
ABSTRACT

LUO, XIAOQING. ScalaIOExtrap: Elastic I/O Tracing and Extrapolation. (Under the direction
of Dr. Frank Mueller.)

Today’s rapid development of supercomputers has caused I/O performance to become a

major performance bottleneck for many scientific applications. Trace analysis tools have thus

become vital for diagnosing root causes of I/O problems.

This work contributes an I/O tracing framework with scalable and elastic traces. After

gathering a set of smaller traces, we extrapolate the application trace to a large numbers of

nodes, which can even be larger in the number of nodes than any existing supercomputer. We

conducted our experiments on a local cluster, an HPC machine of the Argonne Leadership

Computing Facility (ALCF) and via the Co-design of the Exascale Storage system (CODES)

simulator [9].

The main contributions of this work are the techniques to (a) gather a set of lossless and

scalable trace files, (b) build a mathematical model to analyze trace data and extrapolate it to

large sizes, and (c) replay the extrapolated trace file to verify its accuracy.



© Copyright 2015 by Xiaoqing Luo

All Rights Reserved



ScalaIOExtrap: Elastic I/O Tracing and Extrapolation

by
Xiaoqing Luo

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Computer Science

Raleigh, North Carolina

2015

APPROVED BY:

Dr. Nagiza Samatova Dr. Kemafor Anyanwu Ogan

Dr. Frank Mueller
Chair of Advisory Committee



BIOGRAPHY

Xiaoqing Luo was born in Hebei, China. She received the B.E degree in Electronic & Information

Engineering form South China University of Technology, China, in 2002, the M.S. degree in

Communication & Information System from South China University of Technology, China, in

2006. She is currently a MS student in Computer Science department in North Carolina State

University. Her research interests cover elastic I/O tracing, I/O extrapolation and I/O replay

on High Performance Computing.

ii



ACKNOWLEDGEMENTS

First, I wish to express my sincere gratitude to my supervisor, Dr. Frank Mueller, for his

patience, enthusiasm and encouragement. His logical way of thinking and his knowledge have

been of great value for me in these two years. I could not have imagined having a better advisor

for my MS’s study. Besides my advisor, I would like to thank my committee members: Dr. Nagiza

Samatova and Dr. Kemafor Anyanwu Ogan for their insightful comments and encouragement. I

own my deep gratitude to Phil Carns, John Jenkins, Shane Snyder and Rob Ross from Argonne

National Laboratory for their valuable advice and friendly help for my work. I also want to

thank my lab-mates for all of their help in these years. Last but not least, my deepest gratitude

goes to my parents and my husband for their unflagging love and support throughout my life.

iii



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Chapter 2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 ScalaTrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 ScalaExtrap [21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 CODES [9, 10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 3 Design And Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1 ScalaIOTrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Elastic strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.2 Elastic data element representation . . . . . . . . . . . . . . . . . . . . . . 8
3.1.3 Elastic handles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 ScalaIOExtrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.1 High level extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Elastic string extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.3 Elastic data element extrapolation . . . . . . . . . . . . . . . . . . . . . . 11
3.2.4 Handlers and time extrapolation . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 ScalaIOReplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.1 Elastic string replay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.2 Elastic file handle replay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.3 Elastic datatype replay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.4 Time-accurate and semantically correct replay . . . . . . . . . . . . . . . 13
3.3.5 Bridge from ScalaIOTrace to CODES . . . . . . . . . . . . . . . . . . . . 13

Chapter 4 Experimental Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1 ARC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 ALCF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 CODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1 Results on ARC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1.1 IO-sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1.2 IOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Results on ALCF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Results for CODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

iv



Chapter 7 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . 32

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

v



LIST OF TABLES

Table 3.1 Offset parameters for Rank0-Rank5 . . . . . . . . . . . . . . . . . . . . . . . 11

Table 4.1 Configuration of ALCF (Cetus) . . . . . . . . . . . . . . . . . . . . . . . . . . 18

vi



LIST OF FIGURES

Figure 1.1 Framework of ScalaIOTrace,ScalaIOExtrap and ScalaIOReplay . . . . . . . 2

Figure 3.1 Tracing and RSD merge of filename . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 3.2 Bridge between ScalaIOReplay and CODES . . . . . . . . . . . . . . . . . . 14

Figure 4.1 Extrapolation Verification on ARC . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 4.2 Extrapolation Verification on ALCF . . . . . . . . . . . . . . . . . . . . . . 18
Figure 4.3 Extrapolation Verification on CODES . . . . . . . . . . . . . . . . . . . . . 19

Figure 5.1 Results of IO-sample benchmark in Local, NFS and PVFS2 . . . . . . . . . 21
Figure 5.2 Results of IOR (chunk pattern) . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 5.3 Results of IOR (interleaved pattern) . . . . . . . . . . . . . . . . . . . . . . 23
Figure 5.4 Results of IOR file-per-processor . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 5.5 Results of IO-sample on ALCF . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 5.6 Results of IOR on ALCF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 5.7 I/O size of IO-sample, IOR shared-file-interleaved (SFI), IOR shared-file-

chunk (SFC) and IOR file-per-processor (FPP) on ALCF . . . . . . . . . . . 27
Figure 5.8 I/O operations of IO-sample (POSIX-IO) . . . . . . . . . . . . . . . . . . . 28
Figure 5.9 I/O operations of IO-sample (MPI collective I/O) . . . . . . . . . . . . . . . 28
Figure 5.10 I/O operations of with and without max-blocksize (IO-sample, MPI collec-

tive I/O) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 5.11 I/O operations of IOR (file-per-processor) . . . . . . . . . . . . . . . . . . . 29

vii



Chapter 1

Introduction

I/O behavior is one of the key factors that impacts application performance, particularly for

large-scale high-performance computing (HPC) and big data analytic / map-reduce relying on

a parallel file system (PFS). I/O presents a challenge due to complex interactions of multiple

software components [7]. Understanding inefficiencies and determining bottlenecks in I/O are

thus imperative, and are facilitated by tracing and analyzing I/O performance of parallel appli-

cations. However, I/O analysis in parallel systems is not trivial due to multiple I/O layers [19]

and multiple I/O patterns. The following general I/O patterns can be distinguished (processors

are synonymous for compute tasks on nodes): (A) Serial I/O (SIO): Data is aggregated from

all the processors to a single processor, the ”spokesperson”/proxy, and only the spokesperson

performs I/O (PFS). (B) Parallel I/O, one file per process (N-to-N): All processors

perform I/O simultaneously on individual files (local or PFS), each with a different name/-

path. (C) Parallel I/O, shared-file (N-to-1): Processors perform I/O on a single shared

file simultaneously, each within a disjoint block of the file (PFS).

