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ABSTRACT

SCALATRACE represents the state-of-the-art of parallel applica-
tion tracing for high performance computing (HPC). This paper
presents SCALATRACE II, a next generation tracer that delivers
even higher trace compression capability, even when events are not
always regular. In this work, we contribute a spectrum of novel
compression and replay techniques that are fundamentally different
from our past approaches. SCALATRACE 1I features a redesigned
low-level encoding scheme of trace data such that data elements are
elastic and self-explanatory. With this new encoding scheme, trace
compression is enhanced by introducing innovative intra-node and
inter-node trace compression algorithms that guarantee high com-
pression rates in a loop structure agnostic fashion. In practice, the
improved compression scheme is particularly efficient for scientific
codes that demonstrate inconsistent behavior across time steps and
nodes. A novel approach is further contributed to probabilistically
replay sequences of non-deterministic events. To assess the com-
pression efficacy of SCALATRACE 11, we conduct experiments not
only with computational kernels but also a real-world application,
the Parallel Ocean Program (POP). Compared to the first genera-
tion SCALATRACE, we observe key improvements on trace com-
pression for benchmarks with inconsistent time step behavior and
diverging task level behavior while retaining timing accuracy even
under probabilistic replay.

1. INTRODUCTION

The compute power of supercomputers has been doubling each
year in the past two decades. The era of exascale computing is
projected to arrive in the near future. With such large systems,
recording the program behavior of parallel applications for post-
mortem performance analysis is becoming increasingly difficult.
On the one hand, analyzing complicated scientific applications re-
quires complete and accurate performance data. On the other hand,
the large number of processors/cores and the increasing gap be-
tween computational power and I/O performance pose great chal-
lenges in terms of efficiency and scalability of performance anal-
ysis tools. Consequently, traditional analysis tools either collect
lossless traces by sacrificing scalability or report only aggre-
gated statistical information that might be insufficient for in-depth
performance analysis and debugging [32]. To address this discrep-
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ancy, we designed SCALATRACE, a scalable parallel communica-
tion and I/O tracing library that features on-the-fly trace compres-
sion [26} 29]. For single program, multiple data (SPMD) parallel
applications, SCALATRACE is able to collect lossless traces that are
much more space-efficient than the past approaches.

SCALATRACE is one tool that represents the state-of-the-art
of parallel application tracing for high performance computing
(HPC), specifically for communication events. In this paper, we
present SCALATRACE 11, the next generation SCALATRACE that
features a fundamental redesign in every aspect. SCALATRACE II
is designed to address the shortcomings of previous work. It tar-
gets inefficiencies in the compression of communication traces for
applications with inconsistent program behavior across time steps
and diverging parallel control flow. For example, coupled large-
scale scientific codes such as the Community Earth System Model
(CESM) [5] exhibit multiple program, multiple data (MPMD) be-
havior. They perform multi-physics simulation with different mod-
ules using diverse inputs, executing a multitude of algorithms, and
running on different sets of processors. To generate scalable traces
for these applications, methodologies that better exploit trace simi-
larities across time steps and MPI tasks are in demand.

With SCALATRACE 11, we contribute a spectrum of novel com-
pression and replay techniques that are fundamentally different
from our past approaches. In SCALATRACE 11, MPI parameters
and loop information are stored as elastic data element representa-
tions, a redesigned low-level encoding scheme that is automatically
evolving and self-explanatory. By annotating loop information with
participant information, we designed a loop agnostic inter-node
compression scheme that ensures perfect event matching for ap-
plications with task-specific communication patterns. We also re-
designed the task-level loop compression to perform approximate
loop iteration matching, which is particularly effective for applica-
tions with inconsistent behavior across time steps.

SCALATRACE II inherits the lossy philosophy proposed in our
previous work [37]. In essence, SCALATRACE II can be config-
ured to compress MPI parameters to the utmost using probabilistic
methods while still preserving most of the advantages of the loss-
less approach. We further developed SCALAREPLAY 11, a brand-
new probabilistic replay engine that is compatible with the loop
agnostic trace format. With SCALAREPLAY 11, we improved the
coordinated random value selection of the trace replay algorithm.
Optimizations such as multi-context traversal are also designed to
boost the robustness, accuracy, and scalability of the replay engine.

We evaluated SCALATRACE 11 with regard to two aspects: (1)
effectiveness of trace compression and (2) correctness and timing
accuracy of the probabilistic replay. We conducted experiments
with a subset of the NAS Parallel Benchmark suite, the Sweep3D
neutron-transport kernel, and the Parallel Ocean Program (POP).
Experimental results demonstrate that SCALATRACE II achieves
key improvements on trace compression for benchmarks exhibit-
ing task-specific communication patterns, inconsistent loop behav-
ior, and/or diverging parallel control flow. Results on probabilistic
replay show that SCALAREPLAY 11 is able to accurately re-produce



the execution times of the original applications. Across all the test
cases, the mean absolute percentage error of the replay times is only
5.7%. Given such accuracy, we conclude that the lossy compres-
sion scheme, powerful in reducing trace sizes, is equally applicable
to scenarios where timing accuracy is required.

This work makes the following contributions:

e We propose SCALATRACEII, a fundamental redesign of
SCALATRACE that features a spectrum of novel compression tech-
niques to improve trace compression for applications with incon-
sistent loop-level and task-level behavior.

e We designed SCALAREPLAY II, a probabilistic replay engine
compatible with SCALATRACE 1I that significantly improves ro-
bustness, accuracy, and scalability.

e By comparing the compression ratio of two generations of
SCALATRACE with computational kernels and real-world applica-
tions, we investigate the causes of compression inefficiency and
demonstrate potential solutions to obtain better compression.

2. PREVIOUS WORK

This section summarizes our previous work on the last genera-
tion SCALATRACE and provides the background for the improve-
ments and redesigns discussed in Section|3.

2.1 Intra-node and Inter-node Compression

SCALATRACE is a communication tracing framework for paral-
lel applications using the Message Passing Interface (MPI), the de
facto standard for scientific computing. It utilizes the MPI profil-
ing layer (PMPI) to intercept MPI calls. It collects lossless, order-
preserving, and space-efficient communication traces by exploiting
the program structure and performing a two-stage trace compres-
sion, i.e., intra-node and inter-node compression.

