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ABSTRACT

As we approach the exascale era, power has become a pri-
mary bottleneck. The US Department of Energy has set a
power constraint of 20MW on each exascale machine. To be
able achieve one exaflop under this constraint, it is necessary
that we use power intelligently to maximize performance un-
der a power constraint.

Most production-level parallel applications that run on a
supercomputer are tightly-coupled parallel applications. A
näıve approach of enforcing a power constraint for a par-
allel job would be to divide the job’s power budget uni-
formly across all the processors. However, previous work
has shown that a power capped job suffers from performance
variation of otherwise identical processors leading to overall
sub-optimal performance. We propose a 2-level hierarchical
variation-aware approach of managing power at machine-
level. At the macro level, PPartition partitions a machine’s
power budget across jobs to assign a power budget to each
job running on the system such that the machine never ex-
ceeds its power budget. At the micro level, PTune makes
job-centric decisions by taking the performance variation
into account. For every moldable job, PTune determines
the optimal number of processors, the selection of proces-
sors and the distribution of the job’s power budget across
them, with the goal of maximizing the job’s performance
under its power budget.

Experiments show that, at the micro level, PTune achieves
a performance improvement of up to 29% compared to a
näıve approach. PTune does not lead to any performance
degradation, yet frees up almost 40% of the processors for
the same performance as that of the näıve approach under
a hard power bound. At the macro level, PPartition is able
to achieve a throughput improvement of 5-35% compared to
uniform power distribution.

1. INTRODUCTION
The supercomputing community is headed toward the

era of exascale computing, which is slated to begin around
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2020. Today’s fastest supercomputer, Tianhe-2, consumes
17.8MW to deliver 33.86PFlops [2]. If we were to build
an exascale machine with today’s technology it would con-
sume up to 350MW of power. A typical power plant gen-
erates 1GW of power, which is sufficient to power 700,000
homes [1]. The US DOE has set a power constraint of 20MW
per future exascale systems to maintain a feasible electrical
power demand. In order to get an exaflop under this con-
straint, we need at least an order of magnitude improvement
in power efficiency with respect to today’s systems [5, 7, 19,
31].

Exascale systems are expected to be power-constrained:
the size of the machine will be limited by the amount of
provisioned power. Existing best practice requires provision-
ing power based on the theoretical maximum power draw of
the machine, despite the fact that only a synthetic work-
load comes close to this level of power consumption. One
of the key contributions in the power-constrained domain is
“hardware overprovisioning” [24]. The idea is to provision
much less power per node and thus provision more nodes.
The benefit is that all of the scarce resource (power) will
be used. The drawback is that power must be carefully
scheduled within the machine in order to approach optimal
performance.

Fig. 1 depicts this foundational idea. Let the hardware
overprovisioned system consist of Nmax processors and let
the power budgeted for this system be Pm/c Watts. As
shown in the figure, with Pm/c Watts total system power,
only a part of the system (say Nalloc where Nalloc < Nmax

processors) can be utilized at peak power (collection of nodes
in red). Another valid configuration is to utilize the entire
system at low power. One of the several other intermediate
configurations is to use medium power levels and utilize a
portion of the system larger than that at peak power but
smaller than that at low power. In each of these configu-
rations, a machine’s power budget is uniformly distributed
across a varying number of processors, i.e, each processor is

allocated approximately
Pm/c

Nalloc
Watts of power. This is a

näıve approach of enforcing a power budget. Depending on
the application’s characteristics (memory-, compute-, and
communication-boundedness), different applications achieve
optimal performance on different configurations. In a nut-
shell, power procured for a system must be managed as a
malleable resource to maximize performance of an overpro-
visioned system under a power constraint.

To facilitate the selection of different power levels, hard-
ware manufacturers are providing various features like power
clamping and on-chip power measurement mechanisms (e.g.,
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Figure 2: IPS vs. Power for each processor. Each rainbow
line represent one processor. Curves in red (bottom) are
least efficient, curves in orange (top) are most efficient.

• The power efficiency of a processor varies with its oper-
ating power and is non-monotonic. It is also workload-
dependent.

• Peak power efficiency varies across processors.

• Most importantly, efficient processors are most effi-
cient at lower power bounds whereas the inefficient
processors are most efficient at higher power bounds.
The ”peak” of every curve is the point at which the
processor achieves the maximum efficiency, i.e., maxi-
mum IPS/W. Orange curves (efficient processors) have
peaks at lower power compared to the peaks of the red
curves (less efficient processors) and the rest lie in be-
tween.