To understanding I/O behavior, two general types of techniques may be employed:

� Dynamic I/O analysis, such as ScalaIOTrace [14, 22], which needs to be linked to

the original applications and run together with the applications on high-performance

computing (HPC) systems. Detailed I/O access information can be collected with such a

tracing tool. However, the system overhead of such tracing tool is significant, especially

for a large-scale production HPC system [21] (e.g., long application execution time and

large number of nodes participating).

� Static I/O analysis: Gather the trace information during the compile time. Although

such analysis can be performed without actually executing the programs, it requires the

access to program sources, which may not be available for some applications.

I/O tracing can also be performed by modeling and predicting applications’ behavior [6]. Unfor-
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tunately, such an approach can only provide overall statistics for an application on a particular

architecture, and may not satisfy the needs for detailed analysis.

1.1 Hypothesis

We hypothesize that I/O behavior of parallel applications can be analyzed from a set of traces

gathered from executions with smaller number of ranks and extrapolated to a trace of larger

number of ranks while retaining correct communication patterns and execution times for mesh-

based communication patterns.

1.2 Contribution

In this thesis, we contribute ScalaIOExtrap, a novel tool to provide large-scale traces suitable for

exascale I/O analysis. It obtains the lossless I/O access behavior of an application running in a

large-scale system without requiring source code. Figure 1.1 gives an overview of ScalaIOExtrap,

where RS (Rank Size) defines the number of ranks of a job’s communicator obtained from

MPI Comm size. The main ideas of ScalaIOExtrap are: (1) Gather a set of lossless and

Figure 1.1: Framework of ScalaIOTrace,ScalaIOExtrap and ScalaIOReplay

scalable I/O trace files in a relatively small system: We build ScalaIOTrace to achieve

this goal. To this end, we extend ScalaTrace [14] to trace both higher level MPI-IO and lower

level POSIX-IO operations losslessly. We contribute a number of algorithms to compress the

traced events in the trace file, which then becomes nearly constant in size. We consolidate the
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events by combining intra-node and inter-node compressions. (2) Analyze the set of trace

files and extrapolate small files into large size trace files: ScalaIOExtrap is designed

to utilize a set of smaller size trace files as input, to extract the corresponding traced data

and build a mathematical model to analyze the relationship between data and the number of

nodes. We also exploit modeling techniques to analyze the relationship between data itself. (3)

Calculate the extrapolated data and generate a single trace file: After modeling and

analysis, the equation which uses the number of ranks as an input and uses extrapolated data

as output is determined. From the extrapolated data we generate a single constant size trace

file. (4) Extend ScalaTrace replay engine to verify the correctness (ScalaIOReplay):

In order to achieve scalability, we heavily compress the lossless traced information into a nearly

constant size file. We extend the ScalaReplay engine to automatically parse and replay the I/O

trace file and its extrapolated I/O calls.

For verifying the accuracy and portability of our approach, we conducted experiments on

three different HPC platforms in terms of cluster types: (1) A small-scale cluster, (2) a large-

scale cluster, (3) and a virtual cluster (CODES simulator). We discuss each of them in Section

4. The results indicate that the extrapolated trace file captured exactly the same behavior as

performed by the I/O application. Also, ScalaIOExtrap does not introduce extra overhead to

the system, and does not extend the execution time of the applications, as we only use one

processor to analyze and compute the I/O parameters. For example, for the trace information

collected from the IOR pseudo application run with 8192 processes, it only takes less than one

second for a single processor to generate the extrapolated trace file. Meanwhile, traditional

dynamic I/O analysis tools (e.g., ScalaIOTrace) require 8192 processors and more than 200

seconds to gather the same information.
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Chapter 2

Background

ScalaIOTrace is designed on our prior work on MPI tracing via ScalaTrace V2 [22]. Similarly,

we reuse some techniques of ScalaExtrap [21] for developing ScalaIOExtrap. In this section, we

briefly introduce these tools and CODES, which we utilize to verify our work.

2.1 ScalaTrace

ScalaTrace is an MPI communication tracing framework for parallel applications [13]. It uti-

lizes the MPI profiling layer (PMPI) to intercept MPI calls. ScalaTrace collects lossless, order-

preserving, and space-efficient communication traces by exploiting the program structure and

performing a two-stage trace compression, i.e., intra-node and inter-node compression while

preserving timing [15].

Intra-node compression captures repetitive MPI events in a loop using regular section de-

scriptors (RSDs) as a tuple {length, event1, ...eventn} in constant size [14]. Nested loops become

power-RSDs (PRSDs), i.e., recursively structured RSDs. Consider the following MPI-IO exam-

ple:

f o r ( i = 0 ; i < 10 ; i++ ) {
MPI File open ( . . . ) ;

f o r ( j = 0 ; j < 100 ; j++) {
MPI Fi l e wr i te ( . . . ) ;

}
MPI Fi l e c l o s e ( . . . ) ;

}

A trace of executing this program results in a compressed trace file consisting of RSD1:{100,

MPI File write} and PRSD1: {10, MPI File open, RSD1, MPI File close}. RSD1 captures the
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inner-loop of MPI File write events over 100 iterations. PRSD1 denotes the outer loop for

10 iterations with MPI File open/close events and the inner loop as RSD1. Calling contexts of

events (signatures of stack back-traces) allow the distinction between different calling sequences

in applications. Inter-node compression is performed over a radix tree to unify event parameters

for calls. The output trace file is a single file of nearly constant size with sufficient information

to capture all tasks.

Parameters of I/O events are captured as elastic data element representations in ScalaTrace

V2 [22], which represents trace data as a list of < valuevector, ranklist > pairs subject to

compression.

ScalaTrace records delta times of computation durations between adjacent trace events

instead of recording absolute timestamps [15, 12, 23, 16]. Optionally, delta time capturing the

duration of an event is recorded as well. Delta time is concisely represented as statistical data

of maximum, minimum, average and variance of delta times and, to provide more detail, also as

histograms. During event replay, randomly picked histogram times are emulated to offset native

execution of MPI events with their parameters. The timing of replays thus closely resembles

that of the original application.

2.2 ScalaExtrap [21]

ScalaExtrap exploits a set of algorithms and techniques to extrapolate full communication

traces and execution times of an application at larger scale. Since topology is the basis of com-

munication trace extrapolation, ScalaExtrap focuses on identifying the communication pattern

of mesh/stencil patterns by calculating the dimension and corner node of the communication

stencil. In order to extrapolate a communication parameter, ScalaExtrap constructs a number

of linear equations to indicate how the topology information is related to the parameter by

employing Gaussian Elimination to solve the equations.