SCALATRACE utilizes Extended Regular Section Descriptors
(RSDs) to capture loop structures of one or multiple communica-
tion events. Power-RSDs (PRSDs) are utilized to recursively spec-
ify RSDs in nested loops. To perform intra-node loop compression,
SCALATRACE constantly searches for repeating event sequences
ending with the current tail event. In order for two event sequences
to be considered matching, SCALATRACE requires not only equal
lengths but also identical call stack signatures, loop structures, and
equivalent MPI parameter values for events at corresponding posi-
tions in the two sequences. When a new loop iteration (a repeat-
ing sequence of events) is identified, SCALATRACE eagerly com-
presses it with the previous iteration by inserting a new outer loop
or increasing the trip count of an existing RSD/PRSD by one. As
such, SCALATRACE is able to generate scalable traces with respect
to the number of time steps if loop trip counts are consistent.

At program completion, SCALATRACE performs an inter-node
compression along a radix tree rooted in rank 0. During this reduc-
tion, internal nodes combine their traces with other task-level traces
received from child nodes. To perform compression, two task-level
event sequences are compared at the granularity of a loop structure,
i.e., matching standalone events and whole loops are merged. Sub-
sequently, diverging subsequences bounded by matching preceding
and succeeding events are concatenated. For applications with reg-
ular SPMD behavior, SCALATRACE generates near constant sized
traces irrespective of the number of nodes of a parallel job.

2.2 The Ranklist Representation

Inter-node compression identifies events that are executed by
multiple MPI tasks. To perform the compression for one such
event, SCALATRACE attaches a ranklist, i.e., a list of the ranks of
the participating MPI tasks, to the event. Ranklists are constructed
in a recursive manner. Using the EBNF meta-syntax, a ranklist is

represented as
< dimension start iters stride {iters stride} >,

where dimension is the dimension of the group, start is the rank
of the starting node, and the < iters stride > pair is the iteration
and stride of each dimension. With the ranklist representation,
SCALATRACE is able to capture the spatial characteristics of a set
of nodes and to describe it succinctly.

2.3 Histogram-based Compression

SCALATRACE preserves the timing information of an execution
by recording the delta times, i.e., relative times between succes-
sive communication and computational stages. In the case where a
single communication/computational stage in the source code gen-
erates multiple delta times due to loop and/or parallel execution,
these delta times are merged using histograms during loop com-
pression and/or cross-node reduction. The histogram-based com-
pression is a lossy approach that captures the distribution of a set
of values instead of memorizing the exact values. While the his-
togram approach is particularly effective for scalable compression
of performance data in the form of numerical values, it is also ap-
plicable to MPI parameters, such as DEST and SOURCE, to more
closely capture the communication pattern.

3. TRACE COMPRESSION AND REPLAY

3.1 Elastic Data Element Representation

SCALATRACE II features a complete redesign of SCALATRACE,
ranging from the very low-level data structures to the core trace
compression algorithms. In this section, we introduce the novel
elastic data element representation.

A SCALATRACE trace file is a human-readable text file. A data
element in the trace file is an integer that represents the value of
either an MPI event parameter, such as the destination of a send, or
a program control flow parameter, such as the trip count of a loop.
From our experience with the previous version of SCALATRACE,
we learned that even though a data element is apparently simple
as an integer, it may become complicated when the trace is com-
pressed to a high degree. For example, assume a scalar integer
value d represents the destination of an MPI_Send operation. When
the same MPI_Send is called twice with destinations d; and d» in
consecutive loop iterations, the two events will be compressed due
to SCALATRACE’s loop compression mechanism (see Section[3.2).
Thus, the scalar value d evolves into a vector (dy, d»). When the
same loop has multiple iterations, the destination vector may grow
in a non-scalable fashion. Hence, a vector compression mechanism
is activated. Finally, the inter-node compression further imposes
another level of complexity on the data element representation. In
a nutshell, a compressed data element ought to contain not only the
parameter value, but also loop details and participant information.

In SCALATRACE 11, we introduce the elastic data element rep-
resentation and apply this representation to all the data elements
in the trace. The elastic data element representation is a list of
< value vector,ranklist > pairs, where a value vector is simply a
C++ vector of primitive integer values. On initialization, there is
only one such pair in the list consisting of a value vector of a sin-
gle parameter value and a ranklist of a single participant. During
loop compression, new values are appended to the value vector in
the order that they are generated so that the replay engine or other
trace analyzers can traverse the values in the correct order. During
inter-node reduction, we merge the ranklists when the value vec-
tors fully match, otherwise a new < value vector, ranklist > pair is
added to the list. As such, the data element is fully self-explanatory;



no additional information is required to resolve a data element for
a particular rank and loop iteration.

To keep the size of the value vector scalable, we constantly per-
form a loop compression against the entries in the vector. When-
ever possible, a vector of m - n elements is represented as a vec-
tor of m elements and n iterations. Note that the choice of the
vector compression algorithm is not set in stone. For example,
run-length encoding might be more efficient for loop parameters
when an MPI event is specific only to certain loop iterations (see
Section|3.2.1). Since the vector compression mechanism is encap-
sulated in the elastic data element representation, it is possible to
intelligently choose the best compression strategies and convert to
the most space-efficient format when necessary.

As the fundamental data structure of SCALATRACE 1, it is vi-
tal to guarantee its scalability even under extreme circumstances.
We realized that there always exist cases where even a sophisti-
cated algorithm fails to compress the value vectors. We there-
fore further enhanced the elastic data element representation to
exploit probability-based compression using histograms (see Sec-
tion [2.3) for selected parameter types, such as SOURCE, DEST,
and COUNT of point-to-point communication routines. Nonethe-
less, utilizing such lossy compression techniques poses challenges
for the trace replay. We have updated our past probabilistic trace
replay technique to address these challenges. The new approach is
discussed in detail in Section|3.5|

3.2 Compressing Partially Matching Loops

SCALATRACE utilizes the MPI profiling layer (PMPI) to inter-
cept MPI calls during application execution. It performs loop de-
tection and compression by searching for consecutive repeating
patterns in the MPI event sequence. In contrast to the instruction-
level binary instrumentation, which is able to pinpoint the entry and
exit points of loop structures, the SCALATRACE approach relies
heavily on recognizing repeating patterns. With SCALATRACE 11,
we redesigned the task-level loop compression algorithm from the
ground up to support the compression of loops with iteration-
specific behavior.

