modified pages since the last checkpoint. It only stores the difference between two

checkpoints instead of two full fledged checkpoint files. Incremental checkpointing helps

in saving disk space and optimizes I/O bandwidth. There are two methods to identify

the modified pages name by the dirty bit approach and the write bit approach. The dirty

bit approach requires a small kernel patch to access the dirty bit information maintained

by kernel. The write bit approach uses page protection mechanisms to trigger a signal

when a page is modified.

Although these two approaches have several advantages compared to a näıve approach,

they still are a reactive approach of fault tolerance. They help in application recovery

once the fault has already occurred. The third extension to BLCR is frozen/live migra-

tion, which is a proactive approach of fault tolerance. We rely on a health monitoring

6

fault prediction agent to detect deteriorating health of a node and to then trigger the

migration process. We assume that the agent is able to predict the failure of the node and

to subsequently take proactive measures such as process migration. The idea is to move

the process from the bad node to a healthy node via network sockets without creating any

checkpoint file. This significantly reduces disk space requirement and avoids slow disk

access for large network files. Instead of saving the process data on a disk and restoring

it, we do the restoration on the fly. In fact, the application stops just for a fraction of

a second before resuming execution instead of coming to a complete halt before resum-

ing the execution from a checkpoint file. We have implemented two different flavors of

migration, namely frozen and live migration. Frozen migration stops the process at the

source node and transfers all the process-related information in one pass. Live migration,

on the other hand, transfers the memory pages to the destination node before stopping

the process and saving the rest of the process control block. In live migration, memory

pages are transferred iteratively. In each iteration, only modified pages since the last

iteration are transferred to the destination node. We identify dirty pages using the dirty

bit approach as mentioned above. We will discuss the design and implementation details

in the following sections.

2.2 Hypothesis

We hypothesize that we can migrate a process from one physical node to another node

via sockets while the application is running, which has the potential to result in lower

overall runtime than stopping an application before migrating it. We can also create a

copy of the process on two nodes thus creating a process clone. These mechanisms, once

integrated with MPI run time, can aid the traditional C/R approach to provide proactive

fault tolerance mechanisms.

2.3 Contribution

We present the design and implementation of a process migration scheme at the kernel

level which does not require any application-level modifications. We use the dirty bit

scheme to track modified pages. It requires a small kernel patch to access the dirty bit

information of a page. The work is carried out within the latest version of the BLCR.

7

Chapter 3

Design

This section describes the design details of migration in BLCR. One of the basic design

principles is to integrate the migration utility with BLCR with minimal changes in the

original source code. We have reused a significant amount of BLCR functionality and

modified it for better suitability on the migration utility. The BLCR C/R utilities are

completely independent of the migration utility. They should work seamlessly when

integrated with live/frozen migration in the upcoming release.

3.1 Added Utilities

We have added the following user- level utilities in BLCR:

• cr migrate: This utility is invoked at the source node to start the live migration

of a process. It takes the PID of the process and the destination node as input. It

is invoked only if we want to trigger a live migration of the process.

• cr restore: This utility is invoked at the destination node. It has to be running

on the destination node before any migration utility is invoked at the source node.

A switch decides if the restore corresponds to live migration or frozen migration.

• cr stop: This utility is invoked at the source node in two cases. It is invoked when

the cr migrate utility returns or when we choose frozen migration instead of live

migration. It takes the pid, a destination node and a live switch as arguments.

• cr clone: This utility works similar to the cr stop utility but instead of killing the

process at the source node, it allows the process to continue thus creating a clone

8

of the process at the destination node. This utility also takes the pid, a destination

node and a live switch as arguments.

These utilities are developed independently of the cr checkpoint, cr restart and cr run

utilities of BLCR. The cr migrate and cr stop utilities are very similar to cr checkpoint.

Yet, instead of writing to the checkpoint file, they write to a socket connected to the

destination node. One of the main design aspects is to keep the code modular and

provide sufficient entry points to call MPI-related functions in the overall execution. We

have to provide synchronization in both the kernel module and at the MPI level.

Once we determine that a node is failing, we need to find a spare node to which the

process can migrate. If there is not a spare node then we can overload the least overloaded

machine/node by migrating the process to it.

3.2 Steps of Migration

Initialization at the Destination Node: Once a destination node is identified, an external

scheduler invokes the restoration utility. We assume that we have enough spare nodes

in the cluster that can be used as a default destination during process migration. This

can be ensured by over provisioning of nodes at the time of job submission. If no spare

node is available then the least loaded node can be chosen as the destination node. The

restoration utility allocates the data structure for process restoration and establishes a

socket communication with the source node. This utility should be invoked at the desti-

nation node before invoking any migration command at the source node.

Memory Precopy: Once a destination node is identified and the socket commu-

nication is established, we can start the transfer of pages to the destination node. The

objective of the memory precopy is to transfer a memory snapshot of the process to the

spare node while allowing the application to run. The memory transfer occurs at page

granularity. Memory pages are sent to the destination node iteratively until we reach a

steady state. In the first iteration, all non-zero pages are sent to the destination node.

In every subsequent iteration, only the modified pages since the last iteration are sent to

the destination node. The loop terminates when the change in the number of modified

pages between consecutive iterations drops below a threshold level or there are no more

modified pages. The mechanism of dirty page tracking is discussed in the implementation

9

section of memory precopy. This step is carried out by the cr migrate utility.