ScalaTrace preserves the delta time between two events and records the time as multi-bin

histograms. Such histograms contain the overall average, minimum, and maximum delta time.

ScalaExtrap also extrapolates the timing information of the application via curve fitting to

capture variation trends of delta times with respect to the number of nodes as t = f(n), where

t is the delta execution time and n is the total number of nodes. ScalaExtrap utilizes four

statistical models based on curve fitting for each extrapolation:

1. Constant: This method captures constant time t = f(n) = c, and d1 = std.dev./average

is used for identification.

2. Linear: This method captures linearly increasing/decreasing trends t = f(n) = an + b.

For curve classification, 1) d2 =
√
residual/average, where average refers to the average
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value of the estimated running times, and 2) a threshold slope sm = 0.2 such that ∀a < sm

t = f(n) = b, are used.

3. Inverse Proportional: This method captures inverse-proportional trends t = f(n) = k/n.

To capture the fitting curve, ScalaExtrap calculates the standard deviation of ki = ti×ni

and then divides by the average value of ki, where d3 = std.dev./average is used for

identification.

4. Inverse Proportional+Constant: It captures the time consisting of an inverse proportional

phase and a constant phase t = f(n) = k/n + c and uses d4 =
√
residual/average for

identification.

2.3 CODES [9, 10]

The Co-design of Exascale Storage System (CODES) framework is designed for evaluating ex-

ascale storage system design points. The CODES framework explores the Rensselaer Optimistic

Simulation System (ROSS), which is a parallel discrete-event simulation framework allowing

simulations to be run in parallel [26, 24, 1]. Using CODES and ROSS, the ALCF computing

environment with the PVFS storage system and the I/O subsystem of the Intrepid IBM Blue

Gene/P (BG/P) system of the ALCF can be modeled.

CODES models the 1) network behavior, 2) hardware components and 3) software protocols

of the ALCF computing environment. The CODES storage system simulator supports the

necessary protocol to handle application-level file open, close, read and write using ALCF

hardware and software models.

The CODES simulator also includes a burst buffer tier to minimize the time spent on I/O.

The main idea of the burst buffer includes: 1) Reserve space in the burst buffer for application

data. 2) Receive the application data and deposit this data into the burst buffer. 3) Once data

is buffered, the application will be notified of completion, so that software may then transfer

the buffered data to the file system.
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Chapter 3

Design And Implementation

I/O analysis is a challenge to multi-layer I/O stacks and multiple I/O patterns in the program.

In this section, we introduce (a) capabilities for trace compression, (b) analysis of the trace and

extrapolation into target sizes of nodes, (c) replay capabilities on elastic data representations

of MPI-IO, POSIX-compliant and UNIX-style I/O at the library level ultimately resulting in

operating system (OS) I/O system calls (syscalls). In contrast to MPI communication tracing

and past work on extrapolation, we propose a number of novel tracing techniques necessitated

by the unique characteristices of parallel I/O.

We design the ScalaIOTrace, ScalaIOExtrap and ScalaIOReplay tools suitable for single

program multiple data (SPMD) programs. Each I/O call is regarded as an event, and sequences

of such events are represented as a PRSD using the techniques of ScalaTrace, ScalaExtrap and

ScalaReplay. Hence, this work focuses on the parameter level of I/O events.

3.1 ScalaIOTrace

Lossless tracing is imperative for accurate replay. We record the delta time between events

and I/O calls with all parameters, except for the actual data that is read/written to a file

system. Applications may interleave MPI-IO (for parallel I/O) with I/O syscalls, depending

on the software layer. Our objective is to trace and compress I/O at all levels and preserve

event ordering. Yet, different interpositioning techniques are required per level. MPI-IO is

intercepted at the MPI profiling layer (PMPI). PMPI wrappers trace all parameters of MPI-

IO calls, but some require domain-specific compression detailed later. POSIX and UNIX/C

library I/O at a lower level is captured via GNU link time entry interpositioning with domain-

specific parameter compression (using a ” wrap ” syntax) resembling that of PMPI. Inside

wrappers, parameters are collected and compressed before the actual POSIX I/O call (” real -

”) is invoked.
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3.1.1 Elastic strings

ScalaIOTrace introduces a novel domain-specific compression technique for string elasticity,

which is motivated by the filenames used in the three I/O patterns mentioned in Section 1.

After inter-compression, filenames generated in all the nodes need to be compressed into one

single string for constant trace size representation. For patterns A (Serial I/O) and C (Parallel

I/O, shared-file) of a single file, only one filename will be generated, while pattern B (Parallel

I/O with one file per process,N-to-N) requires N filenames. We focus on pattern B because

patterns A and C are trivial in terms of filenames.

In pattern B, filenames are normally distinguished by rank numbers. Instead of just con-

ventional string recording, filenames are decomposed during inter-node compression to separate

rank-specific from rank-agnostic substrings. For example, ”rank 10” and ”rank 11” may be file-

names on ranks 10 and 11, respectively. We establish three preconditions for string compression:

(a) Non-numeric substrings have to match. (b) The number of numeric substrings is the same.

(c) Numeric substrings start at the same relative index. We strictly enforce these preconditions

by extracting the numeric part and recording its relative index. There maybe multiple numbers

in one filename. We denote identical numbers once and compress the rank-specific numbers

as a RSD pattern. Consider the generated filename ”/dir0/file < rank > ” corresponding

to tracing and compressing results shown in Figure 3.1. If the rank-specific part is an arith-

Figure 3.1: Tracing and RSD merge of filename

metic progression, which is most common in HPC programs, we compress it as a RSD pattern

[start stride size], i.e, /dir0/file [0 1 N ] start=0, stride=1, and size=N.

3.1.2 Elastic data element representation

Based on prior work of data element representation [22], we utilize compression on the relation

between data elements. In collective I/O events, tracing and compression data parameters such
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as OFFSET and COUNT are very important. For example, in parallel collective I/O, different

ranks have a different OFFSET , so they cannot be merged into a single form if traces shall be

lossless nor can they be multiple items if traces shall scale.

We propose another level of compression beyond prior work. During inter-compression, we

compare the differences between adjacent ranks. If they are an arithmetic progression, we merge

them as RSD pattern < start stride size >; otherwise, each rank generates one offset (recorded

in preorder traversal of a binary tree). Example: The offset of a collective I/O call running on

4 nodes is calculated as rank ∗ c, where c is a constant. After inter-node compression, we

record it as: [−1 0 c 4]. If the offset cannot be merged into a RSD pattern, it is recorded as:

[−2 offset0 offset1 offset3 offset2]. -1 is used to indicate a RSD pattern and -2 to indicate

a regular item.