3.2.1 Handling Iteration-specific Behavior

Production-grade scientific applications such as the Parallel
Ocean Program (POP) demonstrate inconsistent behavior across
time steps. POP performs a set of computations and communica-
tions of an inner loop in multiple iterations in each time step. Due
to inconsistent data-dependent convergence in the computation, the
trip counts of the inner loop vary across different time steps. In
addition, branches inside loop structures also lead to loop itera-
tions with different event counts and unmatching event sequences.
This behavior can also be observed in many Adaptive Mesh Re-
finement (AMR) applications in which the input set is dynamically
rebalanced on a periodic basis. Due to the iteration-specific behav-
ior, SCALATRACE’s task-level loop compression fails to compress
loop iterations because the loop detection algorithm requires iden-
tical event sequences for loop iterations with matching inner loop
structures.

In SCALATRACE 11, we overcome the shortcoming by loosen-
ing the iteration matching criteria. In order for two consecu-
tive sequences of events El,...,Ea and Eb,....En to be consid-
ered a match, SCALATRACE II only requires their beginning and
ending events to match, i.e., E1 == Eb and Ea == En. Un-
der such criteria, once two matching loop iterations are identified,
SCALATRACE II's aggressive longest common subsequence (LCS)
based loop compression algorithm will merge the rest of the events,

irrespective of the loop lengths or the inner loop structures. As an
example, if a certain node executes the following code,
for(int i=0; i<2; i++){
MPI_Barrier(); // E1

if(i == 0)
MPI_Isend(); // E2
if(i == 1)

MPI_Irecv(); // E3
MPI_Barrier(); // E4
}
Figure 1: Loop with Iteration-specific Behavior
the trace after loop compression will be

El(4,) E2 E3 E4,

where the subscript of E1 indicates that E1 is the beginning event
of a loop structure of with 4 members events and 2 iterations. In
general, we use the following mnemonic to describe the loop stack
associated with a loop head event E:

Eny i) (ma i) (myin)” E s the head event of a series of n-nested
loops, where the outermost loop has a loop length (member event
count) of my and an iteration count of i, the second outermost loop
has a loop length of my and an iteration count of i, and so on.

A unique challenge of forcibly merging partially matching loop
iterations is to preserve the information of in which iteration a cer-
tain event was actually called. As in the example above, a mecha-
nism is needed to tell that £2 was only called in the first iteration
whereas E3 was only called in the second iteration. To address
this problem, we represent the loop information as elastic data el-
ements. Recall that the value vector grows as more values are ap-
pended to the vector due to loop compression. For example, as-
suming event E is the head event of loop L, E(4, 4, 5, 1,,) Indicates
that when the first time loop L is executed, it has a; member events
and by iterations, whereas for the second time, it has a, member
events and b, iterations. (This is possible when loop L is executed
during two different iterations of its parent loop). We hence treat
every event as a loop of length 1 and iteration 1. During loop com-
pression, we merge events according to the results of the longest
common subsequence analysis and manipulate the loop informa-
tion according to the following rules:

L. An event E( ¢ is called a dummy event because the loop
information indicates that it is executed zero times.

2. For event Ey, 4, b, by..)(c| cr.dly do...)...» 2dding an outer
loop E(a| ay...,1 1..)(ay az...,by by...)(c) crudy d..)... does not change
the loop structure in terms of the iteration times and event order
w.r.t. execution in nested loops. The added outer loop is thus called
a pseudo-loop with just one iteration.

3. If F:vent El (4 ay.py b2.)(er crond d...).. in. iteration /1
matches with E2(; j, i\ j». (ki ky...l; b...)... I iteration /2, merge
E1 and E2 by merging the loop information at corresponding lev-
els. Merging the value vectors is accomplished by appending the
value vector of /2 to that of /1. If the loop stack depth d; at E1
does not match the depth d, at E2, e.g., di > dp, align the loop
stacks by adding pseudo-loops to the top of the loop stack at E2 as
placeholders to avoid mismatches between the extra outer loops at
E1 and E2 during traversal.

4. If event E is in iteration /1 but not in iteration /2, create a
dummy event E’ of E and insert it into /2 immediately before the
matching event M of /1 and /2 returned by the longest common
subsequence analysis. The loop stack of E’ is created according
to that of E by adding pseudo-loops. The vector values at each
nest level of E’ are generated by referring to M for the number of
times it would be encountered if it were in /2. As such, E’ acts as a
placeholder to avoid mistakenly calling £ when executing /2. After
the insertion of all the iteration-specific events, merge iterations /1
and /2 according to the third rule.



5. When merging iteration /2 into iteration /1, if the outermost
loop of the head event E of /1 is not a loop of the entire event
sequence of /1, a new outer loop is identified and a new loop de-
scriptor (n,2) is added to the top of the loop stack of E, where n
equals to number of events in both /1 and /2.

In essence, the rules above ensure that the iteration-specific
events will only be executed in the correct iterations. The introduc-
tion of pseudo-loops as placeholders guarantees that 1) iteration-
specific events are evaluated but not executed in loop iterations they
do not belong to, and, therefore, 2) meaningful loop information is
evaluated and fetched in the correct loop iteration. Nevertheless,
the core of the loop compression algorithm is still the longest com-
mon subsequence analysis performed against the two sequences of
MPI events. The matching event pairs returned by the LCS analysis
are the basis for loop information adjustment. Therefore, the com-
plexity of this algorithm is O(m - n), where m and n are the numbers
of events in the two event sequences, respectively.

By applying the aforementioned loop compression guidelines,
SCALATRACE 1I is able to compress loops with iteration-specific
behavior. For example, the MPI code shown in Figure|1 is eventu-
ally compressed as follows:

El(42) E2(1 1 0) E3(10 1) E4

3.2.2 Handling Trailing Iterations

The NAS Parallel Benchmarks (NPB) BT code exemplifies a pat-
tern of an MPI event sequence that a multitude of stencil codes
share at the end of a time step. Each MPI task communicates with
its neighbors with a series of send, receive, and wait operations in
a loop, as illustrated in the simplified example of Figure 2]

/* m time steps */
for(int i=0; i<m; i++){
... // MPI events
for(int j=0; j<n; j++){
MPI_Isend();
MPI_Irecv();
MPI_Waitall(Q);
}

}
Figure 2: Loop with Trailing Iterations

The original SCALATRACE compresses the outer loop only if
n, the trip count of the inner loop, is a constant. In contrast,
SCALATRACE II's more aggressive loop compression discussed in
Section[3.2.1]can always compress the outer loop even if 7 is not
a constant, e.g., n = f(i). However, since SCALATRACE 11 eagerly
compresses detected loops, the second iteration of the outer loop
will be compressed immediately when the first iteration of the in-
ner loop terminates. As a result, the remaining n — 1 iterations of
the inner loop cause the trailing iterations problem.

