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Abstract Ad hoc synchronizations are pervasive in multi-threaded programs. Due to
their diversity and complexity, understanding the enforced synchronization relation-
ships of ad hoc synchronizations is challenging but crucial to multi-threaded program
development and maintenance. Existing techniques can partially detect primitive ad
hoc synchronizations, but they cannot recognize complete implementations or in-
fer the enforced synchronization relationships. In this paper, we propose a frame-
work to automatically identify complex ad hoc synchronizations in full and infer
their synchronization relationships. We instantiate the framework with a tool called
BARRIERFINDER, which features various techniques, including program slicing and
bounded symbolic execution, to efficiently explore the interleaving space of ad hoc
synchronizations within multi-threaded programs and collect execution traces. BAR-
RIERFINDER then uses these traces to characterize ad hoc synchronizations into dif-
ferent types with a focus on recognizing barriers. Our evaluation shows that BARRI-
ERFINDER is both effective and efficient in doing this, and BARRIERFINDER is also
helpful for programmers to understand the correctness of their implemented ad hoc
synchronizations.
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1 Introduction
1.1 Motivation

In the current multi-core era (Herb 2005; Sutter and Larus 2005), multi-threaded pro-
gramming has become imperative to leverage the full power of modern CPUs. As
multi-threaded programs share resources across threads, programmers rely on proper
synchronizations to ensure program correctness and efficiency. While a common set
of standard synchronizations, such as mutex and condition variable operations, are
provided by different languages or libraries, a recent study (Xiong et al. 2010) finds
that programmers frequently choose not to use these standard synchronizations but
implement their own ad hoc synchronizations for functionality or performance rea-
sons. Researchers were able to find 6 to 83 ad hoc synchronizations in each of the 12
studied program suites (Xiong et al. 2010).

Because of the critical role that synchronizations play in multi-threaded pro-
grams, it is important to have an accurate understanding of the semantics of syn-
chronizations and their enforced synchronization relationships. While standard syn-
chronizations are easy to recognize and understand, ad hoc synchronizations have
unmodularized implementations and enforce diverse synchronization relationships,
making synchronization understanding a challenging task.

Fig. 1 shows an example to illustrate the basic concepts of ad hoc synchroniza-
tions. The ad hoc synchronization in Fig. 1 is formed by statements S, and S3, where
the shared variable flag is called a sync variable, the while loop in S3 is a sync
loop, S> is a sync write, and the sync loop and sync write compose a sync pair. In this
illustrating example, the sync pair formed by S, and S3 enforces an order relationship
between S| and S, that S| happens before Sy4.

//Thread 1 //Thread 2
counter = 5; //S; while (flag); //S3
flag = false; //S> counter++; //S4

Fig. 1: An ad hoc synchronization example formed by S, and S3. counter and flag
are global variables. f1lag is initialized to true.

To detect ad hoc synchronizations, researchers have already proposed various
techniques (Jannesari and Tichy 2010, 2014; Tian et al. 2008, 2009; Xiong et al.
2010; Yin 2013; Yuan et al. 2013). However, existing techniques only detect sync
pairs, i.e., sync loops and their corresponding writes, but they do not further infer
synchronization relationships being enforced. This is problematic, as a sync pair can
implement a mutual-exclusion relationship or different types of order relationships.
For example, Fig. 2 shows another ad hoc synchronization with the sync pair in lines
23 and 28 labeled, but it implements a barrier.

Not only do programmers have difficulties in understanding the intended order
relationship by the sync pairs and verify their correctness (Gu et al. 2015), but also
multi-threaded program development tools, such as data-race detectors (Bessey et al.



BARRIERFINDER: Recognizing Ad Hoc Barriers 3

1 int gsense = 1, gcount = 0, P = ...; // input
2 main() {
3 for (i=1; i<P; i++)

pthread_create(SlaveStart, ...);

4

5 .

6 SlaveStart();
7

8

}
SlaveStart() {
9 ... // computation and two barriers
10 for (...) {
11 ... // computation
12 { // barrier begin
13 int lsense = gsense;
14 while (1) {
15 int oldcount = gcount;
16 int newcount = oldcount + lsense;
17 // atomic compare exchange using assembly
18 int updatedcount = CmpXchg(&gcount,
19 oldcount, newcount);
20 if (updatedcount == oldcount) {
21 if ((newcount == P && lsense == 1)
22 or (newcount == 0 && lsense == -1)) {
23 gsense = -lsense; // the sync write
24 }
25 break;
26 }
27 }
28 while (gsense == lsense) ; // the sync loop
29 } // barrier end
30 ... // computation and one barrier
31 }
32 ... // computation and one barrier
33 }

Fig. 2: Extracted code from SPLASH2 LU

2010; Lee et al. 2012), concurrency-bug finding tools (Park et al. 2009; Zhang et al.
2010), automated bug-fixing tools (Jin et al. 2011, 2012), synchronization determin-
ism runtime (Cui et al. 2013; Zhao et al. 2019), and synchronization-oriented per-
formance profilers (Chen and Stenstrom 2012; Yu and Pradel 2016), cannot directly
use the ad hoc synchronization detection results of these existing tools. For example,
SyncFinder (Xiong et al. 2010), which is the state-of-the-art tool for detecting ad hoc
synchronizations, can detect the sync pair in Fig. 1, but it does not determine the order
relationship enforced by S, and S3. As a result, race detectors need to conduct further
analysis on top of SyncFinder results. Otherwise, they could conclude that S and Sy4
constitute a data race on the shared variable counter, resulting in a false positive. To
determine the order relationship in Fig. 1, one could enumerate all possible interleav-
ings and see the temporal invariant that S§; will always happen before S4. The order
relationship in this particular case is not difficult to determine due to the simplicity
of this example.

However, inferring the synchronization relationship after detecting sync pairs is
not always as easy as the one in Fig. 1, and sometimes it can be very challenging.
The ad hoc barrier in Fig. 2 exemplifies the two major challenges:
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— First, a sync pair, which is the only information reported by existing ad hoc syn-
chronization detectors, may be only a part of an ad hoc synchronization. Without
considering extra code, it may be impossible to infer the enforced synchroniza-
tion relationship. For example, the sync pair in Fig. 2, which includes the sync
write on line 23 and the sync loop on line 28, is only a portion of the complete ad
hoc synchronization implementing a barrier. To recognize the ad hoc barrier, all
the code from line 12 to 29 needs to be considered, in addition to their threading
context from line 3 to line 6. In this example, the static control flow is already
complex, and determining the threading context involves non-trivial interproce-
dural analysis.

— Second, there can be an excessive number of feasible thread interleavings to con-
sider for inferring synchronization relationships and verifying their correctness.
Although the example in Fig. 1 has a small interleaving space and the synchro-
nization relationship can be inferred with ease, the example in Fig. 2 has a much
larger interleaving space, and the complexity of which will be detailed in Sec-
tion 3.2. Without a thorough exploration or a proof, one cannot be sure what syn-
chronization relationship is enforced by a sync pair and relevant code constructs
or if the implementation is correct.

To sum up, understanding ad hoc synchronizations in terms of their semantics,
i.e., the synchronization relationships being enforced, and correctness is an impor-
tant but challenging task that has not been addressed. Techniques to bridge the gap,
anywhere between existing ad hoc synchronization detection tools and various multi-
threaded program development tools, are in a great need to make the results from the
former be more useful for the latter.

1.2 Contribution

To tackle these challenges and bridge the gap, we propose an ad hoc synchronization
analysis framework to (1) automatically recognize complex ad hoc synchronizations
beyond simple sync pairs, and (2) efficiently infer the enforced synchronization rela-
tionships by exploring the interleaving space without repetitively examining equiva-
lent interleavings. To the best of our knowledge, no existing technique has accounted
for such complexity in the context of analyzing ad hoc synchronizations.

We currently instantiate the framework for automatic recognition of ad hoc bar-
riers and present BARRIERFINDER. We choose to focus on ad hoc barriers because
they are both common and beneficial to be recognized. The ad hoc synchronization
study (Xiong et al. 2010) reported that barriers are a common type of synchroniza-
tions with ad hoc implementations. Further, a recent work also shows that the recogni-
tion of barriers can reduce the complexity of many multi-threaded program analyses
and improve many development tools (Das et al. 2015).