To the best of our knowledge, most collective I/O calls have offsets with an arithmetic

progression, so this approach can best provide scalability and also facilitate extrapolation. Due

to intra-node compression, there are chances that each rank may generate multiple offsets (see

extrapolation section).

3.1.3 Elastic handles

MPI file handles for file objects and the MPI Datatype for a derived data type are opaque

pointers maintained by MPI on a per-task basis. They are meaningless for extrapolation and

replay. Instead of storing the handle, it is encoded as an integer index and subsequently decoded

during replay, where it is associated with the pointer obtained by issuing the respective call.

To make it identical, commonly used MPI datatypes such as MPI INT are also encoded as

an integer index and will be decoded as the corresponding type during replay. We restrict the

commonly used MPI datatype buffer size to 1000. For newly generated MPI datatypes, append

their value to the buffer after index 1000.

There are other opaque pointers, such as request and status handles, which are treated in

the same manner as indices into type specific vectors, i.e., their pointers/values are populated

dynamically during replay.

3.2 ScalaIOExtrap

In order to meet the objective of rapidly obtaining the I/O behavior of parallel applications at

arbitrary scale without actual execution, we developed ScalaIOExtrap. We exploit different

methods for different types of parameters based on their characters, e.g., for string-based pa-

rameters such as filenames and data-based parameters such as offsets. ScalaTrace is a looseless

and scalable tracing tool. The challenge of ScalaIOExtrap is how to maintain the properties
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of ScalaTrace. We need to extrapolate all processors with exact parameters. ScalaTrace will

generate an identical pattern in a trace for most SPMD programs regardless of the number of

ranks. For extrapolation, we utilize four trace files of smaller size as input, assuming that they

have the same number of events.

3.2.1 High level extrapolation

Since we assume the patterns of trace files generated from a SPMD program to be identical

irrespective of the number processors it runs on, we maintain the event numbers and event

names. For example, if the n0th event is MPI File open for input trace files, then we also

generate an MPI File open as the n0th event for the target trace file. ScalaTrace records rank

lists at the event level. We exploit Gaussian Elimination introduced in our prior work [21] to

extrapolate these ranklists for mesh/stencil patterns.

Another aspect to be considered, which is unique to ScalaTrace, is loop iteration. For scal-

ablility, ScalaTrace uses RSDs during intra-node-compression, to generate a loop number record-

ing the loop iteration times of each event. For weak scaling (where the workload assigned to

each processor stays constant as number of processor increases) extrapolation is easy, e.g, each

rank reads N bytes no matter how many ranks are running, and the loop iterations will not

change regardless of rank size. However, under strong scaling (where the total workload is fixed,

i.e., workload assign to each processor decreases as number of processor increases) and also for

tracing the lower level POSIX-IO for collective MPI-IO calls [3], loop iterations will change. In

most cases, loop iterations will be inverse-proportional to the size of ranks. We construct a set

of equations based on the number of ranks and loop iterations to determine the factors and

calculate the loop iterations for a target number of ranks.

3.2.2 Elastic string extrapolation

Extrapolation for strings, especially filenames, is important in ScalaIOExtrap. Filenames plays

major role in distinguishing different I/O patterns (see section 1). For pattern A (Serial I/O)

and C (Parallel I/O, shared-file), merged filenames are identical regardless of the number of

ranks. Hence, we also generate the same filenames as for trace files of smaller number of ranks.

For pattern B (Parallel I/O with one file per process, N-to-N), filenames are traced and

compressed as an RSD [start stride size] pattern. We assume the variables in filenames have a

linear relationship to the rank numbers, which is common for the N-to-N pattern and even the N-

to-N/n pattern. Example: a) N-to-N pattern: If the filename in the program is ”/dir0/file <

rank > ”, the variable is < rank > and it has a linear relationship to rank numbers, variable =

1 × rank + 0. b) N-to-N/n pattern: This means all the ranks are gathered as groups, and

each root of the group acts the ”spokesman” performing I/O. The variables also have a linear
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relationship to rank numbers. Example: A program with four ranks acting as a group has a

filename ”/dir0/file < rank/4 > ”, i.e, the variable also has a linear relationship to the

ranks. With this assumption, we determine start, stride, size at RSD pattern have linear

relationships to rank size. In most cases, the start and stride does not change, only size

changes with rank size. We simply generate the equations over the reference of traces and solve

them using Gaussian Elimination.

Table 3.1: Offset parameters for Rank0-Rank5

Rank size i=0 i=1 i=2 size i=0 i=1 i=2
Rank0 0 960 1920 0 960 1920
Rank1 240 1200 2160 160 1120 2080
Rank2 4 480 1440 2400 6 320 1280 2240
Rank3 720 1680 2640 480 1440 2400
Rank4 - - - 640 1600 2560
Rank5 - - - 800 1769 2720

3.2.3 Elastic data element extrapolation

Elastic data such as offset and count are the most challenging to extrapolate since (a) we

do not know a mathematical model and (b) the two dimensions of matrix data need to be

extrapolated, and (c) we want to extrapolate exact data for all ranks at target size.

We first motivate the two dimensions of the matrix data. Since ScalaTrace can perfectly

compress trace data both intra-node and inter-node, the following strong scaling code will

generate the offset parameter in Table 3.1 after compression.

MPI Offset o f f s e t = rank *(960/ r a n k s i z e ) ;

MPI Fi le seek ( . . . o f f s e t . . . ) ;

For the column dimension, the values of each column in Table 3.1 denote offsets for different

ranks for the same loop iteration while values per row are offsets of the same rank number

for different loop iterations. If we extrapolated to 8 ranks, we cannot just extrapolate in one

dimension: (a) If we only extrapolated in column dimension, we would not know the value for

different loop iterations. (b) If we only extrapolated in row dimension, we would not have data

for Rank 6 and Rank 7. We create a mathematical model for column extrapolation using the

four models introduced in Section 2 plus a new model:

5) offset = ((rank+a)%RankSize)×b, where a and b are constants, rank is the rank number

and RankSize is the number of ranks.
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For the data extrapolation, we do not use the smallest standard deviation to decide which

model is the correct one, because we want to get exact results, not an approximate one. So as

long as the standard deviation is not zero, we assume that we cannot extrapolate. We create

the most common models. We also provide an interface for users to add their own models for

extrapolation.

We extrapolate the column dimension considering both weak scaling and strong scaling:

Weak scaling is simple since the values will be same for the different rank sizes. For strong

scaling, we also use the k/n+b model to predict the results for a target rank size. After obtaining

the first parameters from column extrapolation, we combine them with the equation from row

extrapolation and then calculate the remaining parameters.