To address the trailing iterations problem, we redesigned the en-
tire loop detection and compression algorithm to perform a de-
layed merge, as shown by Algorithm[1. Essentially, Algorithm [T
does not eagerly merge a newly identified loop iteration. It rather
marks it as a pending iteration so that a potential trailing itera-
tion can be merged with the pending iteration later without hav-
ing to perform any decompression. Specifically, after an event
E is appended to the trace, DETECTLOOP() is called to find the
target_head, merge_tail, and merge_head for two matching loop
iterations ending with rarget_tail == E. Assuming a loop struc-
ture is found, the sequence merge_head, ..., merge_tail can be
1) the ending subsequence of a pending iteration detected previ-
ously, 2) a pending iteration whose match has already been found,
or 3) a sequence independent of any prior loop structures. In the
first case, the sequence rarget_head, ..., target_tail is identified as
a trailing iteration. An event sequence can simultaneously be the

trailing iteration of multiple pending iterations in a nested manner,
i.e., line 16 - 21 of Algorithm|1 updates all the pending iterations
by appending the trailing iteration to each of them. In the sec-
ond case, where the sequence merge_head, ..., merge_tail is itself
a pending iteration, the sequence rarget_head, ..., target_tail is
then identified as the next iteration of the pending iteration. Since
it is now safe to conclude that there will be no more trailing events
for the pending iteration merge_head, ..., merge_tail, Algorithm[L
performs a delayed iteration merge by calling MERGEPENDIN-
GITERATION() (line 22 - 24). Finally, the newly detected iter-
ation rarget_head, ..., target_tail is always marked as a pend-
ing iteration in either case. The function MERGEPENDINGITER-
ATION() merges the iteration between the events pending_head
and pending_tail with the iteration between the memorized
events head and tail. Before calling LCSLOOPCOMPRESSION()
which implements the algorithm introduced in Section (3.2.1]
MERGEPENDINGITERATION() first compresses pending iterations
of all nested inner loops (line 32 - 51) by recursively calling itself.
Finally, when MPI_Finalize is called, all loops either have zero or
one pending iteration. To eventually merge them, the function Fi-
NALIZEPENDINGITERATIONS() is called, which treats the entire
trace as an iteration and recursively merges inner loops by calling
MERGEPENDINGITERATION().

3.3 Approximate Stack Signature Matching

SCALATRACE preserves a call stack signature by logging the call
sites of the calling stack for each event. Using these stack signa-
tures, SCALATRACE is able to distinguish MPI calls of the same
type by their locations in the program. The stack signature there-
fore serves as the only basis for comparison of events, which then
makes loop detection possible. Nonetheless, strictly enforced stack
signature comparison may not always benefit trace compression.
For example, POP wraps MPI_Bcast of different data types with
different functions, which are then invoked in 36 different files at
approximately 400 different locations. Experimental results show
that due to such usage, the size of the trace of the initialization stage
— astage that is usually less important for performance analysis —
accounts for 26% of the size of the final trace. More commonly, a
number of scientific applications, including POP and the NPB BT
and SP codes, are coded according to the data decomposition, their
communication topology, or their simulation stages, with the MPI
events hidden deep in the call stack, as shown in Figure[3. As a
result, these applications also create trace events with various stack
signatures even though they are functionally symmetric. In both
cases, there exists the need to trade the call stack information for
better compression.

simulate(){ solve_x(){ solve_y({
while(i<s){ // compute // compute
solve_x(); MPI_Isend(); MPI_Isend();
solve_y(); MPI_Irecv(); MPI_Irecv();
i++; MPI_Wait(); MPI_Wait();
} MPI_Wait(); MPI_Wait();
} } }

Figure 3: The Simplified NPB BT Code

In SCALATRACE 11, we loosened the stack signature compari-
son criteria to tolerate a pre-defined number of different frames.
When comparing two stack signatures, we start from the first call
site (the main function) and compare the call sites in corresponding
frames one by one. The comparison returns ¢rue only if the num-
ber of different frames is less than the user-defined threshold. As
an ongoing improvement, we also allow users to specify a range of
instruction addresses, so that the call sites within it will always be
considered a match. During loop compression, we compare event
E1 in iteration /1 with event E?2 in iteration /2 in term of both event



Algorithm 1 Loop Compression with Delayed Merge

Precondition: T: the trace after a new event was appended as the new tail

1: function DETECTLOOP(T)

2 target_tail «— T.tail

3 merge_tail < T.FINDMATCH(target_tail)

4 target_head < merge_tail.next

5:  while true do

6: merge_head < T.FINDMATCH(TARGET_HEAD)

7 if merge_head.isPendingMember == true then
iteration, more checks

8: pending_tail «— FINDPENDINGTAIL(merge_head)

9 if pending_tail == merge_tail then > trailing iteration of a pending

iteration must follow the pending iteration immediately

> potential trailing

: break
11: end if
12: else > not a trailing iteration, no more check
13: break
14: end if
15:  end while
16: if target_head...target_tail is a trailing iteration then
17: PIs < FINDPENDINGSFORTRAILING(target_head, target_tail)
18: for pendinglteration « PIs.first, Pls.last do
19: pendinglteration. AddTrailing(target_head, target_tail)
20: end for
21: end if
22: if merge_head...merge_tail is a pending iteration then > perform the

delayed merge: merge a pending iteration only when the next iteration (namely,
target_head...target_tail) is found

23: MERGEPENDINGITERATION(merge_head, merge_tail)
24 end if

25: for event < target_head, target_tail do

26: event.isPendingMember « true

27: end for

28: end function

29: function MERGEPENDINGITERATION(pending_head, pending_tail)

30:  head — FINDKNOWNMERGEHEAD(pending_head)
31: tail «— FINDKNOWNMERGETAIL(pending_tail)
32: for event < head, tail do

33: if event. [ISKNOWNMERGEHEAD() == true then
34 h — FINDPENDINGHEAD(event)

35: t — FINDPENDINGTAIL(event)