Fig. 4 depicts the results of our thermal experiments. The
x-axis presents processor IDs (processors are sorted in the or-
der of efficiency). The y-axis presents the measured temper-
ature (triangles) of the processors normalized with respect
to the maximum temperature and the unbounded power
(crosses) of the processors also normalized with respect to
the maximum power. In these experiments, the processors
were not capped, and they achieved uniform performance.
We observe that the temperature increases as we go from
efficient to inefficient processors (left to right), as does the
unbounded power. However, not all inefficient processors
are hotter than the efficient ones. This shows that thermal
variation may be one of the potential causes of variation in
efficiency but there are other factors that counter the effect
as we do not see a linear trend for temperature (in contrast to
the linear trend of unbounded power). We believe that one
of the contributing factors is process/manufacturing varia-
tion induced at the time of fabrication. In the end, our pro-
posed mechanism is agnostic of the actual cause of variation,
it simply exploits the fact that variation (due to whatever
reason) exists.
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Figure 3: Power Efficiency in IPS/W vs. Operating power.
One rainbow line per processor, red curves (bottom) are
least, orange ones (top) most efficient.

In summary, there exists variation in power efficiency
across processors. There is a unique local maximum in ev-
ery power efficiency curve that occurs at disparate power
levels for different processors. Starting from the minimum
power, increasing the power assigned to a processor leads
to increasing gains in IPS. However, increasing the power
beyond the peak efficiency point of a processor leads to di-
minishing returns. Hence, when power is limited, processors
should operate at power levels close to their peak efficiency
to maximize the overall efficiency of the system. Since the
peak efficiency points for efficient processors are at lower
power levels than for the inefficient processors, the optimal
configuration should select lower power levels for efficient
processors and higher power levels for inefficient processors
to maximize performance. On the contrary, a näıve / uni-
form power scheme caps all the processors at identical power
bounds. Hence, it is sub-optimal.
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Figure 4: Temperature and unbounded power of processors.
Processors are sorted by unbounded power consumption.



An optimal algorithm should aim at leveraging the non-
uniformity of the cluster to maximize the performance of a
job under its power constraint.

To this end, we propose PTune, a power-performance
variation-aware power tuner that exactly does this for each
job. For every job, given a power budget, it determines the
following: (1) the optimal number of processors (say nopt);
(2) selection of nopt processors; and (3) the power distribu-
tion (say pk, where 1 ≤ k ≤ nopt) across the selected nopt

processors.

3. PROBLEM STATEMENT
The problem statement then is as follows: Given a ma-

chine level power budget, how should the machine’s power
be distributed across (a) jobs and (b) tasks within jobs on a
given system, where (b) is discussed later. For (a), the pro-
cess of making these decisions at the macro level of jobs is
called power partitioning. Each job on the machine receives
its own power partition.

We address the following questions:

1. How many partitions do we need at a time? I.e., de-
termine how many jobs should be scheduled at a time.

2. What is the size of each of the power partitions? I.e.,
determine the power budget assigned to each job.

For (b), at the micro level, given a hard job-level power
budget PJi, we need to determine the optimal number of
processors, nopt, with a power distribution (p1, p2, ... ,
p(nopt−1), pnopt) such that performance of the job is maxi-
mized under its power budget. The constraint on the power
distribution is expressed as

n∑

k=1

pk ≤ PJi;min power ≤ pk ≤ max powerk.

Here, min power is the minimum power that needs to
be assigned to a processor for reliable performance and
max powerk is the maximum power consumed by the kth

processor (uncapped power consumption) for an applica-
tion. The performance of a job can be quantified in terms
of number of instructions retired per second (IPS).1 For a
parallel application on n processors, the effective IPS is the
aggregated IPS over n processors (JobIPSn). Hence, the
objective function is

Maximize(JobIPSn).
A processor’s IPS is a non-linear function of the power at

which it operates. Each processor can be power bounded
at several levels using the RAPL capping capabilities, which
forces it to operate at various power levels within a fixed
range. We know that unbounded power consumption is vari-
able across processors while achieving the same unbounded
(peak) performance for a given application. This is depicted
in Fig. 5. The x-axis indicates the power at which the pro-
cessor operates and the y-axis shows the IPS (in billions)
of the processor of an application. Each solid curve corre-
sponds to the most efficient processor while the dotted curve
correspond to the least efficient processor. The following two
observations are made from this data:

1. On a single processor, the performance (IPS) achieved
at any fixed power level is different for different work-
loads.