Our approach capitalizes on the intuition that all ad hoc barriers enforce a tempo-
ral invariant among different thread interleavings. Specifically, the temporal invariant
involves a blocking point and a releasing point, and no participating threads can pro-
ceed beyond the blocking point before the last participant has reached the releasing
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Fig. 3: The architecture of BARRIERFINDER. IR: interleaving reduction. IA: inter-
leaving avoidance. ET: early termination. Trace mining: find pre-defined trace pat-
terns.

point. As a result, computation prior to the blocking point shall be finished in all
threads before computation after the blocking point can be executed in any thread.

As shown in Fig. 3, BARRIERFINDER takes program source code in C as inputs,
which will be annotated with sync pairs as detected by SyncFinder (Xiong et al.
2010). It proceeds in three major steps to determine whether each sync pair and any
relevant code compose an ad hoc barrier:

1. To identify complete ad hoc synchronizations beyond sync pairs, we first perform
program slicing for the target program with the annotated sync pairs as the slicing
criteria. This helps us identify program constructs beyond sync pairs that are also
integral parts of ad hoc barriers. We then analyze and instrument the program
slices with auxiliary APIs, such as scheduling and tracing APIs. These APIs are
directives to examine the temporal invariant of the sliced program constructs by
efficient interleaving enumeration.

2. With the sliced-and-instrumented program LLVM bitcode, we then symbolically
execute the program to exhaustively enumerate nonequivalent interleavings and
to generate traces representing these interleavings. During symbolic execution,
we bound the execution context and design several techniques to make exhaus-
tive interleaving enumeration feasible and more efficient. We develop a runtime
system that interprets the auxiliary APIs for efficient interleaving enumeration
and trace generation.

3. Finally, we mine the interleaving traces to find predefined temporal patterns and
infer the synchronization relationship. Since BARRIERFINDER focuses on ad hoc
barriers, we define patterns for barriers. BARRIERFINDER reports whether a sync
pair is part of an ad hoc barrier. If that is the case, it reports the complete barrier
implementation. Otherwise, it reports the context of the violation.

Overall, this paper makes the following contributions:

— We propose a framework to infer the synchronization relationship enforced by
ad hoc synchronizations. To our knowledge, we are the first to analyze ad hoc
synchronizations beyond recognizing sync pairs.

— We instantiate our framework for ad hoc barriers and implement BARRIERFINDER
with several novel techniques to account for interleaving space blow-up and to
boost its execution efficiency.

— We evaluate BARRIERFINDER on both real-world programs and synthetic bench-
marks. Results suggest that our approach is efficient and effective in recognizing
different ad hoc synchronizations and can also help programmers understand the
correctness of ad hoc synchronizations.



6 Tao Wang! et al.

— We demonstrate how BARRIERFINDER’s result can be further generalized to an
unlimited number of concurrent threads with a proof sketch.

In our current prototype implementation and evaluation, the input C programs
have a main thread that spawns several child threads. All threads participate in the
same thread pool and carry out the same computation. We further assume that the bar-
riers are counter based and every thread participates in them. Our evaluation shows
that our prototype implementation is effective and efficient for programs and ad hoc
barriers matching these assumptions. A short version of this work appears in the con-
ference publication (Wang et al. 2019). This journal version contributes the following
major extensions:

1. Section 3 provides more details on the BARRIERFINDER design that were only
partially illustrated with an example in the conference version.

2. Techniques in Sections 3.2.3 and 3.2.4 are new, and they present novel solutions to
solve challenges introduced by loops. Section 4.3.2 shows the evaluation results
for the new techniques.

3. Section 4.4 is new, and it shows the effectiveness results of BARRIERFINDER on
our synthetic benchmark suite and demonstrates how it can differentiate correct
barriers from incorrect ones or non-barriers.

4. Section 4.5 is new, and it showcases a formal proof generalizing the characteriza-
tion of counter-based ad hoc barriers in a program, e.g., the one in Fig. 2, to any
number of participating threads in the program.

2 Example and Overview

Below, we first describe the real-world example in Fig. 2 with details, and we then
use it to illustrate the major steps of BARRIERFINDER, discuss the complexity of
enumerating the interleavings in the symbolic execution step, and show how BARRI-
ERFINDER reduces the complexity with different techniques and optimizations.

2.1 An Illustration of the Major Steps

The code shown in Fig. 2 is extracted from a real-world program, SPLASH2 LU (Woo
et al. 1995). Within the main function, the parent thread first creates P-1 child threads
to execute SlaveStart and then also executes SlaveStart. Within SlaveStart, a
total of five ad hoc barriers are used. Two of the five barriers are before the for loop
in line 10, two in the for loop, and one after the for loop. Fig. 2 shows the code for
the first ad hoc barrier in the for loop. The remaining barriers have the same code
and are omitted.

For the ad hoc barrier from lines 12 to 29 in Fig. 2, SyncFinder (Xiong et al.
2010) can only report a sync pair with a sync loop in line 28 and a sync write in
line 23, not knowing that they are parts of this barrier. BARRIERFINDER, as shown
in Fig. 3, takes source code and sync pairs reported by SyncFinder as input, and it
then uses slicing to find more program constructs related to synchronization. For the
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example in Fig. 2, we use the reported sync write and sync loop in lines 23 and 28 as
the slicing criteria, and we are able to retain the entire code fragment from lines 13
to 28 after slicing.

To recognize ad hoc barriers in the sliced program, we rely on the temporal in-
variant exhibited by a barrier. We argue that all barriers exhibit the same temporal in-
variant, regardless of whether they are standard ones provided by languages/libraries
or ad hoc ones. Specifically, if N threads in a program execute the barrier code, the
first N — 1 threads must always be blocked until the N-th thread unblocks them. As
a result, if we collect a tracing event R immediately after the block operation in the
N — 1 threads and a tracing event W before the unblock operation in the N-th thread,
then all traces of different interleavings must share the same pattern WR", i.e., a W
(write) followed by N instances of Rs (reads).

Based on the observation above, our approach at a high level is to gather program
execution traces and mine the characteristic temporal invariant to recognize ad hoc
barriers. To gather execution traces, BARRIERFINDER analyzes and instruments the
program with trace API calls that generate different outputs representing the execu-
tion of different operations. In Fig. 2, BARRIERFINDER instruments a trace API call
immediately before the sync write and another one immediately after the sync loop,
so that they are executed before the sync write and after the sync loop, respectively.

With trace API calls instrumented in the sliced program, BARRIERFINDER uses a
symbolic execution engine to carefully schedule the program execution, so that equiv-
alent interleavings are not redundantly explored. We cannot simply run the sliced and
instrumented program under a native environment to collect traces. That is because
different executions of the sliced program without explicit scheduling control in a
native environment may only encounter a limited number of unique interleavings of
the sync regions, and any mined temporal invariant may just be false. To symbolically
execute the sliced program of the LU code shown in Fig. 2, we set the input variable P
that determines the number of threads to 2. For P greater than 2, symbolic execution
may not be able to exhaustively explore the interleaving space, and we provide an
inductive proof in Section 4.5 with the P=2 base as proved by BARRIERFINDER.

To guide the symbolic execution engine to explore unique interleavings, BARRI-
ERFINDER further instruments the sliced program with scheduling API calls. BAR-
RIERFINDER’s symbolic execution engine resembles a single-threaded machine and
achieves concurrency of a multi-threaded program by context switching among threads.
The scheduling directive forces the symbolic execution engine to explore different in-
terleavings by scheduling different threads. BARRIERFINDER only adds scheduling
API calls after instructions that access shared variables, since they are the only pro-
gram points where threads may interact with one another. For our example in Fig. 2,
we have three shared variables, gsense, gcount, and P, with three, four, and one
access(es), respectively. In particular, three of the four accesses to gcount are within
the CmpXchg function in line 18. After instrumenting the trace and scheduling API
calls, BARRIERFINDER collects traces corresponding to different interleavings and
then checks traces against a predefined invariant representing barriers to recognize ad
hoc barriers.
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2.2 Complexity Analysis and Reduction

Our approach requires an efficient enumeration of thread interleavings. For N concur-
rent threads each executing ¢ instructions in a straight-line fashion, the combinatorial

(N1)!

number of sequentially consistent interleavings is Lk Such a large space presents

a great challenge. Our solution entails both insights on this interleaving space and an
ensemble of novel engineering techniques to achieve high efficiency.