36: new_tail < MERGEPENDINGITERATION(h, t)
37: if tail == t then

38: tail < new_tail

39: end if

40: end if

41: end for

42:  for event + pending_head, pending_tail do

43: if event. [SKNOWNMERGEHEAD() == true then
44: h — FINDPENDINGHEAD(event)

45: t «— FINDPENDINGTAIL(event)

46: new_tail — MERGEPENDINGITERATION(h, t)
47: if pending_tail == t then

48: pending_tail < new_tail

49: end if

50: end if

51: end for

52:  LCSLooPCOMPRESSION(head, tail, pending_head, pending_tail)
53: DELETEEVENTS(pending_head, pending_tail)

54 return tail

55: end function

56: function FINALIZEPENDINGITERATIONS(T)

58: end function

type and stack signature. If their signatures differ less than the pre-
defined limit, we replace E2’s signature with that of £1 and up-
date all the signature-annotated statistics of E2’s succeeding events
accordingly. With such user-configurable stack signature impreci-
sion, SCALATRACE 11 is able to better exploit the potential of trace

compression than the original SCALATRACE for applications like
POP or BT, as illustrated in Figure|3| The user-defined limit serves
as a tuning parameter to trade off compression against accuracy.

3.4 Loop Agnostic Inter-node Compression

SCALATRACE performs inter-node trace compression to exploit
the single-program multiple-data (SPMD) paradigm of scientific
applications. However, the compression capability of the original
SCALATRACE is limited by the fact that loop structures must be
treated as an indivisible unit. For example, the code in Figure [4
cannot be compressed across nodes because the for loops on dif-
ferent nodes have mismatching trip counts and event sequences.
The strong dependence on the perfect matching of loop structures
is partially alleviated by the recursive loop matching algorithm pro-
posed in our previous work [37], but it still cannot handle the case
where loop trip counts do not match.

Rank O: Rank 1:

: for(i=0;i<5;i++){ 1: for(i=0;i<6;i++){
MPI_Isend(1); 2 MPI_Isend(0);
MPI_Irecv(1); 3: MPI_Irecv(0);

4 MPI_Waitall(2);
: MPI_Isend(1); 5:
: MPI_Irecv(1);

1
2
3
4: }
5 }
6
7: MPI_Waitall(12);
Figure 4: Code Needs Loop Agnostic Inter-node Compression

The restrictions on loop structures for inter-node compression
are eliminated in SCALATRACE 1I due to the introduction of the
elastic data element representation. Close examination shows that
the crux of the compression problem stated above is the coupling of
the loop information and the event participants information. Specif-
ically, the loop structure is formed during task-level loop com-
pression and only applies to the same task. Given two loop head
events from different MPI tasks, they cannot be merged if the loop
structures diverge, because there is no mechanism to recover the
task-specific loop information once it is compressed. By repre-
senting the loop information as elastic data elements, a separate
ranklist is attached for each loop data element (including trip count
and loop length). When merging two loop head events, we sim-
ply merge the loop structures at each corresponding loop level by
following the general rules of compression of the elastic data el-
ement representation. Namely, if the loop structures match, they
are compressed by merging their ranklists. If the loop structures
at a certain loop level do not match, they are merged by adding
another < value vector,ranklist > pair to distinguish their task-
specific loop information.

By decoupling loop information from event participant infor-
mation, SCALATRACE 1I is able to perform loop structure agnos-
tic inter-node compression. During inter-node compression, the
longest common subsequence is determined by evaluating only the
stack signatures of the events originating from different MPI tasks,
and the events are then merged accordingly. For example, the
events of the code shown in Figure[4 will be merged into the trace
shown in Figure 5, where the number in brackets shows the ranklist
of the loop information prior to merging, and the MPI parameters
are ignored.

Rank  Event
01 MPI_ISEI’ld()(2,5)[0](3‘6)[1]
01 MPI_Irecv()
0 MPI_Isend()
0 MPI_Irecv()
01 MPI_Waitall()
Figure 5: Final Trace of the Code in Figure[d|

Lastly, since the new inter-node compression algorithm is loop
agnostic, it does not have to perform LCS analysis recursively for
each level of nested loops. Hence, assuming m and n are the lengths




of two task-level traces, the complexity of the inter-node compres-
sion algorithm is O(m - n).

3.5 Replaying Non-deterministic Traces

For scalability reasons, SCALATRACEII's elastic data ele-
ment representation may internally transform from a lossless <
value vector,ranklist > pair representation to a lossy histogram
representation for pre-configured parameters including SOURCE,
DEST, and COUNT. As was discussed in our prior work, represent-
ing non-performance data, such as DEST, as histograms still pre-
serves meaningful information regarding the communication topol-
ogy [37]. However, it poses a great challenge to the re-creation of
the program behavior from the probabilistic trace because critical
communication parameters are not accurate anymore.

SCALAREPLAY 1I is the new replay engine designed to cope
with probabilistic traces. In contrast to the previous version of
SCALAREPLAY, we redesigned the trace traversal algorithm to
support SCALATRACE II’s loop agnostic traces. We have also made
key improvements in SCALAREPLAY II to boost the robustness
and replay accuracy. SCALAREPLAY II utilizes a coordinated ran-
dom value selection approach described in our previous work. In
essence, during replay, nodes parse send events but skip receive
events in the trace. At send events, senders select receivers from
the DEST histograms by referring to random numbers. In order
to generate matching receives for the send operations, each node
parses the traces of other nodes to locate send operations addressed
to itself. This is made possible by the fact that senders and their
potential receivers agree on the random number used for value se-
lection (by generating an identically seeded sequence of random
numbers). In this way, the overhead of exchanging control mes-
sages via back-channel communication is avoided.

Improvements for SCALAREPLAY II center around a novel trace
traversal strategy. In the past approach, each node used a single
pointer to traverse a global trace; whenever there is a loop struc-
ture, the node traverses it as a participant. However, this is impos-
sible with SCALATRACE II's new trace format because loop struc-
tures interleave in the final trace, as shown in Figure|5] In addition,
traversing with a single pointer also causes timing accuracy prob-
lems. With the previous approach, a node parsed every event in
the order it was seen during the traversal. However, due to a stack
signature mismatch, events that happened simultaneously may be
recorded far apart in the trace, as shown in Figure|6] With the single
pointer approach, task O will not issue MPI_Irecv(1) until it reads
event 4 after having performed some computation for 10 seconds
at event 2. As a result, task 1 will be blocked on the blocking send
(event 4) for 10 seconds and the total runtime of the program ap-
proaches 20 seconds, i.e., almost twice as much as it ought to be.

