
Scalable Performance Analysis of ExaScale MPI Programs  

through Signature-Based Clustering Algorithms 

INTRODUCTION 

• As the size of problems to which HPC can be applied 

continues to increase, so does the processing demand. 

Countries are competing fiercely to build the world’s fastest 

supercomputer, similar to the Space Race in the mid-to-late 

20th century.  

• To efficiently employ such large and expensive systems, 

developers must study application behaviors by collecting 

detailed performance information with the help of 

performance tracing toolsets. 

• Tracing toolsets could severely affect the performance and 

scalability of the running application: 

• Scalability: Due to the large I/O ratio that must be computed 

for modern large-scale machines, collecting all detailed 

performance information may not be feasible from a 

scalability perspective 

• Performance: The tracing processes may compete with the 

application for resources, which can perturb the 

application’s behavior 

• The overarching objective of this project is to develop a 

scalable tracing toolset that can cluster processes with the 

same behaviors into groups quickly and with low overhead; 

then, instead of collecting performance information from all 

individuals, it can collect the information from just a set of 

representatives.  

• We applied our clustering algorithm on trace files created by 

ScalaTrace, an MPI tracing toolset that provides orders of 

magnitude smaller, if not near-constant size, communication 

traces regardless of the number of nodes, while preserving 

structural information. 

• ScalaTrace has two-stage trace compression: 

1. Intra-Compression: 

• Extended Regular Section Descriptors (RSDs) capture the 

loop structures of one or multiple communication events. 

Power-RSDs (PRSDs) recursively specify RSDs in nested 

loops. 

 

 

2. Inter-Compression 

• After each node has created its own compressed trace file 

and the program is completing, ScalaTrace performs an 

inter-node compression over a radix tree rooted in rank 0. 

During this reduction, internal nodes combine their traces 

with other task-level traces received from child nodes. 

 

 

Student: Amir Bahmani, PhD student,  
North Carolina State University 
 
 

Faculty Advisor: Dr. Frank Mueller, Professor,  
North Carolina State University 
 

A NOVEL CLUSTERING ALGORITHM 

• While intra-compression is fast and efficient, inter-compression 

is a costly operation that is O(n2 log P), where n is the number of 

MPI events and P is the number of processes. We proposed and 

applied a signature-based clustering algorithm to reduce the 

bottleneck  effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

• The proposed clustering algorithm called Call-Path, Parameter 

Clustering, has two levels: 

• Call-path Clustering (Main Clusters): A call-path signature 

was created based on the stack signature of MPI events. We 

used the stack signature to distinguish between events from 

different locations. The 64-bit call-path signature is the 

aggregated version of the stack signatures of different 

events. The first level of clustering distinguishes between 

processes with different execution structures. 

• Parameter Clustering (Sub-Clusters): A 64-bit parameter 

signature  was created based on details of the MPI event, 

such as its counts, source, destination, etc. After the 

algorithm clustered processes with different execution 

structures, with the help of parameter clustering, we were 

able to distinguish between processes with the same 

execution structure but different parameters. 

• Both signatures were created based on the result of intra-

compression at the node level. 

• The computational cost of the clustering algorithm is O(log P). 

• The algorithm focuses on creating the full trace file by the end of 

the second level of clustering. All similar processes are grouped 

together after call-path parameter clustering, so at the Trace 

Sampling stage, we can select any member of the sub-cluster as 

a representative. 

CONCLUSIONS  

• For ExaScale computing, it is appropriate to split the merge process and 

to have log P time complexity and low overhead at the clustering level. 

• Unlike CLARA [1] and CAPEK [2], our algorithm is based on exact 

matching, not on a random sampling process that may reduce accuracy 

[1] Kaufman, L., and Peter J. Rousseeuw. "Finding groups in data: an introduction to cluster analysis. 2005." 

[2] Gamblin, T., De Supinski, B. R., Schulz, M., Fowler, R., & Reed, D. A. "Clustering performance data efficiently 

at massive scales." Proceedings of the 24th ACM International Conference on Supercomputing. ACM, 2010. 

• Reduction: Representatives within each main cluster are 

merged; sub-clusters, such as A1 and A2, with different 

parameters are merged linearly on a local radix tree. 

• Inter-Compression: In ScalaTrace without clustering, all 

processes must follow this operation over a radix tree. In the 

clustering algorithm, however, instead of P, only a set of 

representatives from main clusters must follow the operation. 

ACKNOWLEDGEMENTS 
• This research was supported by the National Science Foundation,  award number 1217748. 

Overview of Proposed Clustering Algorithm 

0   1 2  P-1  

… 

0 

1 2 

THE EXPERIMENTAL RESULTS 

• To evaluate the accuracy and scalability of our algorithm, we 

created Reference Clustering which is the un-aggregated 

version of Call-path, Parameter Clustering. 

• We utilized ARC cluster computer. All machines were 2-way 

SMPs with AMD Opteron 6128 processors, 8 cores per socket. 

 

 

 

All NAS benchmarks except MG/CG: Class: any, # of processes: any valid number 

ǂ Prob. size: 100×100×1000,  # of processes: any valid number 

* For MG/CG: Class: any,  # of processes: 16 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

• (a) and (c): Over 96% accuracy on replaying trace files  

• (b) and (d): Low overhead for large number of processes (logarithmic scale) 

Benchmarks BT CG* EP FT IS LU SP MG* Sweep3Dǂ 

# of main clusters 1 1 1 1 3 9 1 2 9 

# of sub clusters 3 8 1 1 1 1 3 8 1 

(a) Replay Time – SP Class C  (Strong Scaling) (b)  Execution Time – SP  Class C 

(c) Replay Time – Sweep3D (Weak Scaling) (d)  Execution Time – Sweep3D 