Given the exponential interleaving space, we can first bound N and 7 to reduce
the complexity. Nevertheless, exhaustive enumeration of all thread interleavings is
still impractical. To make it feasible, we design a series of techniques to reduce the
upper bound of the possible interleavings and optimize the enumeration process, so
that our approach becomes feasible on complex multi-threaded programs. Next, we
demonstrate these techniques on our example.

2.2.1 Scheduling Scope Reduction

The scheduling scope is the subset of program source code where thread interleaving
is enumerated. We introduce slicing-based scheduling scope reduction, which reduces
the total number of instructions to be executed in the target program by excluding
instructions that are not related to ad hoc synchronizations. We then heuristically par-
tition the instructions retained with slicing into code sections, which will be referred
to as sync regions. We consider a sync region as the basic program construct that may
contain one high-level ad hoc synchronization.

During interleaving enumeration, our approach uses all the sliced sync regions
as the scheduling scope instead of the entire program. As a result, the length of the
program ¢ in the complexity upper bound is reduced to the length of the sync region
¢, where c is significantly smaller than ¢ in practice. If the number of threads in sync
regions is sufficiently small, our analysis may be able to exhaustively enumerate all
possible interleavings in a reasonable amount of time.

The LU code shown in Fig. 2 has five ad hoc barriers. One of them is fully shown
in lines 13 to 28, and four others are omitted in commented lines 9, 30, and 32.
SyncFinder reports a sync pair for each of these five barriers. After slicing with re-
spect to these sync pairs, lines 13 to 28 are retained after slicing. Since the program
slice from lines 13 to 28 is consecutive with no holes, our scheduling scope reduction
technique uses lines 12 and 29 as the boundary to form the sync region for the barrier
shown. Other barriers are handled similarly.

2.2.2 Avoiding Equivalent Interleavings

After scheduling scope reduction, there are still other types of enumeration ineffi-
ciencies due to interleaving equivalence, namely, interleavings which have the same
execution context. Since a program’s behavior depends only on its current states not
its historical schedulings or states, equivalent interleavings are guaranteed to produce
the same results in the future. To avoid enumerating equivalent interleavings, we use
a context-based equivalence testing technique to reduce all equivalent interleavings.
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For consecutive sync regions, such as the two barriers omitted in line 9 in Fig. 2,
we perform the testing at the ending boundary of each region. Assuming r consec-
utive sync regions each with [ interleavings, the complexity of naively enumerating
all of them is O(I") without equivalence testing. With equivalence testing, only one
interleaving will continue its execution at the end of each sync region at best while
all equivalent others are terminated, and the complexity of exploring all of them is
reduced to O(I = r). We call this technique interleaving reduction (IR).

For sync regions in loops, we can perform equivalence testing at the start of each
region. In this case, if a sync region has the same execution context as one recorded
in previous iterations, which we call a fixed-point interleaving, one can guarantee
that the sync region will expose the same behavior as before and thus interleaving
enumeration can be avoided. For the barriers in the for loop in Fig. 2, interleavings
are only enumerated within a sync region during the first loop iteration to record new
interleavings, and the equivalence test is performed before they are explored in later
iterations. If found equivalent, interleaving enumeration will be avoided. This obser-
vation is leveraged by techniques interleaving avoidance (IA) and early termination
(ET).

3 BARRIERFINDER Design

The key idea of BARRIERFINDER is to identify pre-defined trace patterns of ad hoc
synchronizations by exhaustive enumeration of thread interleavings. Therefore, trans-
formations employed by BARRIERFINDER, such as program slicing and instrumen-
tation, must not change the target program’s concurrency structure, i.e., cannot delete
any existing synchronizations, insert new ones, or change the code on which any
synchronization has a control dependency.

BARRIERFINDER employs various static and dynamic techniques to support ef-
ficient interleaving space enumeration. As shown in Fig. 3, there are three pipelined
steps in BARRIERFINDER. The front end performs compile-time inter-procedural
program slicing, sync region boundary analysis, and instrumentation on program
LLVM IRs. The middle end symbolically executes the preprocessed program to col-
lect sync traces with three critical techniques to tackle the challenge of efficient inter-
leaving enumeration. BARRIERFINDER’s back end analyzes sync traces and reports
synchronization relationships for sync regions and their source code context informa-
tion or the violation context. In this section, we elaborate on its design considerations
and discuss alternatives when applicable.

3.1 Front-End Analysis and Instruction
3.1.1 Interprocedural Slicing
BARRIERFINDER employs program slicing (Weiser 1981, 1984) with the objectives

to (1) reduce code size by elimination of irrelevant computations to achieve faster ex-
ecution and (2) preserve the execution context for sync regions. To recognize ad hoc
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barriers beyond sync pairs, such as those in Fig. 2, any viable approach has to capture
the execution context of the sync region, including the initial values of sync variables,
the number of participating threads, and sync region boundaries. BARRIERFINDER
uses sync loop and sync write as the slicing criteria. Since the sliced program only
provides interleavings allowed by the original program while minimizing the size of
the sliced programs, we can mine the temporal property imposed by ad hoc synchro-
nization via symbolically executing the sliced programs. Meanwhile, computation
code is irrelevant in general for inferring the semantics of ad hoc synchronizations
and may be sliced away to improve BARRIERFINDER’s efficiency.

BARRIERFINDER’s slicing step leverages LLVMSlicer (Slaby 2015), implement-
ing Anderson’s algorithm with field-sensitivity. We preserve program concurrency
constructs in two ways. First, the slicer leaves all well-defined sync constructs (e.g,
Pthread API calls) intact. Second, all potential accesses to sync variables are properly
marked as sync writes and reads in sync loops based on SyncFinder results. Since
sync loops and sync writes, which are the slicing criteria, correspond to reads and
writes to shared memory locations that threads synchronize with, concurrent events
generated by the original program and its sliced counterpart will be equivalent.

3.1.2 Sync Boundary Detection

Sync region boundary information marks the boundaries between computation and
sync regions. Such boundary information is critical to generating separable traces for
consecutive ad hoc synchronizations. Since there may be multiple ad hoc synchro-
nizations in a program, e.g., the LU code in Fig. 2 has five barriers, BARRIERFINDER
needs sync region boundary information to instrument trace separators, which are
characters used to distinguish consecutive synchronizations during the trace analysis
stage.

A natural boundary is the first instruction sliced away with respect to the slicing
criteria, and indicates the ending point of computation code prior to a sync region. To
detect boundaries, BARRIERFINDER relies on a heuristic based on the observation
that a sync region tends to have data dependencies only on sync variables, which are
global or on the heap. BARRIERFINDER realizes this heuristic in a classical backward
data flow analysis algorithm. This algorithm identifies (1) the first instruction access-
ing a sync variable as the start of a region and (2) the first instruction in the immediate
post-dominator of a sync loop as the ending boundary. The algorithm in Fig. 4 utilizes
classical backward data flow analysis. Gen/Kill sets are computed implicitly for each
instruction traversed. For example, the load access of a global variable into a local
variable would kill the local variable, and record the address of global variable as a
live variable. In/Out sets are computed for the ending and beginning instruction of
the analyzed basic block, respectively. The meet/join operator is the set union of the
successors’ Out sets. To account for the existence of loops, a fixed-point algorithm
is applied. The algorithm terminates when the set of local variables is empty for the
current instruction (line 14 in Fig. 4).
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Input: CFG of the Function F where sync code resides,
worklist={basic blocks in the read-side loop}
Output: the boundary instruction, bi
Steps:
do{
do{
for bb in worklist
//reversely traversal of instructions in bb
for ins in bb{
//In[ins]/0ut[ins] is In/Out set for ins
calculate In[ins], Outl[ins];
if (worklist.size() ==
&& Inl[ins].localSet.size() == 0)
return ins;
}
}while(if any bb’s In set changed);
/*compute new worklist for bb’s whose successors have been visited.*/
for bb in worklist
push bb’s unvisited predecessors and all its visited successors into
newlist
for bb in newlist
compute bb’s In Sets;
clear worklist;
copy newlist into worklist;
}while(worklist is not empty);

Fig. 4: Sync Boundary Detection Algorithm

3.1.3 Trace API Instrumentation

After detecting the boundary of a sync code region, BARRIERFINDER’s front end in-
struments the region with trace API calls to collect traces during symbolic execution
in the middle end. There are several considerations while deciding where to instru-
ment trace API calls. First, we have to distinguish sync writes and sync loops by
different tracing events. Second, we want to insert a minimal but sufficient number of
trace API calls. Since trace generation is interpreted in BARRIERFINDER, it is neces-
sary to minimize its performance overhead. Moreover, if too many runtime events are
traced, temporal-invariant mining would suffer from unnecessary overhead. BARRI-
ERFINDER relies on the following rules to satisfy these constraints:

Rule 1 Insert a trace API call that generates a character ‘R’ right after a sync loop.