Message Draining: Once the precopy step is complete, we have to stop the process

at the source node and transfer the last pages and other process-related information to

the destination node. But before doing that, all MPI tasks need to reach a consistent

global state. We need to drain all in-flight messages, and all MPI tasks should stop at

a barrier. Message draining and other MPI-level synchronization are independent of the

BLCR and implemented by the MPI library. A corresponding handler is invoked from

all nodes once cr migrate returns. This capability is yet to be integrated.

Stop-and-Copy: Once all MPI tasks hit the barrier, the process on the source node

suspends the application execution and copies the remaining pages, the process state, de-

scriptors of open files, linkage information, pipes and other process-related information

to the destination node. All MPI tasks are suspended until stop-and-copy is finished.

The process keeps running at the source node if cloning is enabled or exits if cloning is

disabled. This task is accomplished by the cr stop utility at the source node. If the live

migration switch is on then cr stop is preceded by a cr migrate invocation otherwise, it

runs alone after the message draining stage has completed.

Process Restart and Job Continuation: The process is reconstructed at the

destination node. Linkage structure, open files and pipes are restored. This is the last

step of process migration followed by the restoration of communication channels and

drained messages. This task is accomplished by the cr restore utility at the destination

node. This utility works similarly to the cr restart with the exception of the use of

sockets instead of a file descriptor to read/receive a process image. There is no deliberate

synchronization between cr migrate, cr stop and cr restore. The cr restore command

recreates the process and returns. Restored process execution is separate from the cr -

restore context. When the process is ready on the destination node, it reestablishes the

communication channel with all other MPI tasks. Subsequently, the drained in-flight

messages are restored and the job continues. We shall have two copies of the process if

clowning is enabled. In that case, we need to take care of the redundancy as MPI cannot

accommodate two processes with the same signature.

The overall flow and timeline is shown in the Figure 3.1.

10

Source Other nodesDestination

Socket and request

initialization

cr_restore

Memory

Precopy

cr_migrate

Transfer memory

pages

message

draining

Barrier

Stop and

Copy

cr_stop

Transfer remaining

pages and Process-

related information

exit
Process

creation

Restart mpi tasks and

message restoration

message

restoration

Barrier

Job continutation

Timeline

cr_restore

cr_restore

cr_restore

Figure 3.1: Overall flow of the process migration

11

Chapter 4

Implementation

This section describes the implementation details of different utilities referenced in the

previous section. We depict the code flow of these utilities and describe the user-level

and kernel-level interaction. We also mention the code changes in the standard BLCR

library. We tried to keep changes to the existing code to a minimum. We added several

new structures, e.g., ioctl macros and functions, to the BLCR library.

4.1 Initialization and Restoration:

The cr restore utility performs the initialization at the destination node. A switch decides

if the restore corresponds to live migration or frozen migration. The cr restore is a user

level utility that interacts with BLCR via the ioctl interface. We added ioctl macros for

restore calls in blcr ioctl.h. blcr ioctl.h consists of all the ioctl macros corresponding to

the commands of user level utilities. The cr restore performs the following operations at

the user level:

1. It builds the user level restore request by populating the cr restore arguments struc-

ture. It connects to the kernel and issues the restoration request using cri syscall

function as cri syscall(CR OP RESTORE REQ, (uintptr t)&req).

2. The cr restore utility then performs a fork and the child process calls the restore -

child main function. The parent process, however, waits for the restoration to

complete by calling cri syscall(CR OP RESTORE DONE, (uintptr t)NULL) .

12

3. The parent process then fills in the signal structure and performs a reap on the

restoration request. The child process issues the RESTORE CLONE and RE-

STORE CHILD request via the ioctl interface before exiting.

These functions are invoked at the user level. They, in turn, call their kernel level

counterparts. The overall flow of cr restore is depicted in Figure 4.1.

cr_restore

cri_syscall(CR_OP_RESTORE_REQ,.)

Parent process Child process

fork

cri_syscall(CR_OP_RESTORE_DONE) Restore_child_main()

Signal handler installation

cri_syscall(CR_OP_RESTORE_REAP)

cri_syscall(CR_OP_RESTORE_CLONES

)

clone

cri_syscall(CR_OP_RESTORE_CHIL

D)

waitpid()

mimic_exit()

Figure 4.1: Overall flow of the cr restore utility

13

cri syscall(CR OP RESTORE REQ, (uintptr t)&req) sends a restore request to the

kernel module. Every ioctl request is intercepted by ctrl ioctl function defined in cr -

fops.c. The ctrl ioctl function matches the ioctl request with the corresponding function.

It calls the cr restore request function at CR OP RESTORE REQ ioctl call. The cr -

restore request function initializes the kernel level restore request and creates a socket.

It issues a series of blocking read calls to receive the data from the source node. It

first reads the number of threads in the migrated process, then copies this value in the

restore request and returns. The restore child main function performs the task of thread

creation by invoking the clone system call. It calls the cri syscall(CR OP RESTORE -

CLONES) function in a loop to create the required number of threads. The cr restore -

clones function decrements the clone needed variable and allocates a one page stack

to every cloned process. The restore child main function then calls the cr restore child

function, which populates the remaining fields of restore request and calls cr start self

function. Subsequent process restoration is performed by the cr start self function in the

following steps:

1. The cr start self function reads the linkage structure sent by the source node and

allocates the memory for linkage structure. The linkage structure of a process

consists of pid, ppid, session information, group leader information and process

group information.