1The general model holds for other performance metrics as
well. We selected IPS here because it closely correlates to
power in our experiments.

2. The performance of an application on two different
processors at any fixed power level is not the same.

This means that when determining the optimal distribu-
tion of power across processors it is necessary to take the
processor characteristics and the application characteristics
into account. One solution may not fit all applications. The
optimal configuration for an application on one set of proces-
sors may be different from that on another set of processors
because of performance variations under a power cap.
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Figure 5: IPS vs. Power for efficient and inefficient proces-
sors

4. PROPOSED SOLUTION
We propose a 2-level hierarchical approach of managing

power as a resource (see Fig. 6). The parameters of the
model are described in Table 1. Nmax, Pm/c and nreq are
the inputs to the model that we assume. nopt is calculated
once for every job at its dispatch time. Nalloc, PJi and pk are
re-calculated every time any job is dispatched. min power
is architecturally defined for every family of processors. Ta-
ble 2 is populated off-line using the characterization data.
We make the assumption that the power consumption of the
interconnect is zero, i.e., interconnect power is beyond the
scope, and so are task-to-node mapping effects on power.
We only consider processor power in this work and assume
moldable jobs. DRAM power could not be included due to
motherboard limitations at the time of this work. We do
not expect the users of the system to predict and request
power in their job request. Power decisions are made by our
system software (PTune and PPartition). Users may be al-
lowed to influence these decisions by assigning priorities to
their jobs.
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Figure 6: Hierarchical Power Manager

At the macro level, we propose PPartition, a technique
of partitioning a machine’s power budget across jobs while
scheduling them. Once a job is dispatched by a conventional
scheduler (e.g., slurm or Maui/pbs), PPartition calculates
its power budget. If the required power is not available, it



Table 1: Model Parameters

Parameter Description PPartition PTune
Nmax maximum number of Input N/A

processors on a machine
Nalloc number of processors Output N/A

already allocated to jobs
Pm/c power budget of the machine Input N/A
Pm/c unused unused power budget of the machine Variable N/A
nreq number of processors Input Input

requested by a job
nopt optimal number of Output Output

processors for a job
n number of processors for a job N/A Variable

under its power budget
PJi power budget of the ith job Output Input
pk power cap of kth N/A Output

processor within a job
min power minimum processor power cap Input Input
max powerj maximum processor power cap Input Input

of the jth processors
power-ips table characterization data Table 2 Input Input

Table 2: power-ips lookup table (last metric in Tab. 1)

Power Cap[W] IPS in Billions Measure Power [W]
60 46.43 59.99
80 64.83 79.88
100 76.33 99.43
120 79.13 104.66

steals power from the previously scheduled jobs and provi-
sions this power for the new job. If sufficient power cannot
be obtained, PPartition overrides the conventional sched-
uler’s decision based on free resources (nodes) and does not
schedule this job until sufficient power is available.

At the micro-level, we propose PTune, a power balanc-
ing model that determines the distribution of a job’s power
budget (one job at a time) across an optimal selection of
processors (among all free resources) to maximize the per-
formance of a job under its power budget.

5. PTUNE
PTune shrinks the job’s processor allocation by eliminat-

ing the less efficient processors that are expensive in terms of
power to maximize the performance of a job under its power
budget. Fig. 7 depicts the micro-level power tuner. For each
job Ji, a power budget PJi is calculated at the macro level by
PPartition. For every job with this assigned power budget,
PTune answers the following questions:

1. How many (nopt) and which processors should a job
run on?

2. What should be the power (p1, ..., pnopt) assigned to
each of the nopt processors?
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Figure 7: PTune

Let us start by addressing the first question. In order to
use a processor, it needs to be assigned at least the minimum
power (min power) that is constant across all processors.
The upper limit on the processor’s power (max powerk) is
variable across processors.

Fig. 8 shows the maximum power consumption of 600 Ivy
Bridge processors when they are not power capped. The
unbounded performance is uniform across all the processors.

The x-axis represents all the processor sorted by power con-
sumption and the y-axis represents the maximum power con-
sumption in Watts. The optimal configuration for maximum
performance of a job under a strict power budget consists of
the maximum number of most efficient processors (from the
left) such that their aggregate power consumption does not
exceed the job’s power budget.
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Figure 8: Unbounded power consumption of processors un-
der uniform performance

5.1 Sort the Processors
The first step towards determining the optimal configu-

ration is to sort the available processors by their relative
power efficiency. This is equivalent to sorting them by their
unbounded power consumption. Let the sorted set of pro-
cessors be indexed by k.