1: if (rank==0){ ID Rank Event

2: MPI_Irecv(1); 1 0 MPI _Irecv(1)
3: compute (10s) ; 2 0 compute(10s)
4: MPI_Wait(); 30 MPI_Wait ()
5: }else if(rank==1){ 4 1 MPI_Send(0)
6: MPI_Send(0); 5 1 compute(10s)
7: compute (10s) ;

8: }

Figure 6: Trace Needs Multiple Context Pointers for Replay

To address these issues, SCALAREPLAY II utilizes multiple
traversal context pointers during replay. Intuitively, a trace re-
flects the result of a parallel execution, where the parallel pro-
cesses progress concurrently through potentially distinct control
flows with occasional synchronizations. The replay engine mimics
this process by replaying with one primary traversal pointer while
keeping track of the other nodes’ parallel executions with multi-
ple additional traversal context pointers. In SCALAREPLAY 11, a

traversal context is a lightweight data structure that keeps track of
the progress of the traversal on behalf of a certain MPI task. It
consists of an event pointer, a loop information manager, a random
number manager, and a timer. The event pointer always points to
the next event to be replayed/evaluated. It supports operations such
as hasNext() and next (). The loop information manager keeps track
of the traversal by memorizing the current loop stack as well as
iteration counts at each loop level. The random number manager
guarantees that contexts of the same rank on different nodes always
agree on the same series of random numbers. Lastly, the timer is
used to calculate the aggregated execution time at a certain event
according to the recorded times of events traversed so far.

During replay, each node progresses according to its primary
context, i.e., the context with the rank of a node. It issues all the
events other than receives, and sleeps for all recorded computa-
tional phases within its context as a normal replay. To post match-
ing receives for potential senders, each node also traverses the trace
of the other nodes by maintaining secondary traversal contexts for
them. When traversing secondary contexts, all non-send events and
computations are ignored so that the current node can quickly iden-
tify send operations addressed to itself. However, the current node
does not post a receive immediately when a send is identified. In-
stead, it postpones the receive to approximately the time that a cor-
responding send operation is issued on the sender side, which can
be estimated by referring to the timer of the sender’s secondary
context. By posting receives in this way, SCALAREPLAY II man-
ages to clear the system receiving buffer in a timely manner and
thus improves replay time accuracy.

To further improve the performance and scalability of
SCALAREPLAY 11, additional optimizations are implemented. In
practice, most parallel applications are designed such that each
node only has a limited number of point-to-point communication
destinations (otherwise, collectives are used). We therefore have
introduced a negotiation stage before the replay in which each node
calculates a destination set of a configurable size and informs se-
lected receivers so that each node only has to maintain a limited
number of traversal contexts during replay. In addition, we also im-
proved the performance of the replay engine by overlapping context
management with simulated compute times that the primary con-
text has to perform anyhow. With these optimizations, the replay
engine manages to scale to a large number of nodes.

4. EVALUATION

We evaluated SCALATRACE 11 with regard to two aspects: (1)
its effectiveness of trace compression, as well as the advantages
of different compression optimizations, and (2) correctness and
timing accuracy of probabilistic replay. For experiment (1), we
used a subset of the NAS Parallel Benchmark suite (version 3.3
for MPI) [2], including BT, CG, LU, MG, and SP, the Sweep3D
neutron-transport kernel [33], and the Parallel Ocean Program [28].
We chose these benchmarks because they exercise both collectives
and point-to-point communications in multiple time steps. Be-
sides, some of these benchmarks either do not have consistent loop
behavior or do not show strict SPMD regularity. Consequently,
these benchmarks poses great challenges to the existing trace com-
pression libraries, including the last generation SCALATRACE.
In these experiments, we configured SCALATRACE II to use dif-
ferent compression algorithms and we study the impact of each
option. In experiment (2), we assessed SCALATRACE II's and
SCALAREPLAY II's capabilities of preserving and re-producing
computational performance with respect to wall clock execution
times. Particularly, we conducted all replay experiments with prob-
abilistic traces, which is significantly more challenging than re-



playing with lossless traces. The second experiment used the same
benchmarks as in experiment (1).

All experiments were conducted on ARC, a 1,728 core cluster
with 108 compute nodes, 32 GB memory per node, and Infiniband
QDR interconnect. Due to limited access to the system, our exper-
iments run on a subset of nodes sufficient to reflect trends of trace
size growth with respect to increasing execution scale.

4.1 Trace File Size

The first experiment evaluates SCALATRACE II'S compression
effectiveness with the NPB BT, CG, LU, MG, SP codes, Sweep3D,
and POP. We chose these benchmarks because they are sten-
cil codes exhibiting multi-dimensional communication topologies
and complicated loop structures. Among these benchmarks, MG,
SP, and POP demonstrate inconstant message sizes and irregular
SPMD behavior, and are hence particularly challenging for lossless
and structure-preserving trace compression. In these experiments,
we compared SCALATRACE II with our past approach. In order to
demonstrate the effect of different configurations, we itemize the
optimizations (as explained below) and collected traces by apply-
ing the options in an incremental manner:

e ScalaTrace II: features only the loop agnostic inter-node com-
pression enabled by the elastic data element representation;

e LCS Loop Compression: additionally performs the longest
common subsequence based loop compression;

e Approximate Signature Matching: adds a finer-grained opti-
mization that matches and merges events when stack signatures
differ by no more than a pre-defined threshold;

e Parameter Histogram: adds lossy compression that converts
overlong value vectors into histograms.

According to the improvements achieved with SCALATRACE 11,
benchmarks are divided into three categories and results are de-
picted in Figure[7]

The first category consists of BT and CG. These benchmarks
either demonstrate perfectly matching loop iterations or regular
SPMD behavior that leads to structurally identical task-level traces.
Hence, our past approach is able to capture the loop structures and
has little difficulty merging time step loops across tasks. Conse-
quently, SCALATRACE II only shows limited reduction in trace size
for BT and CG when configured to be fully lossless. Neverthe-
less, there is still room for improvement when fuzziness is allowed.
For example, by applying the approximate stack signature match-
ing, SCALATRACE II manages to deliver another 22% trace size
reduction for BT on average. More importantly, when parameter
histograms are enabled for elastic data elements, we eventually ob-
tained constant sized traces for BT and CG — a critical improve-
ment that makes a key difference at large scale.