2. It then reserves the pid, tgid and session ids to create the process. BLCR tries to

create the process with same pid and tgid if possible. If the requested pid and tgid

is not available, then it fails with an error message.

3. The third step is to restore the credentials of the process. Credentials include

userid and group id. The userid and groupid are received from the source node and

the exact same values are used for calls to the sys setresuid and the sys setresgid

functions.

4. The fourth step is to restore the register values and map the received pages into the

process address space. This is achieved by the virtual memory area dumper (vmad-

ump) interface integrated in the BLCR. Vmadump assumes that it is operating on

the current process and does not handle multi-threaded processes. To overcome this

limitation, BLCR uses a wrapper function around vmadump functions to separate

14

the thread-specific requirement from the process wide requirement. The mechanism

of register restoration and page mapping involves the following steps:

(a) The ’cpu registers’ restoration is triggered by the start vmadump thaw threads

function. This function is called by all the threads in the process. All the

threads but one wait at the barrier while one thread performs the actual

restoration and page mapping.

(b) The thaw threads function calls the start vmadump thaw proc function, which

receives the pages from the source node and maps them to the current process.

(c) The thaw proc function then calls the start vmadump restore cpu function,

which restores the register values. This function is highly dependent on the

architecture. We provide two versions of this function corresponding to the

i386 and the x86 64 architectures.

5. The cr start self function then tries to restore the linkage information of the pro-

cess. This is one of the most crucial steps for the restoration of a multi-threaded

application. This part of the code is susceptible to kernel changes. This task is

carried out by the cr start restore linkage function in the following way:

(a) It stops the process at a barrier so that none of the threads try to execute

until the process linkage is restored.

(b) It iterates through the task list of the restore request and manually restores

the parent and real parent values.

(c) It then restores the group leader value for every task.

(d) It removes the process linkage of the thread group leader by unhashing it. It

then attaches the pid and tgid value of the task. Subsequently, the process

group and session leader information is restored. We finally restore the self -

exec id and parent exec id.

(e) The pid, tgid and exec ids are restored for the non-group leader tasks.

6. The sixth step is to restore the fs struct of the migrated process. The cr start -

restore fs struct function restores the umask, reads the current working directory

and changes the current working directory.

15

7. Open files are restored at last by the cr start restore all files function. This function

loads the file structure by reading from the socket. It uses this information to

retrieve the file type. It then tries to restore open file, open directory, open link,

open socket, open fifo, open chr, open blk and open dup.

4.2 Memory Precopy:

Memory precopy is performed at the source node by the cr migrate utility. Memory pages

constitute the maximum amount of the process related data. The idea is to transfer the

memory pages to the destination node while the process is still running at the source node.

The cr migrate utility connects to the kernel and issues a migration request invoking the

cr migrate req function. The cr migrate req function builds the migration request and

raises a signal indicating a migration request. This signal is then caught and handled in

the user space by the cri sig handler function defined in cr core.c. The cri sig handler

calls a handler corresponding to the request. For a migration request, it calls the do -

create manager thread function. This function creates the precopy thread to transfer the

memory pages to the destination node. The precopy thread performs the following tasks:

1. The precopy thread creates a socket and connects to the destination node.

2. It then issues an ioctl call to access the number of threads associated with the

process and writes this information to the socket.

3. It counts the number of memory maps by issuing another ioctl call and sends it to

the destination node.

4. The precopy thread then starts sending the memory pages in an iterative manner.

In the first iteration, it sends all the pages to the destination node and clears the

dirty bit.

5. In every subsequent iteration, it sends only the modified pages since the last iter-

ation to the destination node and clears the dirty bit. It keeps iterating until the

dirty page count and the difference between the dirty page count in two subsequent

iterations is greater than 256.

6. It then closes the socket and returns.

16

We use the dirty bit approach to keep track of dirty pages. It uses a kernel patch to

copy the dirty bit maintained by the kernel to the user space [27]. The kernel uses the

dirty bit to keep track of modified pages. The patch uses the free bits in the page table

entry (PTE) to maintain the status of the dirty bit for a given page.

Replicated bits

6
61

6

3

62

_PAGE_BIT_DIRTY

_PAGE_BIT_SDB

_PAGE_BIT_KDB

Figure 4.2: Dirty bit tracking scheme

As shown in Figure 4.2, Linux uses a bit to keep track of modified pages. The patch

replicates this bit into two unused bits of the page table entry. The PAGE BIT KDB

maintains the kernel state of the dirty bit while PAGE BIT SDB maintains the user

state of the dirty bit. The kernel bit maintains the consistency of the dirty bit and

returns its value for the last access. The user bit, however, maintains the state of the

dirty bit between two function calls. This patch provides the DB test and clear macro

to test the dirty bit of a page and reset it. We use this macro in the is dirty function to

detect and clear the dirty bit for a page.

17

4.3 Stop-and-Copy:

Once all the MPI tasks reach a consistent global state, the process on the source node

freezes, sends the remaining pages, the process state, descriptors of open files, linkage

information, pipes and other process-related information to the destination node. The

cr stop utility signals the process on the source node to freeze the execution. Threads

of the process subsequently copy their state information to the destination node. This

task is performed inside the kernel. We can invoke the cr stop utility without the prior

invocation of cr migrate on the source node thus avoiding the memory precopy phase.