We divide this distribution of processors into quartiles,
viz., Q1, Q2, Q3 and Q4, in the order of efficiency and pick
processors from one or more of these quartiles for evaluation
purposes.

5.2 Bounds on Number of Processors
The lower bound on n, n⊥, can be calculated by determin-

ing the maximum number of processors that can be capped
at their maximum power, max powerk, under the power
budget. The selection of processors is reformed in the sorted
order as described above. n⊥ is given by the largest value
of n that satisfies the following constraint:

PJi ≥
n∑

k=1

max powerk.

The upper bound on n, n⊤, represents the maximum num-
ber of processors that can be operated at min power under
the power budget. The bound n⊤ is calculated as follows:

n⊤ = PJi
min power

.
The processor count, n, is iterated from n⊥ to n⊤, and in

each step, the next efficient processor is added to the set of
processors. Job-level performance, JobIPSn, is calculated
in each iteration byDistributePower() for the power budget
PJi and a given number of processors, n, where n⊥ ≤ n ≤
n⊤.

The optimal number of processors, i.e., nopt, is the value
of n at which a job’s IPS is maximized.

JobIPSnopt = max(JobIPSn⊥
, JobIPS(n⊥+1), ..., JobIPSn⊤

).
PTune leads to nopt ≤ n. Thus, PTune tends to reduce the

number of processors required for a moldable job The spare



processors are returned back to the global pool of unused
resources so that they can be utilized by other jobs.

5.3 Distribute Power: Mathematical Model
DistributePower(), takes three inputs, viz., the number of

processors n, the job’s power budget, PJi, and the power
distribution across n−1 processors determined in the previ-
ous iteration. The output of this function is the maximum
job IPS that can be achieved under PJi Watts with n proces-
sors. It also calculates the optimal power caps, (p1, ..., pn),
for n processors, which forms an input for the next iteration.
This can be mathematically expressed as follows:

DistributePower(n, PJi, (p1, ..., pn)) =
DistributePower((n− 1), PJi − pn, p1, ..., p(n−1)) +

getProcIPS(n, pn).
The function getProcIPS(k,pk) performs a look-up in

Tab. 2 to return the expected performance (IPS) of the kth

processor when it is capped at pk Watts.

5.4 Power Stealing and Shifting
DistributePower() consists of two main steps, viz. Power

Stealing and Power Shifting.
Step 1: Power is stolen in discrete quantities

(delta power) from the n− 1 processors to provision power
for the nth processor (see Fig. 9). The victim/donor pro-
cessor is the one that suffers minimum loss in IPS when
delta power is stolen from it. If the aggregate stolen power
is at least min power, an additional nth processor is added
to the processor set.

Step 2: Power is shifted from a donor to a receiver in dis-
crete quantities, delta power, across the n processors. The
victim/donor processor is identified in the same way as in
step 1. The receiver is the processor that gains maximum
IPS on receiving delta power.
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Figure 9: Donor and receiver of discrete power

6. PPARTITION
Fig. 10 depicts the macro-level power partitioning algo-

rithm. The power partitioner co-operates with the conven-
tional scheduler (simulated in R). PPartition receives infor-
mation on the performance variations across processors. It
always chooses the most efficient nreq processors of the avail-
able processors (or a subset thereof) to schedule a job. The
conventional scheduler dispatches a job from the job queue
when the requested number of processing resources are avail-
able. When job Ji is dispatched, its initial power budget,
PJi, is calculated as follows:

PJi ← Pm/c ∗
nreq

Nmax

If the required power is available, PTune determines the
optimal configuration for the job and the job is scheduled.
It is important to note that even though the job power bud-
get is proportionate to the number of requested processors,
PTune schedules jobs on reduced number of processors. As a
result, the machine’s power depletes at a faster rate that the

processing resources. If the available (unused) power is less
than the calculated job power budget, power is stolen from
already scheduled jobs. This is called power repartitioning
(lower right blue/shaded box in Fig. 10) and detailed next.
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Figure 10: PPartitioning: Repartitioning Power

Power Repartitioning

The power repartitioning algorithm is shown in Algorithm 1.
As all of the machine power budget is already used up by
the Nallocated processors, a fair power share for the new job
is calculated as

PJi = Pm/c ∗
n

n+Nallocated
, where n=nreq.