Rule 2 Insert a trace API call that generates a character “W’ right before a sync
write.

Rule 3 Insert a trace API call that generates a monotonically increasing separator
as an integer counter at the beginning boundary of a sync region.

With Rules 1 and 2, one character that corresponds to one access to a sync vari-
able will be generated, and these characters allow us to distinguish sync writes and
sync loops. With Rule 3, we expect a separator to facilitate the distinction of traces
over the detected ad hoc synchronizations. Note that BARRIERFINDER enumerates
interleavings sync region by sync region. With these rules, we obtain traces like
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11WRR22W RR for two consecutive barriers with 2 threads. It is then straightforward
for BARRIERFINDER’s trace analyzer to separate traces into several independent ones
and to correlate them to sync regions.

3.1.4 Scheduling API Instrumentation

To guide the symbolic engine to enumerate different interleavings, BARRIERFINDER
further instruments the sliced program with scheduling API calls. One may think
of BARRIERFINDER’s middle end as executing on a uni-core processor, i.e., there
is only one running thread per execution state at any time, whereas concurrency
among multiple threads is achieved via the instrumented scheduling API calls. BAR-
RIERFINDER’s middle end relies on scheduling API calls to know the timing for
interleaving enumeration. A scheduling API call is a special function call instruction
instrumented by BARRIERFINDER’s front end.

To decide where to instrument scheduling API calls, we divide all instructions
within a sync region into two categories.

1. Instructions accessing global variables or heap variables, which are visible to all
threads, denoted as /G. IG can impose side-effects across threads and affect their
execution.

2. Instructions other than /G, such as accesses to thread-local variables, denoted
as IL. IL can neither “import” side-effects from other threads affecting its own
execution nor “export” side-effects to affect other threads.

As different interleavings of instructions in /L do not change the global program
state, it is sufficient to instrument a scheduling API after each instruction in /G. The
scheduling API essentially instructs the symbolic execution engine to explore differ-
ent scheduling decisions at each instrumented call.

3.2 Middle-End Symbolic Execution and Trace Generation

BARRIERFINDER’s symbolic execution engine represents an interleaving with an ex-
ecution state. During symbolic execution, the underlying engine forks new execution
states while exploring different scheduling decisions, and there is a one-to-one map-
ping between execution states and interleavings. Calls to the scheduling APIs guide
BARRIERFINDER’s symbolic execution engine to explore new interleavings by fork-
ing new execution states. As shown in Fig. 5, there is only one execution state ini-
tially. When BARRIERFINDER’s symbolic execution engine sees a scheduling API
call, it forks new execution states for each possible interleaving. Suppose there are ¢
threads, denoted as 7; (1 < i <t), ready to run in execution state ESy, excluding the
currently running thread 7p. When BARRIERFINDER interprets a scheduling API, it
first makes ¢ copies of ESy, denoted as ES; (1 <i <t). It then schedules 7; (1 <i<r)
as the running thread for ES;, as shown in the middle of Fig. 5. As a result, newly
forked execution states ES; (1 <i <) and ESp only have different running threads.
All other execution contexts and resources, i.e., registers, memory contents and data
layouts, are exactly the same. Afterwards, each execution state is executed indepen-
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Fig. 5: Interleaving enumerations and reduction: An execution state in BARRI-
ERFINDER corresponds to an interleaving.

dently to enumerate all interleavings within a sync region with repeatedly forked
states at scheduling API calls until the program exits.

To tackle the challenge of interleaving space explosion, BARRIERFINDER’s mid-
dle end relies on three techniques, namely interleaving reduction (IR), interleaving
avoidance (IA), and early loop termination (ET). These techniques exploit inter-
leaving equivalence to shrink the exponential interleaving space and enable BAR-
RIERFINDER’s efficient interleaving enumeration within sync regions.

3.2.1 Interleaving Equivalence Test — The Foundation

An interleaving at any point of execution corresponds to one execution state of a
multi-threaded program. Two interleavings are different if they schedule different
threads to execute at any of the same scheduling points. If the same set of sync
traces can provably follow two interleavings, BARRIERFINDER considers them to
be equivalent for the purpose of trace enumeration. Specifically, if BARRIERFINDER
finds two interleavings with the same execution context, i.e., program pointers, calling
stacks, and memory contents, across threads, it can guarantee their equivalence and
reduce them to one without missing any distinctive future sync traces. This is because
program execution only depends on the current execution context but not their past
interleavings. However, this may be too restrictive for barriers, where thread identity
does not matter. Taking this into consideration, BARRIERFINDER excludes identifiers
of participating threads from the equivalence test. As BARRIERFINDER’s middle end
is a symbolic execution engine, where each interleaving of the sliced target program
is executed by interpretation and its execution context is a managed data structure,
the equivalence check is automatically performed by the middle end.

If two interleavings are equivalent when the interleaving equivalence test is in-
voked for a program point P at run time 7', we call either one of them an interleaving
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invariant with respect to the program point P at run time 7. We refer to P as the in-
variant derivation point and 7 as the interleaving reduction time. The actual values
of P and T are specified when the interleaving equivalence test is invoked, which are
elaborated for interleaving reduction and interleaving avoidance in Section 3.2.2 and
Section 3.2.3, respectively.

3.2.2 Interleaving Reduction — The Enabling Technique

Interleaving reduction (IR) reduces redundant exploration among equivalent inter-
leavings. The program point P is a compile-time instruction in the target program,
seen by BARRIERFINDER front end’s static analysis; the reduction time point 7 to
perform interleaving reduction is a run-time instruction seen by BARRIERFINDER’s
symbolic execution engine. They are identified with the following heuristics:

— P should be an instruction within a post-dominator basic block of sync region
ending boundary that all participating threads execute. If only a subset of partici-
pating threads execute P, BARRIERFINDER might miss certain invariants.

— T should be within such a program execution state that it is likely for interleavings
to be equivalent, e.g., when the first or the last participating thread passes P.
BARRIERFINDER selects the first instruction in a sync region’s immediate post-

dominator basic block as P, relative to the sync region’s ending point. T is selected
as the time when the last thread passes P. We implement a classical reference counter
to maintain the number of threads entering and exiting a sync region. The counter is
initialized to zero indicating that no thread is currently in the sync region. On entry,
the counter is incremented; at the exit, it is decremented. When the counter is zero
again, the runtime library knows that the last thread has just passed through the region
such that its time 7" and the interleaving invariants can be derived.

Upon the first interleaving reaching 7', there is no interleaving invariant yet.
Hence, BARRIERFINDER adds this interleaving to the invariant set (IS), suspends
its execution and schedules other interleavings for execution. For any subsequent
interleaving reaching 7', if an equivalent interleaving is found in IS, the new inter-
leaving is terminated and all its resources are released immediately; otherwise, BAR-
RIERFINDER adds it to /S as a new invariant. This process continues until all inter-
leavings have been enumerated and executed. Then, BARRIERFINDER schedules and
executes all invariant interleavings in IS. As illustrated in Fig. 5, 3 interleavings are
assumed to be equivalent after they are forked and further explored independently.
With interleaving reduction, they are reduced into one representative while the other
two are terminated.