However, there are tradeoffs between frozen migration and the alternative live migration,

which allows precopy with continued application progress. Live migration comes at the

expense of background network activity although it may result in an overall shorter

application downtime. There is also a high probability of repeated transmission of dirty

pages. Figures 4.3 and 4.4 show the steps in live and frozen (without memory precopy)

migration.

The cr stop command signals the process on the source node to stop the execution

and send the dirtied pages in the last iteration of the precopy step to the destination

node. Threads of the process then take turns to send their state information. These tasks

are performed inside the Linux kernel. The lower half of the Figure 4.3 illustrates these

steps. The cr stop issues the stop request via an ioctl call and waits until it is complete.

The stop request triggers the following actions:

1. It allocates a task request, builds a task list and calls the cr trigger stop1 function.

The stop request is handled by the cr stop req function defined in cr stop req.c.

2. The trigger function populates a siginfo structure to uniquely identify the stop

request and raises the signal. We use the si uid field in the siginfo structure to

identify different types of requests. For example, the si uid value of the stop request

is 936316 while the si uid value of the migrate request is 936315.

3. The signal is caught and handled by the cri sig handler function defined in cr core.c.

The handler function calls the do stop function for a stop request. Since the handler

executes in user space, do stop issues another ioctl call to make the transition to

the kernel space. The do stop function calls the cri syscall(CR OP HAND STOP,

flags) function, which in turn invokes the cr stop and copy self function defined in

the corresponding C file.

18

Source Node
Destination

Node

Thread 1 Thread 2

Precopy

Thread

Transfer of

non zero

pages

Thread 1 Thread 2

Barrier

Receive and

save pages

Transfer dirty

pages

Save dirty Pages

First Iteration of

precopy

Other iterations of

precopy

Running

normally

Barrier

Transfer dirty

pages and

registers, signals

Save dirty pages

and restore

registers, signals

Transfer

registers, signals

for thread 2

Restore

registers, signals

for thread 2

Barrier Barrier

Stop and Copy

Kernel Mode in Dotted Frame

Figure 4.3: Migration with precopy

4. The cr stop and copy self function locates the current process to find the matching

stop request. The process then hits the predump barrier and calls the cr do stop -

vmadump function.

5. The cr do stop vmadump function saves the process control block in a step-by-

19

Source Node Destination Node

Thread 1 Thread 2
Thread 1 Thread 2

BarrierBarrier

Transfer all non

zero pages and

registers, signals

Save pages and

restore registers,

signals for thread 1

Transfer

registers, signals

for thread 2

Restore registers,

signals for thread

2

Barrier Barrier

Stop and Copy

Kernel Mode in Dotted Frame

Figure 4.4: Migration without precopy

step manner. It first calls the cr stop save linkage function, which connects to

the destination node and writes the process linkage structure. The process linkage

includes the parent, real parent, group leader, session, leader, pid, tgid, pgrp, exit -

signal and the file pointer associated with the stop request. If the stop request is

not preceded by the memory precopy step then it sends the task count to the

destination node before sending other process-related information. The task count

is equal to the number of threads in the process.

6. We send the credential information to the destination node once the save linkage

function returns. The credential information includes uid, euid, suid, gid, egid and

sgid. We use the cr context creds structure defined in BLCR to store these fields.

The complete structure is written to the socket in one pass.

20

7. The stop vmadump function then calls the stop vmadump freeze threads function,

which is similar to the vmadump freeze threads function in the standard BLCR

code. The stop version of this function works on a socket instead of a file descriptor.

8. The freeze thread function calls the stop vmadump freeze proc function, which

stops the process execution, writes the memory info to the socket and starts copy-

ing pages to the destination node. The page copying process is very similar to

the memory precopy stage but instead of performing it iteratively, we copy all the

pages in one pass.

9. The next step is to copy the register information. This task is carried out by

stop vmadump store cpu function. We have two different versions of the store cpu

function. One version is for i386 architecture while the other version handles the

dumping request for x86 64 architecture.

10. The freeze proc function then writes the signal information and other miscellaneous

information to the socket and returns.

11. The freeze threads function return value indicates the completion of register and

signal writing to the socket. The next function is stop cr save fs struct to save the

umask and current working directory of the current process.

12. The next step is to save all open files. This step is carried out by the stop cr -

save all files function. This function iterates through all file descriptors held by

the process, saves the corresponding file header and file info. It then calls different

functions based on the file information. In the current version of BLCR, we save

open files, directories, fifo and pipes.

Saving the file information completes the dumping process. The stop and copy func-

tion then sends the saved signals to the current process and returns. The complete format

of dumping is depicted in Figures 4.5 and 4.6. This is very close to the BLCR checkpoint

file format but differs in the context file header and a few other fields.

21

Thread Count Maps Count Send Maps Send Maps Send Maps….