3.2.4 Handlers and time extrapolation

As mentioned in Section 3.1, handlers are coded into integers. We just use the same technique

as for extrapolating data-based parameters. Normally, handler extrapolation is simple. E.g., for

a file handle, in either SIO, N-to-N or N-to-1 I/O pattern, all ranks perform same file open

operation regardless of rank size, which remains unchanged during extrapolation. For strong

scaling, the open operation depends on rank size. We can also handle this with the techniques

mentioned above. We reuse time extrapolation of our prior work by mathematical modeling.

3.3 ScalaIOReplay

ScalaIOReplay provides time-accurate as well as fast-forward replay options unique to I/O

requirements. A parallel trace replay of all events across task ranks preserves per-rank ordering

of events. Hence, replays preserve the I/O semantics of the original application and may also

serve as a means to verify the correctness of the tracing framework. We focus on the unique

aspects for I/O replay in the following.

3.3.1 Elastic string replay

Let us use filenames as an example for elastic string replay (other string replays are straightfor-

ward, e.g., open mode in fopen). The filename of the SIO and N-to-1 I/O patterns can simply be

extracted from the traces. Let us focus on how to replay filenames for the N-to-N I/O pattern.

Collections of strings and numeric representations are replayed by decomposition and recom-

position to generate parameters to issue I/O calls. The compressed filename ”/dir0/file [0 1 N ]”

is replayed as follows: (a) Extract numerical substrings (here: [0 1 N ]). (b) Decide the start,

stride and size in RSD numerical substrings (here: start = 0, stride = 1, size = N). (c) Use

the equation start + stride ∗ rank numer to obtain the corresponding number (here: rank one
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will get 0 + 1 × 1 = 1). (d) Recompose filename (here: rank one recompose its filename as

/dir0/file 1).

3.3.2 Elastic file handle replay

File handles are represented as integer indices after encoding. We generate a map container

during handle replay using the index as a key corresponding to the filename and a pointer

handle. Upon encountering events with handles, a new tuple < index, (filename, filehandle) >

is generated per actual file handle. The actual handle can thus be uniquely identified and

associated with respective replayed events. When a handle is deallocated (at a file close), the

tuple is removed from the map container.

3.3.3 Elastic datatype replay

MPI Datatype parameters are expanded during replay as follows: (a) Generate a buffer and

reserve entries for default MPI datatypes according to the original encoding. (b) Relegate the

datatype to the buffer. (c) Dereference the item at the respective encoded offset in the buffer.

When there is a new MPI Datatype generated, we also push it into the buffer to the position

where it was recorded, so that it can be used later by other calls.

3.3.4 Time-accurate and semantically correct replay

Event replays may be motivated by different goals with respect to timing. (1) The objective is to

preserve I/O timings of the original application. This might be motivated by performing root-

cause analysis of I/O problems. (2) Another objective is to determine how fast the application

might run on another HPC system and/or filesystem. This could be motivated by testing

communication events on different network interconnects and/or different file systems, I/O

nodes and I/O server compositions. In both cases, such analysis and execution becomes feasible

by replaying from the actual trace file, i.e., without actually porting the application to the

new target, only the replay engine needs to be ported once for any set of application traces.

Depending on replay objectives, ScalaIOReplay lets users choose one of these modes using

environment variables.

3.3.5 Bridge from ScalaIOTrace to CODES

Replaying the extrapolated trace file in a simulation environment allows us to experiment

with replaying traces on future extreme-scale systems. We integrate our approach into the

CODES exascale storage system simulation toolkit to enable extrapolated traces to be used in

a generic replay environment. To enable CODES to read the ScalaIOTrace file format, we built
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a bridge (shown in Fig. 3.2) between ScalaIOReplay and CODES to convert the ScalaTrace data

structure to the CODES data structure. CODES is a POSIX-IO-based simulator. To preserve

Figure 3.2: Bridge between ScalaIOReplay and CODES

consistency, we ignore the higher level in the I/O stack [19] and trace lower-level POSIX-IO only

during MPI-IO calls with ScalaIOTrace (Multi-level tracing would otherwise result in nested

events, which are not supported). Let us describe the concepts of using the bridge: (1) The

unique file id for the CODES workload API is an integer, but for ScalaIOReplay, the filename

is an unique string (see ScalaIOReplay). We exploit the Jenkins lookup3 hash to generate a

hash integer from the string. (2) ScalaIOTrace does not record the offset of files if there is

no offset parameter in the calls, but the CODES workload API requires the offset for each

I/O call. We record the offset during open in ScalaIOTrace, and update the offset for each file

operation to ensure that CODES gets the correct offsets. (3) ScalaTrace is the backbone of

ScalaIOTrace. So ScalaIOTrace traces both I/O events and MPI communication events, while

CODES currently only needs I/O events. MPI communication events are processed as follows:

generate a synchronization event for each MPI Barrier, and generate a corresponding delay for

other communication events.

The bridge is not only used for connecting ScalaIOTrace traces with CODES, but also for

ScalaIOExtrap traces. Since any trace for CODES needs to contain only lower-level POSIX-IO

information regardless of whether the application uses POSIX-IO or MPI-IO. Bridge process-

ing is trivial for applications with only POSIX-IO and N-to-N (MPI-IO) patterns, because the

lower-level POSIX-IO behavior is identical to the upper level (e.g., each POSIX read or MPI

N-to-N read generates a POSIX read). We focus on how to process MPI collective I/O. Using

collective buffering optimizations, MPI-IO gathers all I/O requests and lets only the aggregator

issue I/O at the POSIX level, which we called ”spokesperson”/proxy in Section 1. However, the

aggregator may issue large volumes, which presents a challenge. Consider a collective MPI-IO

call MPI File write() with count=4096, which means each processor is writing 4096 bytes data
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to a single file. After applying the collective buffering optimization, the POSIX-IO information

is aggregated as a write of size 4096*16, 4096*32, 4096*48, 4096*64 bytes for RS=16, 32, 48

and 64. Intuitively, we should extrapolate to a single write with count=4096*1024 for RS=1024.

However, this is not the case. Instead, 16 different aggregators write the 4096*1024 bytes in

parallel. To solve this problem, we define a max-blocksize for the bridge. This max-blocksize

depends on the configuration of MPI. e.g., 262,144 bytes of MPI on ALCF by default. When-

ever the I/O volume exceeds max-blocksize, we separate a single I/O call into multiple I/O

operations.
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Chapter 4

Experimental Framework

As mentioned in Section 1, to verify the correctness of our approach, we deployed our framework

on top of: (1) ARC (x86 64): A Root Cluster for Research into Scalable Computer Systems

at North Carolina State University with 1728 cores on 108 compute nodes. It supports the

Network File System (NFS), Parallel Virtual File System (PVFS2) and a local filesystem. (2)

ALCF (Blue Gene/Q): The Argonne Leadership Computing Facility, a large HPC center that

provides a large, parallel storage system shared between multiple HPC resources [9]. It supports

the: IBM General Parallel File System (GPFS). (3) CODES (Simulator): Co-design of Exascale

Storage system [9, 10]. It supports the Parallel Virtual File System (PVFS/BGP) [9]. We

evaluate the correctness of our approach for the three aspects shown in Figure 4.2, Figure 4.1

and Figure 4.3:

C1 We compare the extrapolated trace file with the trace file gathered from ScalaTrace, which

is executed at the extrapolated target rank size. Ideally, the two traces file should be

exactly same. However, the delta execution time we extrapolated will have some variance.