3.2.3 Interleaving Avoidance — Loop-centric Technique One

If a new interleaving to be explored has the same execution context as another inter-
leaving that has already been explored in previous loop iterations, BARRIERFINDER
can avoid exploring this new interleaving. Interleaving avoidance (IA) targets such
opportunities for sync regions that are executed multiple times, especially those in
loops. In contrast to interleaving reduction, interleaving avoidance (IA) is performed
before a sync region is entered.
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Specifically, BARRIERFINDER IA selects program point P as the first instruc-
tion in the immediate dominator basic block of a sync region’s beginning boundary
and time point 7' as when the first thread executes P. BARRIERFINDER IA adds the
first interleaving hitting 7 to invariant set IS, snapshots its execution context, and
continues its exploration as normal. When a subsequent interleaving hits 7, BARRI-
ERFINDER checks whether it is equivalent to any invariant in /S with the equivalence
test. If successful, interleaving enumeration for this new interleaving is avoided. Oth-
erwise, a new interleaving is identified that has not been explored before and the
algorithm proceeds as normal. In this way, IA prevents redundant interleaving enu-
merations from being considered at all across loop iterations.

3.2.4 Early Loop Termination — Loop-centric Technique Two

We observe that there is usually left-over computation code after slicing. Such code
is not sliced away due to limitations of interprocedural slicing. If such code is within
loops, it may introduce a high execution overhead. Moreover, sync regions do not
expose new traces after several loop iterations in practice. Early loop termination
(ET) takes advantage of these observations by breaking out the innermost loop (ET-
loop), which contains the sync regions being explored after the ET-loop fixed-point
state is established. A fixed-point state for each sync region is established after a sync
region has been explored under the same execution context twice. The fixed-point
state for the entire loop is established when all encompassed sync regions have seen
a fixed-point state at least once, which is also the point in time for ET to be applied.
To terminate ET-loop early, ET sets the program counters of all threads to the first
instruction in the immediate post-dominator basic block of the current ET-loop.

3.2.5 Optimizations for Execution Efficiency

We choose the state-of-the-art symbolic execution engine Cloud9 (Bucur et al. 2011)
as the infrastructure for BARRIERFINDER’s middle end. The execution engine is
based on interpretation, which is slow compared to native execution. Therefore, it
is critical to minimize the overhead related to interleaving enumeration.

BARRIERFINDER employs a snapshot mechanism to capture execution contexts,
which are used in the interleaving equivalence test 3.2.1. To reduce the cost, BAR-
RIERFINDER takes a minimal snapshot as follows. Let’s suppose SR is a sync region
being explored. For interleavings that are created when the first scheduling point
within SR is hit at time ¢y, their execution contexts (except for their thread state, i.e.,
suspended/running, etc.) are the same. As execution progresses, other execution con-
texts, e.g., global variables, may diverge. Therefore, it is sufficient to only snapshot
those variables that are updated since cp and are still alive when the equivalence test
is performed.

BARRIERFINDER’s front end is responsible for liveness analysis and snapshot
API instrumentation. Snapshotting is incrementally performed within the BARRI-
ERFINDER middle end during sync region exploration. This minimizes a snapshot.

As an interpreter, BARRIERFINDER’s symbolic execution engine interprets a tar-
get program (interpretee). The relationship between an interpreter and an interpretee
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Application Trace
(interpretee address space) buffer

Symbolic execution engine
(interpreter address space)

Fig. 6: Interpreter-interpretee address space layout in BARRIERFINDER: An applica-
tion is interpreted in interpretee space while the interpreter itself uses native execu-
tion.

is similar to that between a CPU and process. The interpreter and interpretee have
separate address spaces. The interpreter reads instructions from the interpretee’s ad-
dress space, evaluates it, and updates interpretee’s execution state (data structures).
Generally, the interpreter has limited knowledge on what the interpretee’s internal ex-
ecution state means and rarely performs actions relying on such knowledge. However,
BARRIERFINDER does know where the interpretee’s trace buffer is and capitalizes
on such a fact. Fig. 6 shows the address space layout for BARRIERFINDER. BARRI-
ERFINDER symbolic execution engine (interpreter) crosses the interpreter-interpretee
address space boundary for native execution if possible. First, per-interleaving traces
are initially generated and stored in a trace buffer within the interpretee’s address
space. BARRIERFINDER accesses and dumps its trace buffer into a file without the
interpretee’s involvement when an interleaving terminates. We call this technique in-
trusive tracing. Similarly, instead of relying on the interpretee to capture its execution
context to a file, BARRIERFINDER snapshots a per-interleaving execution context in
buffers within the interpretee’s address space. BARRIERFINDER’s middle end later
reads these buffers directly, performs the equivalence test, and installs a new invari-
ant in the interpreter’s address space if necessary. All these happen in native mode
without file I/O.

3.3 Back-End Trace Mining

BARRIERFINDER’s back end analyzes sync traces to derive critical information for
sync region understanding. Let’s take a sample trace 11WRR as an example. First,
BARRIERFINDER extracts the sync region ID 1 and use it to separate sync traces to
two parts. It then checks whether the sub-trace is self-consistent, i.e., the number of 1s
should be equal to the number of Rs since there is one trace point for each of them at
the beginning and ending boundary of a sync region respectively. If self-consistency
is confirmed, then BARRIERFINDER tries to match W RR with our pre-defined invari-
ant for barriers WRY . Since it succeeds for this trace example, BARRIERFINDER uses
the extracted ID 1 as the key to retrieve context information, such as source code line
numbers for the sync region and reports the code region as a barrier.
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4 Experimental Evaluation
4.1 Prototype

We implemented BARRIERFINDER’s front end on top of LLVMSlicer (Slaby 2015),
and the boundary analysis and instrumentation pass is implemented as a sub-pass
inside the slicer. BARRIERFINDER’s middle end is built on top of Cloud9 (Bucur
et al. 2011), for its flexible interpretation and symbolic execution capabilities. Al-
though BARRIERFINDER concretizes the thread number, the program slices can con-
tain other symbolic variables. The back end is a stand-alone python package, which
separates collected sync traces into independent ones, according to sync region IDs,
and also maps them back to their corresponding program source code contexts. This
way, BARRIERFINDER reports the number of recognized ad hoc barriers and their
respective source code ranges.

4.2 Methodology and Experimental Settings

We conduct empirical experiments to evaluate the efficiency and effectiveness of
BARRIERFINDER on the SPLASH2 (Woo et al. 1995) suite and a synthetic bench-
mark suite. All measurements are conducted on a machine with Intel Core 17-4790 @
3.60 GHz (hyper-threading enabled), 16GB DDR3@ 1600 MHz main memory, and
Ubuntu 15.10 as the operating system.

We use applications from the SPLASH? suite to evaluate the efficiency of BAR-
RIERFINDER, and we pay special attention to how different techniques speed up the
interleaving enumeration process. SPLASH? is used in (Xiong et al. 2010)’s ad hoc
synchronization study as a representative suite for scientific applications. All the
SPLASH?2 programs match the assumptions made by BARRIERFINDER as we de-
scribed in Sec. 1.2, i.e., they follow the thread-pool model and use a counter-based
barrier implementation as shown in Fig. 2. Nevertheless, these programs contain com-
plex control flows, including ad hoc barriers inside loops and consecutive loops, to
show the intellectual merits of BARRIERFINDER.

To evaluate whether BARRIERFINDER can (1) handle counter-based barrier im-
plementations that are different from the one in Fig. 2 and (2) correctly differentiate
ad hoc synchronizations that implement barriers from those do not, we devise a syn-
thetic benchmark suite to evaluate the effectiveness of BARRIERFINDER. Our syn-
thetic benchmarks have a similar code structure but differ in ad hoc synchronizations.
The main thread first creates one child thread, and all threads execute twice the same
sequence of code, which is a variant of barrier based on the textbook “Synchroniza-
tion Algorithms and Concurrent Programming” (Taubenfeld 2006). In total, we have
eight different variants that are all counter-based (Malkis and Banerjee 2014; Tauben-
feld 2006). Among the eight variants, two are correct ad hoc barriers, where one of
them is the same as the ad hoc barrier in Fig. 2, and the other mainly differs in that
it will reset gcount to 0 before line 23 and always increment oldcount by 1 in line
16. The other six are all wrong implementations because of different reasons, e.g.,
different initial values for sync variables, different orders of certain statements, and
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whether or not atomic instructions are used. Because of these differences, these six
wrong implementations violate the semantics of barriers or may result in deadlocks.