First Run, send all pages to the destination node

Write ~0UL to indicate the completion of first run Maps Count for iterative run

Iterative Runs, send all pages to the destination node

Write ~0UL to indicate the completion of other runs

Figure 4.5: Sequence of data sent during precopy

Linkage Size Linkage structure: contains pid, tgid, leader, parent, session and group

Credentials Memory info Memory pages of the process Comm pid

Registers (pt_regs structure)

FPU Thread debug User SP Thread fs, Thread gs

fs gs fs index gs index TLS array Sysenter return address

Blocked Signal Sigaction Child tid Num of threads

Umask of fs Length of root path Root path Length of pwd path Pwd path

Files Structure Cr_file_info structure Cr_open_file_obj structure Filename Filedata

Figure 4.6: Sequence of data sent during stop-and-copy

22

Chapter 5

Experiments

5.1 Framework

We conducted our experiments on the local Opt cluster. This cluster has 18 nodes

running Fedora Core 13 Linux x86-64 connected by two Gigabit switches. Each node is

equipped with 2-way SMPs with dual-core AMD Opteron 265 processors. It has a 750

GB RAID5 array to provide storage through NFS and a local disk. We conducted timing

measurements in user space for live and frozen migration.

5.2 Experiments

We use three BLCR test codes to test the functionality of migration utilities. These test

codes include a single-threaded counting application, a multi-threaded counting appli-

cation and a file counting application. In addition to these tests, we also developed a

micro benchmark to assess the overhead of different approaches of migration. The ex-

periments are designed to test the functionality of the migration utilities and to analyze

their performance for applications of different sizes.

5.2.1 Instrumentation Techniques

We augmented the timing measurements with migration utilities at the user level. We

used the timing utilities provided by Linux to measure the time at a micro second granu-

larity. We record the time via gettimeofday() right before and after the migration request

23

and determine the difference. We then send the data over a network via sockets. Hence,

network fluctuation can result in varied timings for different runs. To mitigate these

local effects, we perform the experiments when the cluster is least used and determine

the average over four samples per experiment. We observe a variation of 7% in timing

measurements for large applications. We observe large variations in timings for small ap-

plications, which can be attributed to small execution times. For memory experiments,

we used large size applications to get a consistent pattern.

5.2.2 Memory Tests

The memory test is to assess the overhead associated with an application migration.

We take separate timings for the memory precopy and the stop-and-copy phases of live

migration. We designed a micro benchmark that allocates a large number of pages and

dirties those pages in an iterative manner. We also defined a stride for dirtying pages.

The test was conducted on a large data set to mitigate the effect of external factors. We

observe that the migration time is directly proportional to the number of pages allocated

to the application, which in turn defines the application size. The number of pages

allocated for the following experiment are 1000, 10000, 100000, and 500000. The results

are presented in Figures 5.1 and 5.2 for strides one and ten, respectively.

We observe that migration time increases with an increase in the number of pages of

the application. The increase in time is almost linear. We also measured the time for live

and frozen migration combined (precopy + stop-and-copy) and compared it with frozen

migration (only stop-and-copy) alone. As we discussed in the previous sections, there

is a tradeoff between live and frozen migration. Live migration takes a longer time to

complete but it lets the application run while the memory pages are being transferred to

the destination node. Precopy is immediately followed by a stop-and-copy which takes

less time than the stand-alone frozen migration. These results are depicted in Figure 5.3.

We observe that precopy migration takes more time than stop-and-copy and frozen

migration. In the precopy phase, we keep iterating until we reach a steady state. In each

iteration, we only send the modified pages since the last iteration. For a large application,

each iteration can take a significant amount of time. However, the application keeps

running in the precopy phase. We also observe that stop-and-copy takes less time than

frozen migration although they involve same steps. Stop-and-copy sends only those pages

to the destination node that have been dirtied since the last iteration of precopy. Frozen

24

0.08 0.53

4.46

20.07

0.00

5.00

10.00

15.00

20.00

25.00

1000 10000 100000 500000

Ti
m

e
 i

n
 S

e
co

n
d

s

Number of Pages

standard dev = 9.39

Figure 5.1: Stop-and-Copy Timings with a Stride of One

0.01 0.06

0.58

2.85

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1000 10000 100000 500000

Ti
m

e
 in

 s
e

co
n

d
s

Number of Pages

standard dev = 1.34

Figure 5.2: Stop-and-Copy Timings with a Stride of Ten

25

0.00

5.00

10.00

15.00

20.00

25.00

30.00

200000 300000 400000 500000

Ti
m

e
 in

 s
e

co
n

d
s

Number of Pages

Precopy time

Stop and Copy time

Frozen Migration only

Figure 5.3: Timings for Live and Frozen Migration

migration, on the other hand, essentially sends all non-zero pages to the destination node.

Therefore, the application down time is less in live migration than frozen migration at

the cost of higher network activity.

5.2.3 Other Tests

We ran several other tests to verify the functional integrity of the migration utilities.

These tests involve different types of applications. Some of the important tests are

described below:

1. We tried to migrate a multi-threaded application using the standard BLCR code.

This program creates three threads and increments a global counter in a loop. Each

thread takes turns to increment the counter. Multithreaded applications are tricky

to migrate because we have to keep track of thread group leader and synchronize

the threads at the destination node. The linkage restoration function ensures that

each thread has the correct group leader associated with it. We are able to migrate

the multi-threaded application using both live and frozen migration. We also tested

26

the signal handling of the migrated process at the destination node and it works

fine. We ran these tests with and without cloning.

2. We migrated a file counting application successfully to the destination node. This

application opens a file and starts writing to it. The migrated process restores the

file at the destination node and starts writing at current file pointer. We used a

network file for this test. This test, however, works only in absence of cloning. If

we enable cloning, then two processes would try to write into the file at the same

time and the process would fail after cloning.