Algorithm 1 Repartitioning Power For Accommodating
the ith job

1: procedure PowerPartitioner(Ji,nreq)
2: nopt ← nreq

3: do

4: n← nopt

5: PJi ← Pm/c ∗
n

n+Nallocated
⊲

Recompute PJi proportional to the portion of
busy processors requested

6: nopt ← PTune(PJi, n) ⊲ Recompute nopt

7: while nopt < n
⊲ Repartition power across jobs to provision

power for the ith job
8: for k ← 1; k < i; k ++ do

9: power_to_be_stolen[k] ← (PJi − Pm/c_unused) ∗
jobpowerbudgets[k]∑

jobpowerbudgets

10: total_stolen_power ← total_stolen_power +
ShrinkPartition(power_to_be_stolen[k], k)

11: end for

12: if total stolen power < PJi then ⊲ If enough
power cannot be stolen, recompute nopt

13: PJi ← total stolen power
14: nopt ← PTune(PJi, n)
15: end if

16: end procedure

The job is power tuned for the requested nreq (assigned
to n) processors under PJi Watts calculated above. PTune
gets rid of the unaffordable less efficient processors, if any,
leading to nopt ≤ n. We recompute (in the while loop)
the proportionate power the new job with nopt processors



should have due to power partitioning across all jobs. This
new power budget, PJi, then becomes the base for another
PTune, and so on, until the number of processors (mono-
tonically decreasing) for the new job reaches a fixed point
(stabilizes) in the while loop. The fixed point guarantees a
fair power level (PJi) relative to other jobs, but we still need
to find other jobs to steal just enough power for this job.

In the following for loop, power is stolen from each of the
scheduled jobs in a proportionate manner to each other’s
power budget. This is accomplished by ShrinkPartition,
which consists of (1) stealing just enough power and (2)
power tuning for the remaining power of a job and the same
number of processors (since we assume moldable but not
malleable applications). Here, we steal as much power as
possible while retaining heterogeneous power bounds across
a job’s processors to respect processor variations and thus
ensure a high IPS under lower power budget.

The aggregate stolen power from other jobs is offered to
the new job. If the stolen power is less than the fixed power
level for the new job, which was PJi, then the new job needs
to be tuned one more time. If the stolen power was sufficient
for this last tuning step, the new job is scheduled and the
power re-tuning decisions made by ShrinkPartition for the
existing ones are enforced. If, however, the stolen power is
insufficient (as determined by PTune when the power budget
cannot accomodate more than n

2
processors), no power is

redistributed, i.e., all jobs remain unchanged in their power
settings and the new job is deferred until at least another
job completes.

7. IMPLEMENTATION
We modified the libmsr [35] library to gather the pro-

cessor characterization data. We implemented a power-
performance profiler using the MPI profiling interface
(PMPI) that invoked various subroutines of the libmsr li-
brary to assess the power and the performance of MPI ap-
plications. We captured several fixed counter values, power
consumption, and completion times for each application on
all the processors. The processor power consumption was
measured using Intel’s RAPL interface. This characteriza-
tion data is made available to PTune and PPartition.

We assume that the jobs are moldable. Our power man-
ager works in co-ordination with the conventional job sched-
uler. Once a job is dispatched by the conventional sched-
uler, the power manager (PPartition+PTune) determines its
power budget, the selection of processors from those avail-
able, and the power distribution (or processor power caps)
across them.

We assume a large job queue (> 384 processes) and a
backfilling queue (< 48 processes). The conventional job
scheduler schedules as many large jobs as it can on the ma-
chine before scheduling the backfilling jobs. We assume up
to Nmax=550 nodes with 12 cores each (6600 processes). If
the power manager decides to schedule the job, power dis-
tribution across its processors (and power repartitioning if
required) is enforced using RAPL.

8. EXPERIMENTAL SETUP
Experiments were conducted on a 324-node Ivy Bridge

cluster. Each node has two 12-core Intel(R) Xeon(R) CPU
E5-2695 v2 @ 2.40GHz processors and 128 GB of memory.
We used MVAPICH2 version 1.7. The codes were compiled

with the Intel compiler version 12.1. The msr-safe kernel
module provides direct access to Intel RAPL registers via
libmsr [35]. We used the package (PKG) domain of RAPL
that provided us the capability of capping power for each
of the processors in an experiment. The scheduling environ-
ment was simulated in R.