To show that our proposed framework is versatile, we also include one bench-
mark implementing an allAB (Jin et al. 2012) relationship extracted from MySQL in
our synthetic benchmark suite. Specifically, the allAB relationship in our benchmark
requires that the main thread executing the B operation cannot proceed to execute the
B operation until both child threads cannot execute more A operations, and such an
allAB relationship can be viewed as a variant of barriers.

Since these synthetic benchmarks stress less on interleaving-space enumeration,
we focus on whether BARRIERFINDER can correctly recognize different ad hoc syn-
chronizations and omit the performance measurements.

BARRIERFINDER takes sync pairs as input. Since SyncFinder (Xiong et al. 2010)
is no longer maintained by the original authors and the code is not available to us,
sync-pair annotations are manually inserted. Note that sync pairs are low-level prim-
itive synchronization constructs in that they are just busy-wait loops and write ac-
cesses to shared variables. They are neither complete implementations of ad hoc syn-
chronizations nor do they indicate the enforced synchronization relationships.

4.3 Efficiency Results on Real-World Benchmarks

Tab. 1 shows the results for the six SPLASH2 benchmarks currently supported by
BARRIERFINDER. Column “LOC./LOB.” lists the number of lines of C source code
and LLVM bitcode. We then show the slicing time of BARRIERFINDER’s front end in
column “Slicing time” and the number of ad hoc barriers in column “Patterns (#).” We
next show the runtime of BARRIERFINDER to exhaustively enumerate the interleav-
ings with the number of threads bounded to 2. For the remaining columns, subscripts
s, t, and r represent slicing/boundary detection, intrusive tracing, and interleaving re-
duction, respectively. Different subscript combinations show the runtimes consumed
by BARRIERFINDER’s middle end with different optimizations enabled. For exam-
ple, Ty, is the runtime with all three optimizations enabled, while T, is the runtime
with slicing/boundary detection and intrusive tracing enabled but interleaving reduc-
tion disabled. N/A indicates benchmark crashes, and OOR indicates the execution
runs out of memory. Runtimes (in seconds) are averaged for 10 runs, with their stan-
dard deviations in parentheses. To handle the default trip count of 32 interactions in
LU requires interleaving avoidance and early loop termination, the results for LU in
Tab. 1 are measured with trip count as 1 to show the benefits of slicing/boundary
detection, intrusive tracing, and interleaving reduction on LU.

4.3.1 Observations

We make the following observations from our results:

(D BARRIERFINDER is effective in detecting different numbers of ad hoc barriers
in these benchmarks, and we manually confirmed that BARRIERFINDER detects all
the barriers in each benchmark. To the best of our knowledge, BARRIERFINDER is the
first tool to have such a capability. No prior work, including SyncFinder (Xiong et al.
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Table 1: Overall results of BARRIERFINDER on SPLASH?2 with slicing/boundary
detection, intrusive tracing, and interleaving reduction

Benchmark LOC./LOB. Slicing time Patterns (#) T Ty T, Ty Tyr Tyr %
FFT 1.2k/4679  0.2(0.001)  barriers (7) | OOR OOR 57.6 (0.44) OOR 174 (0.1)  1.3(0.06) 134
Cholesky 6.1k/26479  94.8 (0.17) barriers (4) N/A N/A NA OOR 24(0.3) 2.5 (0.06) 9.6
Raytrace 11k/24173 158 (0.04)  barriers (1) | NJ/A  N/A  N/A 8.6* (0.06) 17.4*(0.06) 8.3*(0.08) 2.1
Radix 1.2k/3856 0.1 (0.02) barriers (7) OOR OOR OOR OOR 108.8 (1.0)  4.5(0.17) 242
LU 1.1k/4555  0.53 (0.001) barriers (5) | NA N/A  N/A OOR 313(0.2)  1.7(001) 184
FMM 5k/16583 18.2(0.1) barriers (10) | OOR  OOR 3554 (7.8) OOR 3335(1.6) 12.3(0.08) 27.1

2010), can detect any of these ad hoc barriers in whole. The trace generated for two
consecutive barriers in LU is 11WRR22W RR. BARRIERFINDER’s back end divides
such a string by considering 11 and 22 as separators. The two characteristic sub-traces
WRR match our predefined temporal invariant for barriers, and their corresponding
sync regions are accordingly reported as barriers. The sync regions contain both the
upper and lower loops in Fig. 2. The detected pattern and sync region reports show
that BARRIERFINDER is able to detect the entire code construct of ad hoc barriers
and recognize their barrier semantics.

It is possible for BARRIERFINDER to report false positives, i.e., BarrierFinder
reports an ad hoc barrier but it is actually not one. False positives can happen since
BARRIERFINDER can only exhaustively enumerate the interleaving space when there
are a small number of participating threads, and there could be ad hoc synchro-
nizations exhibiting different temporal invariants under different participating thread
numbers. A false negative happens if BarrierFinder fails to recognize an ad hoc bar-
rier or fails to characterize it correctly, which can happen if the sync write and sync
loop are not identified in the first place. We assessed the quality of our evaluation
results based on our understanding of the benchmarks, and we observed neither false
negatives nor false positives in our evaluation.

@ BARRIERFINDER is efficient in recognizing ad hoc barriers. Specifically, col-
umn “7T,” in Tab. 1 shows the time spent in the middle end, which is usually less
than 10 seconds when there are two participating threads. This shows our optimiza-
tion techniques, combined together, make our approach quite efficient.

@ Interleaving reduction is the critical technique that enables BARRIERFINDER
to efficiently enumerate the interleaving space of ad hoc barriers. Column “7T};” shows
the runtimes of the middle end with slicing/boundary detection and intrusive tracing
enabled but without interleaving reduction (IR). Except for Raytrace that contains
only one barrier, all benchmarks run out of memory resources in less than two minutes
and progress very slowly after that. In comparison, runtimes in column “7g,” show
that IR is critical for BARRIERFINDER’s efficiency.

@ Slicing and boundary detection is critical for BARRIERFINDER’s middle end
to succeed in analyzing the benchmarks. As shown in column “7,”, without slic-
ing/boundary detection, BARRIERFINDER’s middle end crashes for Cholesky, Ray-
trace, and LU. The cause is rooted in Cloud9, but all benchmarks succeed with slic-
ing/boundary detection enabled. The slicing overhead for FFT, Radix, and LU is
small, but it is higher for Cholesky and Raytrace. The general trend is that larger
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benchmarks incur higher slicing overhead. The benefit of slicing/boundary detec-
tion is that it eliminates code that is irrelevant to synchronization explorations and
improves middle-end efficiency, which is substantiated by comparing 7, and 7, for
FFT. Without slicing/boundary detection, the runtime for Radix is also prohibitively
high as its computation exhausts main memory quickly.

® Intrusive tracing boosts BARRIERFINDER’s middle-end performance by up to
27X. Column “%” in Tab. 1 indicates a significant speedup due to our trace opti-
mization technique, which crosses the interpreter-interpretee boundary.

4.3.2 The Benefits of IA and ET

In our current benchmarks, only LU, Radix, and FMM have loops that encompass
sync regions. We manually adapt their loop trip counts to demonstrate the effective-
ness of interleaving avoidance (IA) and early loop termination (ET). Specifically,
we measure the runtime for the following configurations: (1) Interleaving reduction
only (IR), (2) IR with TA but without ET (IR-IA), and (3) IR-IA with ET (IR-ET).
Figs. 7a, 7b, and 7c show the performance results for Radix, FMM, and LU, re-
spectively. The x-axis indicates the loop trip count while the y-axis depicts BAR-
RIERFINDER’s middle-end runtime in seconds averaged over 10 consecutive runs.
Since performance variability is small (see standard deviations in Tab. 1), other run-
time statistics are omitted to save space. Note that results for IR are provided only if
BARRIERFINDER does not exhaust the 16GB memory under that configuration.

The results show IA and ET are the enabling techniques for exploring sync re-
gions in loops. As we see in these figures, ET and IA significantly improve BAR-
RIERFINDER’s efficiency compared to IR only. Such a performance improvement is
critical for LU, which otherwise cannot be explored without reduction on its loop trip
count when only IR is enabled. Also, IA and ET enable BARRIERFINDER to explore
two orders of magnitude more iterations than IR-only for Radix and FMM.