Besides these test cases, we tried to migrate several variations of counting and memory

mapped applications. There is still room to add other test cases for different scenarios.

Some of the more sophisticated test cases can be designed more easily once the migration

utility is integrated with OpenMPI.

27

Chapter 6

Related Work

This thesis aims to present a fault tolerance technique to aid the conventional C/R

method for a HPC application. In this chapter, we talk about the research related to

fault tolerance in MPI jobs and migration approaches in general.

The feasibility of proactive fault tolerance has been demonstrated at the job schedul-

ing level [23], within OS virtualization [31] and in Adaptive MPI [26, 5, 4] using object

virtualization and message logging [12] for Charm++ applications. Our fault tolerance

approach, however, is at the process level and independent of the MPI runtime layer. Our

approach encapsulates most of the process control block, including open file descriptors,

pipes and sockets.

There are two aspects of proactive fault tolerance techniques. The first aspect is failure

prediction and there are a number of research efforts put in this direction [25, 14, 15].

These papers report high failure prediction accuracy with a warning window, which is the

premise for our proposed process migration mechanism. The second aspect of proactive

fault tolerance is the migration mechanism adopted for a particular environment. Various

migration techniques have been developed in the past [21, 24, 29, 18, 2, 7, 11]. MPI-

Mitten [10], an MPI library between the MPI and application layer, provides proactive

fault tolerance to MPI applications. It uses HPCM [8] as a middleware to support user-

level heterogeneous process migration. In [30], the authors provide a generic framework

based on a modular architecture to implement a proactive fault tolerance mechanism.

An agent-oriented framework [17] was developed for grid computing environments. In

this framework, agents monitor classes or subclasses of faults and either tolerate them or

take corrective actions. Sun et al. provide fault-aware systems, such as FARS [20] and

28

FENCE [28], to increase the accuracy of fault prediction and improve system resilience to

failures with different fault management mechanisms including process migration. They

also model the migration cost and introduce a suitable scheduling mechanism [9]. These

prior works with their fault models, mechanisms and their evaluation schemes assert

that process migration is a suitable approach for proactive fault tolerance. It involves

less overhead than operating system (OS) virtualization, which reinforces the significance

of our approach.

Our proactive live migration solution provides new BLCR capabilities and supports con-

tinued execution of applications during migration. It parallels live migration at the OS

virtualization layer [6], which has been studied in the context of proactive fault tolerance

of MPI applications [22], an approach that supports health monitoring and live migration

over Xen guests. We contribute process-level migration and demonstrate its efficiency.

In HPC, process-level solutions are more widely accepted than OS virtualization because

of its simplicity and less overhead. Hence, our contribution has significant potential to

have practical impact.

29

Chapter 7

Conclusion and Future Work

7.1 Conclusion

We present two different approaches for migration, namely live and frozen migration. We

also present a mechanism to clone the process. They complement reactive fault-tolerant

mechanisms, such as checkpointing, resulting in a reduction in the number of required

checkpoints. Checkpoint/restart can be deployed together with incremental checkpoint-

ing and live migration (1) to handle the faults proactively, (2) to reduce the number of

required full checkpoints, (3) to reduce the checkpoint overhead and, (4) to clone the

process thus providing redundancy. We compared the performance of two approaches

and showed the tradeoff between continued execution and application downtime. We

presented the results of both approaches for a variety of process migration scenarios and

for a memory benchmark. Overall, this confirms our hypothesis that we can migrate a

process from one node to another node via sockets, reduce overheads and create process

clones.

7.2 Future Work

There is a lot of scope for future work related to this thesis. Some of them are discussed

below:

30

7.2.1 Integration with OpenMPI

The migration techniques are designed to work with multi-node processes. As of now,

any single-node, multi-threaded process can be migrated to a physical node using the

migration commands. However, we have to integrate the migration code, e.g., with

the OpenMPI run time layer to migrate an MPI process. The implementation would be

very similar to the cr checkpoint integration with OpenMPI. We need to define a suitable

interface for the MPI run time layer to execute migration commands and define call-backs

to return from BLCR code to OpenMPI process execution. We also have to synchronize

the processes at different stages of migration. For example, once the migrating process

returns from cr migrate, all the MPI processes should hit a barrier before the stop-and-

copy phase can be started. Figure 3.1 depicts the required steps.

7.2.2 Cloning

Process cloning can be supported as follows: In our cloning mechanism, we do not kill

the process at the source node once migration is complete. We do it using the cr clone

utility. This utility works similar to cr stop utility but it allows the process to run at

the source node thus creating a clone. Cloning works fine in single process environment

because these two processes are independent of each other. In the MPI environment,

however, two processes with the same signature cannot co-exist. We need to modify

MPI run time layer to make sure these processes do not conflict each other and only one

process is active in MPI environment at a time.

7.2.3 Using WB Approach

As explained in Chapter 4, we use the dirty bit approach to keep track of the modified

pages. The dirty bit approach requires a small kernel patch. Although the dirty bit

approach is very efficient, it is not always viable to apply the dirty bit patch due to

security reasons or insufficient privileges. Sometimes, the patches are dependent on

other patches and we may need to apply a lot of other patches before the dirty bit patch

can be applied.