So we ignore the execution time and compare the structure of the two trace files.

C2 We replay the extrapolated trace file and compare the execution time with the original

program running on same number of processors. The two execution times should be

similar.

C3 We use Darshan tracing [3, 2] to gather the total I/O size of the original program and the

corresponding replayed program. We compare the I/O size difference by eliminating the

I/O overhead involved by the replay engine.

C4 We feed both the extrapolated traces and traces captured from ScalaIOTrace with an

identical number of ranks into the CODES simulator and compare the total number of

opens, reads and writes in experiments.
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We chose the following I/O benchmarks and mini-applications with I/O:

IO-sample (Argonne National Laboratory) features a number of benchmarks including

POSIX-IO (an N-to-N pattern), MPI-IO (shared N-to-1), and MPI-IO (N-to-N) with calls of

derived I/O datatypes and a variety of I/O calls.

Interleaved Or Random (IOR) (Lawrence Livermore National Laboratory) is used for

performance testing of parallel file systems for high performance clusters. IOR provides the

interface for users to verify the overall I/O size, individual transfer size, file access mode (single

shared file, one file per processor), and whether the data is accessed using a chunk pattern or

an interleaved pattern.

Based on the characteristics of the platforms, we verify our results differently in different

cluster as explained next.

4.1 ARC

We first conduct experiments on a local cluster of 108 nodes, where a node has two AMD

Opteron 6128 processors with 8 cores each (16 per node) and an InfiniBand interconnect between

nodes. We varied the number of target processors during I/O extrapolation and replayed with

a corresponding number of nodes. An identical configuration is important since I/O bandwidth

and contention depends on the number of tasks per node and the total number of nodes. The

filesystem type also impacts I/O behavior, as our experiments cover a local filesystem, a shared

network filesystem (NFS), and a Parallel Virtual File System (PVFS2). Figure 4.1 depicts

the set of experiments conducted on local, NFS and PVFS2 filesystems with the same I/O

application and the same input parameters (e.g., I/O Size, I/O pattern).

Figure 4.1: Extrapolation Verification on ARC
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4.2 ALCF

We also conduct experiments on ALCF (Cetus) with the configuration shown in TABLE 4.1.

The Darshan tracing tool, which records statistics such as the number of files opened, time spent

Table 4.1: Configuration of ALCF (Cetus)

Architecture: IBM BG/Q Cabinets: 4
Processor: 16 1600 MHz PowerPC A2 cores Nodes: 4096

Total cores: 65,536 cores Cores/node: 16
Memory/node: 16 GB RAM per node Mmeory/core: 1 GB

in performing I/O, and the amount of data accessed by an application, is natively supported

on ALCF (Cetus). We also analyze Darshan logs by using the darshan-job-summary.pl utility.

We show the verification experiments for ALCF (Cetus) in Fig. 4.2.

Figure 4.2: Extrapolation Verification on ALCF

4.3 CODES

ROSS [25] offers two methods of simulation at once: the optimistic and the conservative mode.

The optimistic mode is a fast mode, where ”reverse function handlers” in simulator execute

events out of order without violating any timing dependency. The conservative mode does not

need ”reverse function handlers” and is implemented by CODES. We conduct simulations on
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a x86 64 machine, execute events sequentially, and capture statistics. By using the bridge from

ScalaIOTrace to CODES, we can feed ScalaTrace traces into the CODES simulator to support

the verification method shown in Figure 4.3.

Figure 4.3: Extrapolation Verification on CODES
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Chapter 5

Results

We compare the traces, total I/O volume, statistics and execution time (e.g., number of total

open, read, write, close operations) of our purposed approach. It is straightforward to compare

the first three results, since no matter how the environment changes, they are fixed for identical

input parameters and number of ranks. However, execution time comparison is complicated

due to significant time variations even in the same environment and with the same I/O appli-

cation due to contention. A slight difference between the extrapolated trace replay time and

the observed execution time is deemed to exit. The difference in execution time is calculated as

abs(Textrapolated − Tobserved)/Tobserved, where Textrapolated is the replay time of the extrapolated

traces and Tobserved is the execution time of the I/O application with the same number of ranks.

In order to minimize contention, we only run one experiment at a time and collect execution

time by averaging three captured runs.

5.1 Results on ARC

In order to verify the correctness as well as the accuracy of ScalaIOExtrap, we conducted our

experiments on various filesystems. As shown in Fig. 4.1, we compare the traces and execution

times on ARC with the filesystems: (1) Local Filesystem using local data storage devices;

(2) Network Filesystem (NFS) a shared filesystem that allows a user on a client computer

to access files over a network; and (3) Parallel Virtual File System (PVFS2) a file system

that distributes its data over multiple storage ndoes.

5.1.1 IO-sample

The IO-sample benchmark features both MPI-IO and POSIX-IO, as well as the N-to-1 and

N-to-N patterns. Our replay engine can reconstruct the original benchmark irrespective of I/O
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patterns and supported I/O libraries. For a set of input parameters as POSIX-IO (I/O size:

8KB per processor; iterations: 100), MPI-IO (iterations: 3; I/O size : 1M, 2M and 3M bytes)

we gathered traces for 8, 16, 24 and 32 ranks, which comprises the set of small traces. From

the small traces, we extrapolate and generate traces for 128, 192, 256 and 320 ranks. We use

”diff − wi” to compare the ScalaIOTrace and extrapolated traces with the same number of

ranks. Excepts for the time extrapolations, they match perfectly. Timings (y-axis) are shown

for different number of ranks (x-axis) in Figure 5.1. For the same I/O size and the same I/O
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Figure 5.1: Results of IO-sample benchmark in Local, NFS and PVFS2

pattern, the local filesystem takes the shortest time because it is faster for nodes to access their

local memory. PVFS2 takes the longest time as explained later for IOR results. The replay time

fluctuates with application execution time. Results show that time inaccuracy is within 5%.