4.4 Effectiveness Results on Synthetic Benchmarks

Our synthetic benchmark suite contains eight variants of barriers and one allAB. As
mentioned in Section 4.2, most of them are flawed implementations with different
root causes, demonstrating the challenges that developers may face in practice. The
expected trace patterns without sync region IDs are WRRWRR and WWR for barriers
and allAB, respectively. BARRIERFINDER exits once a violation to either pattern or
a deadlock is found.

Tab. 2 shows the effectiveness results of BARRIERFINDER on our synthetic bench-
mark suite. “Deadlock” indicates if a deadlock occurs; “Violation trace” is the first
trace violating expected trace patterns while “Violation sequence ID” shows how
many valid traces have been generated before the violation trace; “Atomic” indicates
whether or not the barrier counter, e.g., gcount in Fig. 2 is accessed and checked
atomically, and “Description” provides a short description for each benchmark’s de-
tection result.

We make the following observations from results in Tab. 2:
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Fig. 7: The effect of interleaving avoidance (IA) and early loop termination (ET)
under different iteration counts

(D BARRIERFINDER has neither false positives nor false negatives for the syn-
thetic application suite (“Actual” and “Characterized” are the same), since it enumer-
ates all non-equivalent feasible interleavings.

@ BARRIERFINDER reliably differentiates correct barrier implementations from
wrong ones. Barriers 1 and 2 are correct while others have different problems. For
a violation, BARRIERFINDER not only reports the violation trace but also produces
the contexts, e.g., thread scheduling status and call stacks, which helps programmers
understand the root causes. As shown by “Description”, incorrect barriers encounter
different problems.

(® BARRIERFINDER recognizes allAB, which can be regarded as a different vari-
ant of barriers. This also shows the potential for further generalization of the frame-
work to other ad hoc synchronizations.
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Table 2: Overall results of BARRIERFINDER on the synthetic application suite. Num-
bers in traces are sync region IDs.

ID Actual Characterized | Deadlock Violation Violation Atomic Description

trace sequence ID
1 barrier barrier No N/A N/A Yes A reusable barrier
2 barrier barrier No N/A N/A Yes A reusable barrier
3 bad barrier bad barrier Yes 11TWRR 3320 Yes Both threads are blocked

at the second invocation

4 bad barrier bad barrier No 11WR2RR2WR 0 Yes Pattern violation
5  bad barrier bad barrier No IIWR2RR2WR 0 Yes Pattern violation
6  bad barrier bad barrier Yes IIWR2R2WRW 18 No One thread goes through the

second invocation, the other is
blocked at the second invocation
7  bad barrier bad barrier Yes 11WR2 0 No One thread is blocked at the

first invocation, the other is
blocked at the second invocation
8  bad barrier bad barrier Yes 11WR2 0 Yes same as above

9 allAB allAB No N/A N/A N/A allAB

4.5 Generalization to Any Number of Threads

BARRIERFINDER successfully enumerates the interleaving space of ad hoc barriers
when the number of participating threads is small, which is critical for automatic
recognition of synchronizations and understanding of their correctness. To go beyond
that, we give an inductive proof over the number of participating threads, n. Others
can use our proof as a template to generalize the results from BARRIERFINDER that
an ad hoc synchronization is a barrier with two participating threads to any number
of participating threads, even for other synchronization constructs. We highlight that
the base case (n = 2) for our inductive proof is proved by BARRIERFINDER. Without
BARRIERFINDER, such a manual inductive proof would be extremely tedious, if not
infeasible.

Consider the following invariants for the algorithm in Fig. 2: (1) At line 28, which
we refer to in the following as the program blocking point, P,, the invariant I, (i) :
newcount = i holds for all threads 1..n — 1 and these threads will busy wait at P, as
long as gsense = Isense. (2) At line 23, I,(i) : newcount = i holds for thread i = n,
and the postcondition of I, is gsense # lsense, which will subsequently cause threads
1..n — 1 to proceed past P, by exiting the loop. In conjunction, I, and I, establish the
barrier semantics, where 1..n — 1 threads wait until thread »n releases the others and
then proceeds to P, itself, where it does not enter the loop as gsense # Lsense. Notice
that /count and newcount are local variables with thread-specific values while gsense
is a global variable shared between threads.

Base: Let us assume that Isense = 1. For n = 2, thread 1 is first to successfully
execute CmpXchg (such that updatecount = oldcount), i.e., its newcount = 1 =I,(1)
(as gcount is incremented by 1) such that it proceeds to P, eventually. Thread 2 will
succeed in CmpXchg later so that its newcount = 2 = n = I,(2), i.e., it will get to P,
and set gsense to the inverse of [sense. This releases thread 1, which will eventually
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proceed past P, and allows thread 2 to bypass the loop at P, so that both thread exit the
barrier. (The argument for Isense = —1 is symmetrical with decrements over gcount,
where thread 2 eventually reaches P, with newcount = 0.) In fact, BARRIERFINDER
has already proved that these invariants hold as part of the states at Py, P, considered
during execution interleaving, including the correct barrier semantics of leaving only
after all threads have arrived, by exhaustive state enumeration.

Hypothesis: For n threads, let us assume that I, (i) holds for all i = 1..n — 1 threads
and I, holds for thread n, including correct barrier semantics upon proceeding past
these program points.

Step: For n+ 1 threads (and gsense = 1), consider two cases.

(1) Let the last one to succeed with the CmpXchg be thread n + 1. For threads
1..n — 1, the hypothesis established I,(n) at P, with increasing newcount values as
gsense = 1. Thread n is now the second to last one to succeed in CmpXchg, so
newcount = n = I,(n), which causes this thread to bypass P, and proceed toward P,
where it would busy wait due to gsense = Isense. And for thread n+ 1, as the last one
to succeed in CmpXchg, newcount = n = I,(n+ 1) with Isense = gsense = 1, reach-
ing P, to invert gsense before reaching P, without entering the loop gsense # lsense.

(2) Let thread n+ 1 be any base the last thread to succeed in CmpXchg. With-
out loss of generality, let thread n + 1 succeed as the m-th thread in CmpXchg. Then
there are threads i = 1..m — 1 who succeeded in CmpXchg before and, with increas-
ing Isense, are proceeding to P, under I,(i) by the hypothesis. For thread n + 1,
newcount = m = I(m), so it proceeds toward P,. Threads j = m+ 1..n succeed in
CmpXchg in the respective indexed order next, i.e., their respective newcount = j =
I(j). The last one to succeed in CmpXchg, say thread [, has newcount =n+1 =
I,(n+1) and proceeds to P, inverting gsense and then to P, bypassing the loop as per
hypothesis.

This establishes the correct barrier semantics upon continuing past P, for all
threads. The cases for gsense = —1 are symmetrical (with decrements per thread suc-
ceeding in CmpXchg). Furthermore, alternating gsense signs upon successive barriers
of n+ 1 threads establish the same barrier semantics as for n threads, i.e., only after
P, is reached by the last thread in the previous barrier may all threads proceed to enter
the next barrier, where they then enter in increasing/decreasing newcount order for
gsense = 1/gsense = —1. Any thread still at P, of the previous barrier may proceed as
their local Isense # gsense while other threads already in the next barrier set /sense
to gsense (line 13), so that they eventually spin in line 28 at P,, other than the last
thread.

4.6 Limitations and Future Work

We have open-sourced a software package Wang (2020) for the reproduction of BAR-
RIERFINDER and for improvement by the research community. Currently, we make
several assumptions that lead to the following limitations in BARRIERFINDER, which
we leave as future work:

1. BARRIERFINDER currently only supports the automatic detection and correct-
ness verification of counter-based ad hoc barriers and detection of the allAB re-
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lationships. We plan to enable support of other types of barriers, like tree-based
ones, by extending BARRIERFINDER with more pre-defined patterns and adding
necessary techniques.

2. BARRIERFINDER works with global thread-pool based programs. The master
thread spawns multiple child threads, which participate in the same barriers. BAR-
RIERFINDER cannot handle multi-threaded programs with multiple thread pools
or the case that only part of all threads participate in the same barriers. This may
require manual reduction on the scale or the concurrency model of the source
programs before being applied to BARRIERFINDER.

3. BARRIERFINDER’s overhead reduction optimizations we proposed so far may
only work with other barrier implementations and ad hoc synchronizations after
modification. Applicability and scalability of these techniques on new applica-
tions, e.g, other types of ad hoc synchronizations mixed with ad hoc barriers, still
need further assessment.