There is another approach to track modified pages, namely the write bit approach. This

approach uses the page protection mechanism to lock a page for writing. When a page

is modified, a page fault occurs and the corresponding handler marks the page as dirty.

31

The write bit approach does not require any kernel modification. Vasavada et al. used

the write bit approach for incremental checkpointing [32].

7.2.4 Using File Descriptors

As of now, we send and receive the process date via network sockets. Most of the BLCR

utilities, however, work on a file descriptor. We would like to tweak the code to use a

file pointer instead of sockets to make the design more general. Moreover, most of the

BLCR functions are specific to checkpoint and restart requests, which limit the code

re-usability. We would like to change the functions to make them independent of request

types.

As part of the future work, we would like to test the live migration utility on bigger

systems in an MPI environment. We would like to test it for a wide variety of applications

on different architectures. We would also like to make the code more robust by adding

error handling and testing corner cases. We have developed the migration utility within

the latest BLCR release and would like to test the migration utility in co-ordination with

the checkpoint/restart utilities in this context.

32

REFERENCES

[1] Top 500 supercomputers list. http://www.top500.org/list/2011/06/100.

[2] Amnon Barak and Richard Wheeler. Mobility. chapter MOSIX: an integrated mul-
tiprocessor UNIX, pages 41–53. ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA, 1999.

[3] George Bosilca, Aurelien Bouteiller, Franck Cappello, Samir Djilali, Gilles Fedak,
Cecile Germain, Thomas Herault, Pierre Lemarinier, Oleg Lodygensky, Frederic
Magniette, Vincent Neri, and Anton Selikhov. Mpich-v: toward a scalable fault
tolerant mpi for volatile nodes. In Proceedings of the 2002 ACM/IEEE conference
on Supercomputing, Supercomputing ’02, pages 1–18, Los Alamitos, CA, USA, 2002.
IEEE Computer Society Press.

[4] Sayantan Chakravorty and L. V. Kale. A fault tolerance protocol with fast fault
recovery. In Proceedings of the 21st IEEE International Parallel and Distributed
Processing Symposium. IEEE Press, 2007.

[5] Sayantan Chakravorty, Celso L. Mendes, and Laxmikant V. Kalé. Proactive fault
tolerance in mpi applications via task migration. In HiPC, volume 4297 of Lecture
Notes in Computer Science, pages 485–496. Springer, 2006.

[6] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Chris-
tian Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machines.
In Proceedings of the 2nd conference on Symposium on Networked Systems Design
& Implementation - Volume 2, NSDI’05, pages 273–286, Berkeley, CA, USA, 2005.
USENIX Association.

[7] Fred Douglis and John Ousterhout. Transparent process migration: Design alterna-
tives and the sprite implementation. Software - Practice and Experience, 21:757–785,
1991.

[8] Cong Du and Xian he Sun. Hpcm: A precompiler aided middleware for the mobility
of legacy code. In in Proc. IEEE Cluster Computing Conference, Hong Kong, 2003.

[9] Cong Du, Xian-He Sun, and Ming Wu. Dynamic scheduling with process migration.
In Proceedings of the Seventh IEEE International Symposium on Cluster Comput-
ing and the Grid, CCGRID ’07, pages 92–99, Washington, DC, USA, 2007. IEEE
Computer Society.

[10] Cong Du and Xian-He Sun Sun. Mpi-mitten: Enabling migration technology in mpi.
In Cluster Computing and the Grid, 2006. CCGRID 06. Sixth IEEE International
Symposium on, volume 1, pages 11 – 18, may 2006.

33

http://www.top500.org/list/2011/06/100

[11] Jason Duell. The design and implementation of berkeley labs linux check-
point/restart. Technical report, 2003.

[12] E.N. Elnozahy and W. Zwaenepoel. Manetho: transparent roll back-recovery with
low overhead, limited rollback, and fast output commit. Computers, IEEE Trans-
actions on, 41(5):526 –531, may 1992.

[13] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,
Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timothy S.
Woodall. Open MPI: Goals, concept, and design of a next generation MPI imple-
mentation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting, pages
97–104, Budapest, Hungary, September 2004.

[14] Xiaohui Gu, Spiros Papadimitriou, Philip S. Yu, and Shu-Ping Chang. Toward pre-
dictive failure management for distributed stream processing systems. In Proceedings
of the 2008 The 28th International Conference on Distributed Computing Systems,
ICDCS ’08, pages 825–832, Washington, DC, USA, 2008. IEEE Computer Society.

[15] Prashasta Gujrati, Yawei Li, Zhiling Lan, Rajeev Thakur, and John White. A
meta-learning failure predictor for blue gene/l systems. In Proceedings of the 2007
International Conference on Parallel Processing, ICPP ’07, pages 40–, Washington,
DC, USA, 2007. IEEE Computer Society.

[16] Chung-hsing Hsu and Wu-chun Feng. A power-aware run-time system for high-
performance computing. In Proceedings of the 2005 ACM/IEEE conference on Su-
percomputing, SC ’05, pages 1–, Washington, DC, USA, 2005. IEEE Computer So-
ciety.

[17] Mohammad Tanvir Huda, Heinz W. Schmidt, and Ian D. Peake. An agent oriented
proactive fault-tolerant framework for grid computing. In Proceedings of the first
International Conference on e-Science and Grid Computing, pages 304–311, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[18] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-grained mobility
in the emerald system. ACM Trans. Comput. Syst., 6:109–133, February 1988.