LU and Sweep3D constitute the second category for which
SCALATRACE II improves trace compression by forcibly merging
task-level traces in a loop agnostic way. Both LU and Sweep3D
are stencil codes with a 2D task layout. Depending on the loca-
tion in the 2D communication topology, a node may have a differ-
ent number of neighbors, and thus follow a communication pat-
tern that is unique to one of the nine communication groups (4
corners, 4 boundaries, and interior nodes). Because the past ap-
proach matches the loop structures as an entirety during inter-node
reduction, it fails to exploit the similarities in time step loops across
communication groups. SCALATRACE 11 takes advantages of these
similarities. Consequently, by applying loop agnostic inter-node
compression alone, SCALATRACE II manages to reduce trace sizes
by 28% and 41% for Sweep3D and LU, respectively. By enabling
extra optimizations, SCALATRACE II eventually generates traces
that are 43% and 65% smaller for LU and Sweep3D, respectively.

App Time ===
Replay Time soseson

16 32 1 128 256
Number of Nodes
Figure 9: Probabilistic Replay Time Accuracy of POP

The most compelling improvement, however, is observed for
the NPB MG and SP codes, and the Parallel Ocean Program.
Among these benchmarks, SP sends messages with fluctuating
sizes in loops. This prevents loop compression of the last genera-
tion SCALATRACE but can be handled with SCALATRACE 11 where
all parameters are represented as elastic data elements. MG is the
most challenging test case of the NAS Parallel Benchmark suite.
It features a complicated communication pattern consisting of a
primary 7-point 3D torus and a secondary nested 3D torus among
nodes at particular positions in the topological space. Due to the
interleaving of these two patterns, MG demonstrates both iteration-
specific behavior and task-specific behavior, and thus poses great
challenges for both intra-node and inter-node compression. By uti-
lizing approximate loop iteration matching and loop agnostic inter-
node compression, SCALATRACE II produces lossless traces that
are orders of magnitude smaller for MG and SP, as depicted in Fig-
ure[7(f)|and[7(g)| on a logarithmic y axis. To further compress the
varying message sizes for SP, we enabled lossy tracing with param-
eter histograms and thus obtained near constant sized traces that are
collectively only 0.5% of the trace size of the past approach.

POP performs ocean simulations for multiple time steps. It fea-
tures both inconsistent loop behavior across time steps and diverg-
ing task-level behavior that hinders inter-node compression. In pre-
vious work, we applied probabilistic compression techniques at the
MPI parameter level and managed to greatly reduce POP’s trace
size [37]. With SCALATRACE II, we improve our previous work
by more systematically exploiting structural properties of the trace.
As shown in Figure[7(h)] by utilizing loop agnostic inter-node com-
pression, we reduced the trace size by a maximum of two orders of
magnitude. This is almost as much of an improvement as we ob-
tained with the previous lossy approach, yet we still maintain loss-
less traces. Furthermore, after additional optimizations are enabled,
we eventually obtained near constant sized traces that are 48 to 351
times smaller. Besides, we also conducted experiments to assess
the time step scalability, namely how efficient SCALATRACE II’s
longest common subsequence based loop compression can detect
and compress time step loops. For this experiment, we keep the ex-
ecution scale at 64 MPI tasks and increase the number of time steps.
Experimental results in Figure[7(i) show that, by utilizing the LCS
based approximate loop matching, SCALATRACE II is able to pro-
duce a constant sized trace. In contrast, the traditional approach is
sensitive to iteration-specific events and thus is not time step scal-
able for POP. From these experimental results, we conclude that
even with parameter-level probabilistic compression techniques, it
is still possible to analyze structural properties in the trace system-
atically and perform compression in a top-down manner.
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4.2 Probabilistic Replay Time Accuracy

The second set of experiments assesses SCALATRACE IT’s and
SCALAREPLAY II'’s capabilities of preserving and re-producing
computational times. We focus on 1) checking if SCALAREPLAY 11
is able to correctly coordinate the random value selection across
nodes to replay probabilistic traces without deadlock, and 2) de-
termining how accurate probabilistic replay can re-produce execu-
tion times of an original application. We conducted these exper-
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iments with the same set of benchmarks used for the first exper-
iment. Among these benchmarks, the NAS Parallel Benchmarks
and POP are strong-scaling codes while Sweep3D is a weak-scaling
code. Problem sizes were chosen for strong-scaling benchmarks to
ensure that a reasonable amount of computation exists across all
tested scales. To provide input for the replay engine, we config-
ured SCALATRACE II to collect probabilistic traces where critical
MPI parameters (e.g., SOURCE, DEST, COUNT) are represented
as histograms. Particularly, we set the histogram-triggering thresh-
old to 1 to forcibly convert all elastic data elements into histograms
irrespective of how concise lossless value vectors actually are.

Figures [8]9] compare the probabilistic replay times with the ex-
ecution times of the original applications. First, being able to
obtain these results allows us to validate that the coordinated
random value selection of the replay algorithm is deadlock free
for the evaluated benchmarks. Besides, the experimental results
also show that SCALAREPLAY II can accurately re-produce the
computational performance of the original applications. Quanti-
tatively, the mean absolute percentage error of the replay times
(i.e., 100% x |(Treplay — Tapp)/Tapp|) across all test cases in Fig-
ures[8[9]is only 5.7%. Such high replay timing accuracy indicates
that 1) the execution times are accurately preserved within lossy



traces and 2) the probabilistic replay approach is able to re-produce
the runtimes of the original applications without introducing un-
manageable control overhead. Overall, given the accurately pre-
served and re-produced performance characteristics, we conclude
that the histogram-based lossy compression, which has been shown
to produce powerful reductions in the trace size, is equally viable
in scenarios where timing accuracy is required.

S. RELATED WORK

Our work is closely related to prior research in the area of
parallel application tracing and profiling [23, 113, 31]. Tra-
ditional tracing tools such as Vampir [23], Extrae [8], and Par-
aver/Dimemas [27] collect plain application traces that are not scal-
able due to the sheer size of the performance data gathered. The
Open Trace Format (OTF) aims at scalable tracing [17]. But OTF
utilizes regular zlib compression, and tools based on it generally
lack structure-aware compression. Hence, these tools cannot fully
exploit structural similarities, nor are they suitable for trace-based
scalability analysis and code generation [35}36,/34].