We again used EP, BT, and SP from the NPB suite and
CoMD from the Mantevo suite in their pure MPI versions.
We exponentially increase the node count for our experi-
ments. The inputs were weakly scaled for different node
counts. We report performance in terms of completion time
in seconds and power in Watt. The reported numbers are
averages across ten runs.

9. RESULTS
Experiments were conducted for single job power tuning

and multi-job power partitioning.

Variation under Power Caps: Sorting Required

We now exploit the observed variability in the unbounded
power consumption of the processor chips, which translates
into variation in performance under a power constraint.
This variability may be caused by factors such as manufac-
turing/process variation (at CMOS/transistor level), ambi-
ent machine room temperature in different rack positions
(higher/lower to the floor), or others. Yet, our method han-
dles variation irrespective of its causes. Previous work [27]
and Section 2 has already established that a cluster is not
homogeneous under a power constraint because of such vari-
ation. We also observe that scheduling a job on different sets
of fixed number of processors under a constant power budget
leads to variation in the performance of a parallel job.

We present a selection of configurations to demonstrate
this behavior in Figures 11 and 12. The x-axis represents
the codes and the number of processors. The y-axis indicates
the completion time in seconds. The codes are run on sev-
eral combinations of processors from one or more quartiles
of the processor distribution. The numbers on the top of the
bars indicate percentage slowdown with respect to the base-
line. The processors are uniformly capped at 51W in this
set of experiments, i.e., they maintain a constant job power
budget of 8KW, 16KW, and 32KW for 16, 32, and 64 proces-
sor experiments, respectively. The baseline for 16 processor
experiments (Fig. 11) is the performance on the processors
belonging to quartile Q1. For 32 and 64 processors (Fig. 12),
the baseline is the performance on the processors belonging
to Q1 and Q4 (also see legends). Q1 consists of the most
efficient processors whereas Q4 consists of the least efficient
processors. We observe a performance slowdown ranging
from 2% to 18%. We observe that performance deteriorates
as we include less efficient processors (Q2, Q3, Q4) in the
mix. Hence, the optimal selection of nopt processors should
consist of the most efficient processors from the available
ones.

PTune

We evaluate the effectiveness of PTune using the aforemen-
tioned codes. In Fig. 13, we present results for three different
combinations of processors belonging to different quartiles.
There are three data points corresponding to each code.

In the figures, nLOWER (synonymous with n⊥) is the max-
imum number of processors that can operate at maximum
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power such that their aggregate power does not violate the
job level power constraint. This configuration most closely
resembles the worst case power provisioning as processors
are not power constrained. PTune is the data point corre-
sponding to optimal configuration suggested by the power
tuner. Uniform power corresponds to the näıve approach of
distributing the job’s power budget evenly across all proces-
sors in a job. This is the baseline configuration.

Performance

In Fig. 13, the y-axis represents performance (top graph) in
terms of wall-clock time (in seconds) and the number of pro-
cessors recommended by the power manager (bottom graph)
over different codes and quartiles to which the processors be-
long (x-axis). The numbers on the bars indicate the runtime
reduction and utilized number of processors relative to the
baseline in percent.

We observe a performance improvement of up to 22%.
The gains are dependent on the combination of processors
from different quartiles as well as on workload. PTune is able
to free up to 38% of the resources while achieving similar or
higher performance than the baseline configuration.

Scalability

We evaluate PTune on up to 128 processors. Fig. 14 presents
results addressing the scalability of PTune. PTune achieves
performance improvements of as much as 29% with a mini-
mum of 1%. More significantly, in case of the minimal per-
formance improvement, PTune frees up 23% of the proces-
sors, which subsequently become available to the next sched-
uled jobs. We observe an error of less than 2% between the
total job power consumption (measured via RAPL) of the
PTune recommended configurations and the assigned job-

level power budget across all experiments.

PPartition

In this section, we perform a macro-level evaluation of our
2-level model. We simulate the conventional scheduler that
dispatches jobs from multiple queues, one at a time. Let np
be the number of processes. The scheduler handles 3 queues,
1 large job queue (np ≥ 768 or n ≥ 64 processors), and two
backfill queues (np ≤ 48 or n ≤ 4 processors, 48 < np < 768
or 4 < n < 64 processors). Larger jobs are scheduled first
followed by backfilling jobs to improve the system utiliza-
tion. We assume Nmax = 550 processors. Our job mix
consists of 25% jobs from each EP, SP, BT, and CoMD.