5 Related work
5.1 Synchronization Characterization and Detection

Several empirical studies related to synchronizations have been performed. Xiong et
al. (Xiong et al. 2010) characterize ad hoc synchronizations of representative open-
source applications and find they are pervasive. Pinto et al. (Pinto et al. 2015; Wu
et al. 2016) survey real-world C++ and Java programs to assess how programs are
synchronized in practice with concurrent language features, concurrent libraries, or
concurrent data structures. Concurrent bug studies (Farchi et al. 2003; Lu et al. 2008;
Zhang et al. 2011) try to characterize the pattern of concurrency bugs to facilitate their
detection. Gu et al. (Gu et al. 2015) investigate how programmers change program
synchronizations and their relation to concurrency bugs. The results of these studies
motivate us to work on accurate synchronization understanding and guide the design
of our approach.

Specifically, on ad hoc synchronizations, existing techniques (Jannesari and Tichy
2010, 2014; Tian et al. 2008, 2009; Xiong et al. 2010; Yin 2013; Yuan et al. 2013) use
either static or dynamic approaches to detect sync pairs. We proceed further to detect
complete synchronizations and recognize enforced synchronization relationships.

5.2 Barrier Analysis

Kamil et al. (Kamil and Yelick 2006) propose interprocedural concurrency analy-
sis for single program multiple data programs written in a Java dialect, Titanium,
which statically guarantees that all threads reach the same sequence of textual barri-
ers. Zhang et al. (Zhang et al. 2008) transform OpenMP programs into control flow
graph with all OpenMP implied barriers, and then treat the barrier matching as a regu-
lar expression while parsing the CFG. Their approach can handle textually unaligned
barriers. Our work does not assume any prior knowledge about barriers and tried to
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recognize barriers with ad hoc implementations. As a result, BARRIERFINDER re-
sults can be used as a foundation for the aforementioned work of barrier analysis.

5.3 Runtime Invariant Detection

Our approach recognizes ad hoc barriers by mining execution traces for temporal in-
variants. Invariant mining is a technique pioneered by Daikon (Ernst et al. 2007), and
our approach shares many common elements with Daikon, e.g., generating concrete
traces and mining traces for invariants. Similar to our work, researchers have also ex-
plored temporal invariant mining for different purposes. Beschastnikh et al. (Beschast-
nikh et al. 2011) propose techniques to mine temporal invariants based on partially
ordered logs, and CSight (Beschastnikh et al. 2014) further uses temporal invariants
to model concurrent systems. CloudSeer (Yu et al. 2016) uses temporal invariants
to model the workflow of cloud systems and then uses the models for monitoring
purposes. Instead, we focus on inferring the synchronization relationship of ad hoc
synchronizations.

5.4 Interleaving Reduction

Due to the exponential explosion of thread interleavings in multithreaded programs,
there has been a large body of work on reducing the interleaving space and optimiz-
ing interleaving exploration in testing and verification. Limiting scheduling points,
threads, or sync variables is a common idea to reduce the interleaving space. Musu-
vathi and Qadeer (Musuvathi and Qadeer 2007) propose an iterative context-bounding
technique that limits the number of preempting context switches. Blum and Gib-
son (Blum and Gibson 2016) propose on-the-fly adjustment of preemption points.
Bindal et al. (Bindal et al. 2013) propose a variable and thread bounding technique. In
our work, the slicing-based scope reduction leverages the similar idea by identifying
and using high-level sync regions as the scheduling scope. In addition to constraining
the space, some work focuses on finding equivalent interleavings to avoid exhaus-
tive interleaving enumeration. Mazurkiewicz equivalence (Mazurkiewicz 1987) is a
widely accepted equivalence class, and there are also variations (Chalupa et al. 2017;
Wang et al. 2009). In the future, we can incorporate these interleaving reduction tech-
niques while extending our framework for other more complex ad hoc synchroniza-
tions.

5.5 Program Slicing

Classic program slicing (Weiser 1981, 1984) is based on program’s control flow graph
of sequential programs and is known to produce unnecessarily large slices due to
the calling context problem (Horwitz et al. 1990), which has been addressed (Gal-
lagher 2004) and is functionally equivalent to more recent slicing techniques (Hor-
witz et al. 1990) based on program dependency graphs (PDG). In practice, the wide
acceptance of pointers in programming languages, such as C/C++, slices inflate even
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more because of a conservative interpretation of imprecise pointer analyses (Ander-
sen 1994; Shapiro and Horwitz 1997; Steensgaard 1996). Anderson’s algorithm (An-
dersen 1994) is known to be more precise than others (Shapiro and Horwitz 1997;
Steensgaard 1996) and popular in practice. Moreover, as Hind at al. (Hind and Pioli
2000) show, adding context-sensitivity and flow-sensitivity results in little improve-
ment in precision. In our work, BARRIERFINDER’s front end is based on LLVM-
Slicer (Slaby 2015), implementing Anderson’s algorithm with field-sensitivity. Thus,
it can perform slicing on fields of a structure. We notice there are many occasions
that a sliced program contains time-consuming computation, which can be omitted in
the slice. One may try to devise more precise pointer analysis techniques (Hardekopf
and Lin 2007), fixing the calling context problem or employing PDG-based slicers.

The slicing of concurrent programs is more challenging (Giffhorn and Hammer
2009; Krinke 2003; Nanda and Ramesh 2006). Precision depends on the model of
concurrency, i.e., the program synchronization structure. Our goal is to facilitate the
understanding of the model of concurrency by inferring the semantics of synchro-
nization constructs used. Instead of relying on these concurrent program slicing ap-
proaches, we enhance the original slicing algorithm in LLVMSlicer (Slaby 2015) by
constraining the underlying concurrency model to the work-crew model (corporation
1998) based on the Pthread standard. In the future, we may resort to more general
algorithms (Krinke 2003; Nanda and Ramesh 2006).

5.6 Related Program Development Tools

Various program development tools, such as data race detectors (Bessey et al. 2010;
Lee et al. 2012; Raman et al. 2012; Sadowski and Yi 2014; Surendran et al. 2014),
atomicity violation detectors (Lucia et al. 2010; Park et al. 2009), order violation
detectors (Zhang et al. 2010), synchronization-oriented performance profilers (Chen
and Stenstrom 2012; Yu and Pradel 2016) and concurrent program slicers (Krinke
2003; Nanda and Ramesh 2006), depend on the understanding of the input program
synchronization structure for their accuracy or performance. Such critical informa-
tion is usually obtained by may-happen-in-parallel analysis (Chen et al. 2012; Di
et al. 2015; Li and Verbrugge 2005), which further depends on the understanding of
both standard and custom synchronizations. We believe SynCat’s capability of auto-
matically understanding custom synchronizations is complementary and fundamental
to all the aforementioned dependent analysis and development tools.

6 Conclusion

This paper contributes BARRIERFINDER, a pipelined framework to automate the
recognition of complex ad hoc synchronizations that realize barriers. During com-
pile time, BARRIERFINDER applies program slicing to reduce irrelevant computation
and develops a novel approach to detect synchronization boundaries for reducing the
scope of interleaving enumerations. During runtime, a sequence of interleaving space
reduction techniques greatly shrinks the exponential interleaving space into a linear
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one, in terms of number of barriers in a program. Various intrusive interpretation-
based optimizations further improve the execution efficiency. BARRIERFINDER ad-
dresses the space-explosion problem with these techniques when there are two par-
ticipating threads, which establishes a base case for an inductive proof to generalize
the result for any number of threads. The experimental evaluation shows that BAR-
RIERFINDER is able to detect barriers in six SPLASH2 benchmarks efficiently. To
our knowledge, BARRIERFINDER is the first tool that can detect ad hoc barriers as
a whole synchronization constructs. We further assess BARRIERFINDER with a set
of synthetic benchmarks most of which are incorrect counter-based barrier imple-
mentations. Our evaluation demonstrates that BARRIERFINDER is capable of detect-
ing different implementation errors, verify the correctness of counter-based barri-
ers, and characterizing other ad hoc synchronizations like allAB. We believe BARRI-
ERFINDER contributes to the fundamental problem of accurate program synchroniza-
tion understanding and has the potential to improve a spectrum of program analysis
and development tools.
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