SEQUITUR exploits hierarchical structures in sequences of dis-
crete symbols for compression [24}[25]. It constructs a context-free
grammar for a given sequence by representing repeating diagrams
as non-terminals. Because SEQUITUR excels in both data com-
pression and structural inference, it is employed by an array of al-
gorithms and tools as the compression infrastructure for a variety of
purposes. For example, Marathe et al. utilize SEQUITUR to com-
press data access instructions in their memory tracing work [22].
Larus proposes whole program paths (WPP) to capture a program’s
dynamic control flow, where an enhanced SEQUITUR algorithm
is designed to compress acyclic path traces [19]. Krishnamoorthy
et al. present a trace compression algorithm that is largely based
on SEQUITUR [18]. To fully exploit the pattern detection capa-
bility of SEQUITUR, this work performs trace compression at ar-
gument level instead of event level. While this optimization is ef-
fective in improving the compression, it also makes the final trace
unreadable and not structure-preserving. In general, if the program
structure is not preserved at the event level, most post-processing
or trace-based performance analysis becomes difficult or even in-
feasible because decompressing and effectively rendering the trace
may require large amounts of memory and computing power that
are not available on commodity desktops or laptops.

Recent advances in online trace compression utilize domain-
specific techniques to achieve trace size reduction. SCALATRACE
performs task-level loop compression and cross-node trace com-
pression in a memory-efficient manner [26]. It generates near con-
stant sized or orders of magnitude smaller traces for SPMD codes.
Xu et al. construct coordinated performance skeletons from traces
to estimate application execution time in new hardware environ-
ments [38,39]. They adapt a pattern analysis algorithm from bioin-
formatics to perform loop analysis. Nonetheless, due to the lack of
on-the-fly loop compression, this tool is subject to limitations on
time step scalability. Knupfer et al. utilize Complete Call Graph
(CCQG) to hierarchically store an application trace according to the
call stack [16]. By comparing and merging similar subgraphs, the
trace is compressed in a bottom-up fashion. In contrast to our work,
CCGs cannot handle inconsistent program behavior that leads to
mismatching low-level sub-structures in CCGs.

Besides lossless or near lossless tracing techniques, our work is
also related to the work that provides lightweight application pro-
filing functionalities. For example, mpiP collects aggregated statis-
tical information about MPI functions and computation times [32].
Gprof measures the durations and frequencies of procedures using
a hybrid approach of instrumentation and sampling [14]. HPC-

Toolkit collects call path profiles [9}1]. To further reduce the over-
head involved in profiling, Gamblin et al. utilize statistical sam-
pling and parallel clustering techniques to reduce the number of
parallel processes from which performance data is collected, and
thus improve the scalability of parallel profiling tools [12,11,/10].
In contrast to the lossless tracing approach, tools like mpiP gen-
erally report simple and high-level information that is only suit-
able for a superficial understanding of performance problems. For
in-depth performance debugging or complicated analysis, applica-
tion tracing is still necessary. As an instrumentation framework
for both communication event tracing and performance data col-
lection, SCALATRACE II can employ the statistical methods pro-
posed in prior research to improve its numerical performance data
collection and compression. This is subject to future work.

A unique approach for quick acquisition of communication
traces involves program slicing. Program slicing is a source code
analysis technique that effectively reduces a program to a subset of
the statements (a program slice) that is relevant to a target state-
ment or variable. As an example, Zhai et al. proposed the FACT
approach [42]. This approach constructs a program slice for MPI
calls and strips out the computation. With the communication-only
program slice, it then becomes feasible to obtain the communica-
tion trace readily without executing the computational part. While
it is possible to combine program slicing with existing communi-
cation trace compression techniques, an inherent shortcoming of
slicing is that it neither captures execution times, nor can it handle
data-dependent control flows. Consequently, this technique is only
applicable in limited scenarios.

In addition to techniques on communication tracing and profil-
ing, our work is also relevant to prior research on parallel replay.
For example, RoltMP proposes a Lamport timestamp-based ap-
proach for deterministic replay of programs with non-deterministic
receives [30]. MPIWIZ is a deterministic replay method that can
only replay a subset of the tasks of an MPI application [40]. PHAN-
TOM employs deterministic replay and cross-node performance
clustering techniques to predict the performance of parallel appli-
cations on future systems .

In a broader sense, prior research on memory tracing and mem-
ory trace-based performance analysis supplements this work. As
the next generation of SCALATRACE, SCALATRACE II continues
to utilize Regular Section Descriptors (RSDs) and Power-RSDs
(PRSDs) to describe nested loop structures in a trace. RSDs were
originally proposed to track inter-procedural side effects on com-
mon substructures of arrays to promote compiler-aided paralleliza-
tion [15]. Marathe et al. adapted the RSD representation and
proposed PRSDs for memory trace compression 20]. Bu-
danur et al. further designed Extended-PRSDs to perform multi-
level scalable parallel memory tracing in SCALAMEMTRACE [3].
SIGMA employs online trace compression to collect lossless mem-
ory traces for simulation and performance tuning [6]. Elnozahy
et al. utilize loop detection and reduction for address trace com-
pression [7]. VPC3 employs value predictors to compress events
comprising program counter values and extended data fields [4].

6. CONCLUSION

Application tracing is one of the most important and useful ve-
hicles for performance analysis and debugging of parallel applica-
tions. Yet, designing scalable and efficient parallel tracing tools for
exascale systems and grand-challenge HPC applications remains
an open problem. In this work, we contribute SCALATRACE 11, a
fundamental redesign of SCALATRACE that features a spectrum of
innovative lossless compression techniques aiming at scalable trace
compression of large-scale scientific codes with irregular SPMD



behavior or even MPMD characteristics.

We designed an elas-

tic data element representation to address compression inefficien-
cies of previous work. Enabled by the new encoding scheme,
novel algorithms are devised to perform approximate loop match-
ing and loop agnostic cross-node trace compression. We also in-
corporated parameter histogram-based lossy compression capabil-
ities into SCALATRACE II and adapted the replay subsystem to

enable more accurate probabilistic trace replays.

We evaluated

SCALATRACE 11 with the NAS Parallel Benchmarks, Sweep3D,
and a real-world application, the Parallel Ocean Program. Exper-
imental results demonstrate that the redesigned trace compression
algorithms are particularly effective for applications with inconsis-
tent behavior across time steps and MPI tasks. In comparison to
prior research, we deem SCALATRACE II a solid improvement to-
wards exascale performance analysis.
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