5.1.2 IOR

IOR is a more complex I/O benchmark. We capture results for different inputs classified as

shared-file (chunk pattern), shared-file (interleaved pattern) and file-per-processor. Both shared-

file (chunk pattern) and shared-file (interleaved pattern) follow a N-to-1 pattern. They differ

in how they order I/O. Consider four processors, A, B, C and D, each of them performing

four I/O operations. Shared-file (chunk pattern) performs I/O as AAAABBBBCCCCDDDD,
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while shared-file (interleaved pattern) performs I/O as ABCDABCDABCDABCD. We select

two patterns since they differ in whether they use the collective buffering or not. MPI-IO allows

users to access non-contiguous data with a single I/O function call [18]. The interleaved pattern

contains many small, distinct I/O requests that are densely interleaved, so that MPI-IO uses

collective buffering to transfer the data to the file system from an aggregator for larger I/O

chunks. E.g., if A is the aggregator, then B, C and D will send their data to A, and A will write

it as one big chunk. The chunk pattern, in contrast, has a big gap between the regions of the

file that is being written, so MPI-IO has no choice but to issue them as individual operations

to the file system.

We select the I/O size to be TransferSize=128K, and each processor accesses 2M data. As

in the IO-sample benchmark, we use the ”diff” utility to compare the traces gathered from

ScalaIOExtrap and ScalaIOTrace for the same number of ranks. They matched perfectly. We

depict the execution times of IOR (shared-file) in Figure 5.2 and Figure 5.3.
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Figure 5.2: Results of IOR (chunk pattern)

Similar to IO-sample, the execution times for the local file system are the shortest among

the three file systems. Chunk and interleaved patterns do not differ for local storage, because

nodes access private resources.

For the NFS file system, collective buffering of MPI-IO makes the interleaved pattern faster

than the chunk pattern because NFS is tuned for few, large operations instead of many small
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Figure 5.3: Results of IOR (interleaved pattern)

ones.

However, this is not the case for PVFS2. Here, the interleaved pattern takes more time than

the chunk pattern, because each file stored on PVFS2 is broken into smaller parts distributed

across servers. In most other parallel I/O cases, PVFS2 is efficient because it leverages all

available resources evenly and allows the load to be distributed. However, if a single process of

an application accesses the file system serially, distributing chunks across all servers increases

overhead without gaining any benefit from parallelism [17]. PVFS2 imposes overhead for the

interleaved pattern because files are accessed serially, while the chunk pattern becomes more

efficient because of its parallel accesses. That is why the chunk pattern outperforms the inter-

leaved pattern for PVFS2, i.e., PVFS2 performs better than NFS for the chunk pattern but

worse than NFS for the interleaved pattern. It also explains the IO-sample results mentioned

before.

We also obtain timing results per processor for the N-to-N pattern (see Figure 5.4). When

comparing the results shown in Figure 5.2, Figure 5.3 and Figure 5.4, PVFS2 performs best in

terms of per processor time because N-to-N I/O has the highest degree of parallelism. Although

I/O patterns and file systems are varied and even though different extrapolation techniques are

needed for different I/O patterns, our extrapolated results match the actual application. By

avoiding contention as much as possible, we obtain time accuracy within 5%, which means our

approach reflects the behavior of applications quite well.
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Figure 5.4: Results of IOR file-per-processor

5.2 Results on ALCF

Besides comparing traces and execution time, we also compare the total I/O size on the ALCF

system (see Figure 4.2) using the default installed Darshan tracing tool. By parsing the Darshan

log, we obtain the total I/O size of all reads and writes over all processors. ScalaIOReplay issues

its own I/O read traces into memory, which introduces overhead proportional to its size. We

capture the extrapolated I/O size as: Sextrapolated − (Strace × RS) where Sextrapolated is the

replayed I/O size captured by Darshan, Strace is the size of trace read by ScalaIORelay, and

RS is the number of ranks.

To emphasize differences for large numbers of ranks, we separately report IO-sample results

for POSIX-IO (N-to-N pattern) and MPI-IO (N-to-1 pattern). We select the input parameters

for POSIX-IO (I/O size: 4KB per processor; iteration times: 100), MPI-IO (iteration times: 2;

I/O size: 64KB and 128KB) and gather traces from 16, 32, 48 and 64 ranks as the small trace

set for extrapolation. Execution time results depicted in Figure 5.5 (on a logarithmic scale on

the y-axis) indicate an average time difference of no more than 5%.

We also gather IOR execution time results for shared-file (interleaved), shared-file (chunk)

and file-per-processor patterns. We set the TransferSize=8K and let each processor issue 64KB

of I/O. The execution time results of IOR are shown in Figure 5.6. ALCF supports the General

Parallel File System (GPFS), which is a high-performance shared-disk clustered file system.

GPFS performs better for large I/O operations as seen in Figure 5.6 (again with a logarithmic
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Figure 5.5: Results of IO-sample on ALCF

y-axis). For the same I/O size and with MPI-IO collective buffering (see Section 5.1), the

shared-file (interleaved) pattern is significantly faster than the shared-file (chunk) pattern, while

file-per-processor takes the longest time. For both the IO-sample and IOR bechmarks, we also

use the ”diff” utility to compare corresponding traces (same number of ranks and same input

parameters) captured from ScalaIOTrace and ScalaIOExtrap. Except for the recorded time, they

match perfectly. The execution time results indicate that the replay time of the extrapolated

trace accurately reflects the execution time of the original application.

We assess how closely our ScalaIOExtrap matches the original I/O size using the verification

from Figure 4.2.

After eliminating the ScalaIOReplay overhead, results in Figure 5.7 (Observed indicates

the I/O size of application while Extrapolated indicates the I/O size of replaying extrapolated

trace) indicate that the total I/O size gathered from ScalaIOReplay are exactly same as the

I/O size gathered from an application run.

5.3 Results for CODES

CODES is a virtual HPC simulation system and gives us statistics of the total number of I/O

calls per operation (open, read, write, close and synchronization). We already compared the

extrapolated results at the structural level. We now compare the results at the operational level
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Figure 5.6: Results of IOR on ALCF

as shown in Figure 4.3. Our goal is to verify the correctness of our approach, i.e., although we

can extrapolate traces to extremely large numbers of ranks and simulate it through CODES,

we extrapolate to more moderate numbers of ranks to be able to compare to traces gathered on

actual HPC systems. We distinguish the I/O patterns POSIX-IO (N-to-N), MPI collective I/O

(N-to-1, SIO, N-to-N/n), and MPI file-per-processor (N-to-N). We capture POSIX-IO results

for IO-sample (see Figure 5.8 with a logarithmic y-axis). We compare the total number of opens,

reads, writes and closes over all processors between the application trace (Observed) and ex-

trapolated trace (Extrapolated). Let N be the number of operations for Observed (application)

and Extrapolated (extrapolated trace replay), e.g., Observed Nreads is the total number of

reads of the application. Observed and extrapolated results are identical for POSIX-IO.