We assume a hardware overprovisioned machine with a
machine power budget Pm/c = 28KW . Fig. 15 depicts a
scenario in which the job scheduler is oblivious of power
management. The machine’s power budget is uniformly dis-
tributed across all the processors. We call this näıve schedul-
ing. The conventional scheduler schedules jobs as long as the
required number of processors are available. Fig. 16 depicts
the scenario when our power manager (PTune + PParti-
tion) co-ordinates with the conventional scheduler to make
variation-aware power and job scheduling decisions. The x-
axes in both the plots represent job identifiers ordered by the
time that they are dispatched by the conventional scheduler.
We can see that the large 64 processor job is scheduled first
followed by the backfilling jobs. The left y-axis denotes job
performance in IPS. Each of the red, green and blue curves
represents a job’s performance as more and more jobs are
scheduled over time (moving right along the x-axis).

Our scheduler starts with jobs at high power budget and,
hence, high performance. But as more jobs are dispatched,
power is stolen from the previously scheduled jobs. This
leads to a drop in their performance. In return, we are able
to schedule more jobs at the expense of the performance of
already running jobs. In this scenario, our scheme is able
to schedule 58 jobs whereas the power-oblivious scheduler is
able to schedule only 36 jobs to run at the same time. This
is because PTune schedules each job on a reduced number of
processors compared to the näıve scheme. The performance
of most of the first 36 jobs (that are scheduled under both
the schemes) of our approach is at least as good as the näıve
one. In addition to these jobs, our power control is able
to schedule 22 more backfill jobs that further improve the
overall throughput (SysIPS) of the machine (compared to
the näıve approach) under the same power constraint.
The right y-axes depict the system’s power consumption

as a fraction of (normalized to) the overall provisioned sys-
tem power, Pm/c, in one line graph (circles) and the sys-
tem’s performance (SysIPS =

∑
JobIPSi) normalized to

the maximum in the other (crosses). Both graphs track
each other closely, but under our power control, the ma-
chine power is fully utilized much earlier (after ≈ 10 jobs)
whereas 36 jobs are required to reach this level in the näıve
case. These initial jobs also achieve higher performance un-
der our scheme (>1500 Billions IPS) than that in the näıve
case (900 to 1500 Billion IPS for backfill jobs and 2100 Bil-
lion IPS for the large job) before the other jobs are sched-
uled, and these jobs would thus terminate earlier as they
have progressed further under our power control compared
to the näıve case. This shows that when there are fewer
jobs running on a machine, our power manager is able to
direct all machine power to jobs where it is needed to maxi-
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Figure 13: Evaluation of PTune on 16 processors from one or more quartiles

mize performance under a power constraint unlike the näıve
approach.

Fig. 17 presents a comparison of the throughput of our
scheme compared to three other näıve schemes. The x-axis
denotes the machine’s power budget and the y-axis depicts
the throughput of the machine (SysIPS) normalized to a
maximum throughput at 39KW (left bar per set). Uniform
capping schemes assume that an appropriate number of ran-
domly selected processors on the machine are already capped
at Pm/c/Nmax, 75W (mid-way between minimum power and
TDP), and TDP, such that their aggregate power does not
exceed the machine’s power budget. The rest of the pro-
cessors in these configurations are not available to the con-
ventional scheduler in the näıve scheme. PTune+PPartition
represents our model that makes variation-aware decisions
about scheduling jobs across the entire machine under a
machine-level power constraint. The percentages on top
of bars indicate how much lower the throughput per näıve
scheme is compared to our solution. Our model achieves
5-35% higher throughput.

Fig. 18 depicts the performance of all the jobs that are
scheduled under schemes 1-4 (top left legend) indicated
along the x-axis. The y-axis denotes job’s performance nor-
malized wrt. to the aggregate job performance (SysIPS)
under the respective schemes. We see that our approach
(scheme 1) is able to schedule a much larger number of jobs
(denser clusters in plot) than the näıve scheduling policy
(scheme 2) by trading off performance of some jobs.