[19] Jayesh Krishna, Pavan Balaji, Ewing Lusk, Rajeev Thakur, and Fabian Tillier. Im-
plementing mpi on windows: comparison with common approaches on unix. In
Proceedings of the 17th European MPI users’ group meeting conference on Recent
advances in the message passing interface, EuroMPI’10, pages 160–169, Berlin, Hei-
delberg, 2010. Springer-Verlag.

34

[20] Yawei Li, P. Gujrati, Zhiling Lan, and Xian he Sun. Fault-driven re-scheduling for
improving system-level fault resilience. In Parallel Processing, 2007. ICPP 2007.
International Conference on, page 39, sept. 2007.

[21] Dejan S. Milóičić, Fred Douglis, Yves Paindaveine, Richard Wheeler, and Songnian
Zhou. Process migration. ACM Comput. Surv., 32:241–299, September 2000.

[22] Arun Babu Nagarajan, Frank Mueller, Christian Engelmann, and Stephen L. Scott.
Proactive fault tolerance for hpc with xen virtualization. In Proceedings of the 21st
annual international conference on Supercomputing, ICS ’07, pages 23–32, New York,
NY, USA, 2007. ACM.

[23] A. J. Oliner, R. K. Sahoo, J. E. Moreira, M. Gupta, and A. Sivasubramaniam. Fault-
aware job scheduling for bluegene/l systems. In In IEEE IPDPS, Intl. Parallel and
Distributed Processing Symposium, pages 64–73, 2004.

[24] Michael L. Powell and Barton P. Miller. Process migration in demos/mp. In Pro-
ceedings of the ninth ACM symposium on Operating systems principles, SOSP ’83,
pages 110–119, New York, NY, USA, 1983. ACM.

[25] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreira, S. Ma, R. Vilalta, and
A. Sivasubramaniam. Critical event prediction for proactive management in large-
scale computer clusters. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’03, pages 426–435, New
York, NY, USA, 2003. ACM.

[26] Sayantan Chakravorty, Celso Mendes and L. V. Kale. Proactive fault tolerance in
large systems. In HPCRI Workshop in conjunction with HPCA 2005, 2005.

[27] Luciano A. Stertz. Readable dirty-bits for ia64 linux. Internal requirement specifi-
cation. Hewlett-Packard, 2003.

[28] Xian-He Sun, Zhiling Lan, Yawei Li, Hui Jin, and Ziming Zheng. Towards a fault-
aware computing environment. In HAPCW, March 2008.

[29] Marvin M. Theimer, Keith A. Lantz, and David R. Cheriton. Preemptable remote
execution facilities for the v-system. In Proceedings of the tenth ACM symposium
on Operating systems principles, SOSP ’85, pages 2–12, New York, NY, USA, 1985.
ACM.

[30] Geoffroy Vallee, Kulathep Charoenpornwattana, Christian Engelmann, Anand
Tikotekar, Chokchai Leangsuksun, Thomas Naughton, and Stephen L. Scott. A
framework for proactive fault tolerance. In Proceedings of the 2008 Third Interna-
tional Conference on Availability, Reliability and Security, pages 659–664, Washing-
ton, DC, USA, 2008. IEEE Computer Society.

35

[31] Jyothish Varma, Chao Wang, Frank Mueller, Christian Engelmann, and Stephen L.
Scott. Scalable, fault tolerant membership for mpi tasks on hpc systems. In Proceed-
ings of the 20th annual international conference on Supercomputing, ICS ’06, pages
219–228, New York, NY, USA, 2006. ACM.

[32] Manav M Vasavada. Innovative Schemes to Support Incremental Checkpointing.
PhD thesis, North Carolina State University, 2009.

[33] Chao Wang, F. Mueller, C. Engelmann, and S.L. Scott. Hybrid checkpointing for
mpi jobs in hpc environments. In Parallel and Distributed Systems (ICPADS), 2010
IEEE 16th International Conference on, pages 524 –533, dec. 2010.

[34] Chao Wang, Frank Mueller, Christian Engelmann, and Stephen L. Scott. A job pause
service under lam/mpi+blcr for transparent fault tolerance. Parallel and Distributed
Processing Symposium, International, 0:117, 2007.

[35] Chao Wang, Frank Mueller, Christian Engelmann, and Stephen L. Scott. Proac-
tive process-level live migration in hpc environments. In Proceedings of the 2008
ACM/IEEE conference on Supercomputing, SC ’08, pages 43:1–43:12, Piscataway,
NJ, USA, 2008. IEEE Press.

36

	List of Figures
	Introduction
	High Performance Computing (HPC)
	Fault Tolerance
	Berkley Labs Checkpoint Restart (BLCR)
	MPI
	Extensions to BLCR

	Motivation, Hypothesis and Contribution
	Motivation
	Hypothesis
	Contribution

	Design
	Added Utilities
	Steps of Migration

	Implementation
	Initialization and Restoration:
	Memory Precopy:
	Stop-and-Copy:

	Experiments
	Framework
	Experiments
	Instrumentation Techniques
	Memory Tests
	Other Tests

	Related Work
	Conclusion and Future Work
	Conclusion
	Future Work
	Integration with OpenMPI
	Cloning
	Using WB Approach
	Using File Descriptors

	References