Collective MPI-IO contains N-to-1, SIO, and N-to-N/n patterns. (1) For MPI-IO, the N-to-1

pattern reduces processors to I/O in a single file. (2) For POSIX-IO, if the total I/O workload

is small enough for a processor, one processor acts as the aggregator, which becomes Serial I/O

(SIO). (3) For POSIX-IO, if the total I/O workload is large, N/n aggregators are needed, which

is the N-to-N/n pattern. By setting the max-blocksize to 262144 bytes, we obtain the collective

MPI-IO results depicted in Figure 5.9 (logarithmic y-axis). The extrapolated number of I/O

operations matches the number of observed I/O operations.

We compare the results with and without max-blocksize to further illustrate the impact

of this parameter. Figure 5.10 depicts the difference for extrapolations to 512, 1024, 2048 and
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Figure 5.7: I/O size of IO-sample, IOR shared-file-interleaved (SFI), IOR shared-file-chunk
(SFC) and IOR file-per-processor (FPP) on ALCF

4096 ranks. The max-blocksize does not effect the number of open and close calls, so we only

compare the number of reads and writes, where R is the observed number of reads; Rw is the

extrapolated number of reads with max-blocksize; Rw/o is the extrapolated number of reads

without max-blocksize; W is the observed number of writes; Ww is the extrapolated number

of writes with max-blocksize; and Ww/o is the extrapolated number of writes without max-

blocksize; Results indicate that the difference increases as the RS increases. The max-blocksize

parameter does not effect the total I/O workload in size, but it adversely affects the performance

of the N-to-1 and N-to-N/n patterns.

We next capture IOR results in file-per-processor mode (see Figure 5.11, logarithmic y-axis).

Results indicate that under the file-per-processor (N-to-N) mode, our approach extrapolates

traces correctly.
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Figure 5.8: I/O operations of IO-sample (POSIX-IO)
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Figure 5.9: I/O operations of IO-sample (MPI collective I/O)
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Figure 5.10: I/O operations of with and without max-blocksize (IO-sample, MPI collective
I/O)
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Figure 5.11: I/O operations of IOR (file-per-processor)
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Chapter 6

Related work

As I/O is playing an increasingly critical role in high performance computer (HPC) systems,

more and more I/O performance analysis techniques have been proposed.

Andrew et al. [8] proposed an analysis framework based on server-side tracing data. By uti-

lizing the trace data collected on large-scale network file system, they investigated the following

aspects: (1) changes in file access patterns, (2) properties of file I/O and file sharing, and (3) the

relationship between file type and client access patterns. They aimed at optimizing workload

management. Yang et al. [11] devised I/O signature identifiers, an approach to characterize

per-application I/O behavior on the server-side in forms of the I/O volume read/written by the

applications, the frequency of the I/O operations, and throughput achieved on a file system.

They exploited a set of statistical techniques to extract the I/O signature by utilizing noisy,

zero-overhead server-side I/O throughput logs on leadership-class HPC systems. In contrast,

our work focuses on analysis of I/O behavior when executing on a large-scale HPC systems,

and our objective is to save time and resources.

Wright and Hammond [20] proposed a technique. In this work, they analyzed the write

bandwidth of MPI-IO as well as POSIX file system calls originating from MPI-IO at increasing

scale by utilizing the RIOT toolkit, which is able to capture and record I/O operations of

applications. Furthermore, they studied the read/write time and the time spent obtaining or

releasing per-file locks. Also, they analyzed how MPI-IO and low-level POSIX-IO perform

for different I/O benchmarks and different rank sizes. Compared to their work, we focus on

extrapolating I/O traces to arbitrary number of ranks instead of just analyzing trace data for

the existing small scale of ranks. Moreover, we are able to extrapolate accurate I/O size and

I/O operations at both the MPI-IO and POSIX-IO layers.

Eckert and Nutt [4, 5] studied the extrapolation of trace data of multiple threaded programs

on shared memory multiprocessors. They collected a source trace by observing the execution of

a program on a particular architecture. Given a program and data set, they adjust the source
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trace without reexecuting to produce a correct trace for a parametrically different execution

architecture. In this work, the authors focus on studying multi-threaded shared memory pro-

grams, as well as the correctness of extrapolated traces under the existence of non-determinism,

which is caused by moving the trace accross different architectures. In contrast, our work focus

on I/O traces and is based on deterministic application execution, i.e., we preserve the causal

orders both for ScalaIOTrace and ScalaIOExtrap.
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Chapter 7

Conclusion and future work

We presented the design and implementation of three tools: (1) ScalaIOTrace is a multi-

level I/O tracing approach, which supports both the MPI-IO and POSIX-IO interpositioning.

It utilizes singletons, vectors and RSDs in an elastic trace representation. Tracing results in a

single, lossless and order-preserving trace file.

(2) ScalaIOExtrap is an extrapolation tool. By analyzing a set of smaller traces, modeling

the relation between parameters and the number of ranks, it calculates parameters and generates

a single trace for any number of ranks. Experimental results demonstrate that structural trace

comparison, I/O size and the number of operations are retained perfect accuracy, and execution

time remains sufficiently accurate.

(3) ScalaIOReplay is a parsing and replay engine, which re-executes the events of ScalaIO-

Trace traces in the same order as original applications. With ScalaIOReplay, users can analyze

the application without the need to scale their source code.

Our results demonstrate that our approach is not only scalable in terms of ranks but also

works across different platforms, we can replay the extrapolated trace for large number of ranks

by collecting a set of traces from with small number of ranks. We preserve event ordering

and time accuracy in these large traces. With this technique, large-scale communication I/O

performance estimations can be obtained without modifying the source code of such applications

for these larger scales. We can conclude that our approach opens up new opportunities for I/O

performance analysis with good scalability and portability. And from the given experimental

results, we can conclude that I/O behavior of parallel applications can be analyzed from a

set of smaller traces and extrapolated to a trace of arbitrary number of ranks while retaining

correct communication patterns, I/O size, I/O operations and execution times for mesh-based

communication patterns.

The next step of our work will be extending ScalaIOExtrap to extrapolate non-identical trace

patterns and data-driven parameters such as offsets. Now we assume all four input traces have
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the same pattern (same numbers, and same names for corresponding event), however, there

maybe complex applications which generate different trace patterns for different number of

ranks. Also, we assume all the data-driven parameters and timing information meet the models

we already built, however, more models need to be considered. Our intent is to generally and

correctly extrapolate for more complex applications.
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