10. RELATED WORK
Energy has been an important issue in high performance

computing (HPC) for over a decade. Supercomputers as
old as BlueGene/L have been built with the goal of max-
imizing power efficiency. Power-scalable clusters that are
equipped with voltage and frequency scaling have existed for

over a decade that enabled researchers to study the energy
problem in HPC. Freeh et al. [14] investigated the energy-
time trade off of MPI applications to prove that it is feasi-
ble to save energy by scaling the processor down to lower
energy levels with or without time penalty depending on
the application. Springer et al. [36] proposed a combined
approach of performance modeling and performance predic-
tion for minimizing the execution times of MPI applications
under energy bounds. They used voltage and frequency scal-
ing on single cores of a small cluster of up to 10 nodes for
their experiments. In addition, there is abundant work pre-
senting algorithms that use frequency and voltage scaling
mechanisms for energy savings [23, 28, 29, 13, 4]. In con-
trast, our work uses power capping via the Intel RAPL in-
terface. Totoni et al. [38, 22] presented an ILP-based run-
time system that schedules work on a selective subset of
cores of a single multi-core chip to meet the power or per-
formance constraint. Within-die or core-to-core variation-
aware DVFS schemes [37, 16] have been proposed for chip-
multiprocessors. These schemes select optimal voltage and
frequency set points for each of the cores to achieve improved
power to performance ratio for the chip. Our work differs
from this work in terms of granularity. We study variation
across several processors or chips and not across cores of a
single multi-core chip. We manage resources at processor
(or chip) level. We use either all or none of the cores of
the chips/multi-core processors on a machine. Our goal is
to improve the performance of a parallel job scheduled on
multiple processors under a strict power budget.

System-wide solutions for power constraint systems have
been proposed that aim at increasing the throughput of sys-
tems by leveraging the idea of hardware overprovisioning [12,
24, 32, 33, 11]. Sarood et al. [34] proposed a scheme of deter-
mining an optimal number of nodes under strong scaling of
applications executing on an overprovisioned system while
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Figure 14: Evaluation of PTune on processors from Q1 and Q4 quartiles
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Figure 15: Uniform power distributed across the machine.
Pm/c = 28kW

distributing power between CPU and memory. Etinski et
al. [10, 9] proposed the use of dynamic voltage and frequency
scaling (DVFS) at the job scheduling-level to save energy
and improve overall job performance. Patki et al. [25] pro-
posed power-aware backfilling to improve the throughput of
the system. Ellsworth et al. [8] presented a power scheduler
that enforced a system-wide power bound by reallocating
power across the cluster. Our work differs from all of the
above because our approach takes the performance variation
across processors of a cluster into account while scheduling
and tuning jobs for performance.
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Figure 16: PPartition + PTune. Pm/c = 28kW .

Inadomi et al. [18] propose performance optimizations
across inhomogeneous processors. It provides a detailed
analysis of the phenomenon across multiple clusters and pro-
vides a set of simple algorithms for intelligent power balanc-
ing. These algorithms, while groundbreaking, suffered from
two serious limitations. First, the processor power model
assumed that CPU clock frequency increased proportion-
ally with power. While that is a useful simplification, our
work here shows that the story is not nearly so simple. Sec-
ond, the algorithms assumed the ideal number of nodes to
use was fixed a priori. In our approach, PPart and PTune
jointly determine the ideal number of nodes and the power
budget for every job at the time of scheduling. While the
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result of both of our approaches is a power schedule, we are
solving a fundamentally different problem.

Kappiah et al. [21] presented a system that saves energy at
the expense of execution time by scaling down the frequen-
cies of the cores when they encounter slack time in an MPI
application. Rountree et al. [28] used linear programming
to establish a bound on optimal energy savings of an MPI
application and presented a runtime algorithm to save en-
ergy in HPC applications with negligible delay [29]. Power
conservation by means of turning off unwanted nodes is pro-
posed in [26]. In the above presented solutions, authors
used one core per node and their goal was to maximize en-
ergy savings with minimal impact on the execution time. In
contrast to these solutions, we are intolerant to performance
degradation. We use multicore processors and our goal is to
minimize the completion time as long as we stay within the
power budget.

11. SUMMARY
We presented a hierarchical variation-aware machine-wide

solution for managing power on a hardware overprovisioned
machine. It consists of a macro-level Power Partitioner that
makes power and job scheduling decisions and a micro-level
Power Tuner that determines the optimal processor selection
and their power caps for a job such that its performance is
maximized under a power constraint. PTune achieves up
to 29% improvement in performance compared to uniform

power capping. It does not lead to any performance degra-
dation, yet frees up to 40% of resources compared to uniform
power capping. PPartition is able to improve the through-
put of the machine by 5-35% compared to näıve scheduling
under the same machine power budget.

We established that under a power constraint, the vari-
ability in performance transforms into variation in peak
power efficiency. We believe that this variation in power
efficiency should be one of the primary considerations in the
future power management research.
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