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Abstract—The path to extreme scale high-performance com-
puting (HPC) poses several challenges related to power, perfor-
mance, resilience, productivity, programmability, data movement,
and data management. Investigating the performance of parallel
applications at scale on future architectures and the perfor-
mance impact of different architectural choices is an important
component of HPC hardware/software co-design. Simulations
using models of future HPC systems and communication traces
from applications running on existing HPC systems can offer an
insight into the performance of future architectures. This work
targets technology developed for scalable application tracing of
communication events. It focuses on extreme-scale simulation
of HPC applications and their communication behavior via
lightweight parallel discrete event simulation for performance
estimation and evaluation. Instead of simply replaying a trace
within a simulator, this work promotes the generation of a
benchmark from traces. This benchmark is subsequently ex-
posed to simulation using models to reflect the performance
characteristics of future-generation HPC systems. This technique
provides a number of benefits, such as eliminating the data
intensive trace replay and enabling simulations at different scales.
The presented work features novel software co-design aspects,
combining the ScalaTrace tool to generate scalable trace files, the
ScalaBenchGen tool to generate the benchmark, and the xSim
tool to assess the benchmark characteristics within a simulator.

I. INTRODUCTION

This decade is projected to usher in the period of exascale
computing with the advent of high-performance computing
(HPC) systems of up to one billion tasks and possibly as many
cores. To assess the requirements for future hardware platforms
and to investigate the application/algorithm performance at
extreme scale, hardware simulation plays an important role.
Significant challenges exist even at the single node level, the
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network interconnect and at the system level when trying to
orchestrate the execution of such extensive numbers of cores.
Hardware simulators are vital in assessing the potential of dif-
ferent approaches under these challenges. Yet, these simulators
need to be subjected to realistic application workloads that
originate in the HPC realm.

The Extreme-scale Simulator (xSim) [2], [3], [4], [7], a
performance investigation toolkit at extreme scale, can execute
an application in a simulated HPC environment and thus
facilitates HPC hardware/software co-design. To simulate an
application, xSim needs to perform all the computation and
communication involved in it. This, coupled with overhead
to simulate network and processor models, makes simulation
slow and necessitates that a significant amount of resources be
allocated for simulation. The compounding effect of resources
used by the application and the simulation, such as the addi-
tional network traffic to coordinate the simulation and memory
accesses to facilitate the virtualization needed for the simulated
environment, typically results in an overhead of several orders
of magnitude. This overhead could be significantly reduced
if computational overhead were only simulated as the time
spent on computational resources, and not as the computation
performed. This approach, however, would require the avail-
ability of skeleton benchmarks for communication at extreme
scale derived from HPC application programs, which currently
do not exist. This work tries to fill this gap by generating such
communication benchmarks from scalable traces suitable for
rapid replay within event-based simulators.

ScalaTrace [10], [12], [15] is a state-of-the-art tracing
framework that produces near constant size communication
traces for parallel applications based on the Message Passing
Interface (MPI) irrespective of number of nodes. ScalaBench-
Gen [14] demonstrated that accurate and readable benchmarks
can be generated from the traces of ScalaTrace. The generated
benchmark is a normal parallel C program that issues MPI calls
corresponding to every event in the trace. Experimental results
have shown that the generated benchmark closely resembles
that of the actual application, both in terms of execution time
and communication messages exchanged. ScalaBenchGen [14]
is based on the initial version of ScalaTrace [10], [12] that
generates scalable traces for applications with SPMD (Single
Program Multiple Data) behavior. The new version of Scala-
Trace [15] (from here on referred as ScalaTrace II) redesigned
the trace format such that scalable traces can be generated
even for applications that exhibit irregular SPMD behavior,



which is essential for most large-scale HPC applications. To
produce benchmarks from this trace format, we contribute
novel algorithms for benchmark generation from elastic traces
within ScalaBenchGen II.

To improve the simulation process, we co-design the
benchmarks produced by ScalaBenchGen II to mesh with
discrete event simulation tools, such as xSim. Simulating a
benchmark program instead of the actual application improves
the simulator performance in many ways. First, the payload
exchange of an MPI event across native ranks can be avoided.
In the benchmark program, a payload of an event is transmitted
only to match with the communication behavior of the actual
application, but is not utilized elsewhere in the program. xSim
supports an application model mode in which the payload of an
event is not transmitted. Instead, only metadata is exchanged.
Still, this accurately captures the performance of events by
updating the timing information within the simulated network
model. Benchmarks can be simulated in this mode and, hence,
huge data transfers can be avoided without loss of accuracy.

Second, computation can be completely virtualized in the
simulator. The computation between two MPI events in the
application is reproduced in the benchmark through a sleep()
call with a duration equal to the time elapsed between them.
xSim simulates a sleep() by simply advancing the simulated
processor clock. Therefore, computation can be simulated
with almost zero overhead, which otherwise adds significant
overhead. xSim thus avoids excessive data exchanges and
tedious computation. This enables xSim to gaze benchmarks
for simulation and requires fewer resources, thus facilitating
simulation at extreme scale.

Third, utilizing a skeleton benchmark instead of the original
application obfuscates the application’s implementation details
to a degree that permits analyzing the performance charac-
teristics of proprietary applications on future-generation HPC
systems without revealing the implementation details.

Finally, the computational part can be enhanced to adapt to
future architectures. ScalaBenchGen [14] showed that bench-
marks generated on one platform can be adapted to another
platform by adjusting the recorded overheads resembling the
computational part.

The following are the main contributions of this work:

• We have designed and implemented ScalaBenchGen II, a
tool to generate concise and accurate benchmark programs
from the traces of ScalaTrace II by utilizing innovative
algorithms to expand elastic traces.

• The ScalaBenchGen II and xSim capabilities have been
combined in a software co-design approach to pave the way
for HPC systems simulation at extreme scale.

II. BACKGROUND

ScalaTrace [10], [12] produces scalable and often even
constant size communication traces from MPI programs. These
traces preserve both structural information and temporal order-
ing of events, and can be replayed to reproduce the original
application behavior. It uses the MPI profiling layer (PMPI)
to trace MPI functions and to record their parameters (such
as source, destination, etc.) without actually recording the
message content. It performs compression in two stages: intra

node and inter node. Intra node compression is performed
locally on each node on-the-fly. Loops in the program are
identified and represented in the trace using extended regular
section descriptors (RSD) [6]. Power-RSDs (PRSD) [9] are
used to describe RSDs nested in a loop. Inter node compression
is performed during MPI Finalize() to produce a global trace
file by combining the local trace records of each node. Another
important feature of ScalaTrace is the preservation of the
computation time of an application. It records the time elapsed
between two communication events. Instead of exact values,
statistical histogram bins are used to store delta times such
that differences in execution time of an event across a loop or
nodes is captured in the trace.

In a parallel program, an event can be executed in
only some ranks or its parameters may vary with the rank.
This information is captured in the trace by associating a
ranklist, a list of ranks expressed in a recursive manner,
to the event. A ranklist is encoded (in BNF notation) as:
dimension, start, (iters, stride)+

where dimension indicates the number of pairs of the list, start
is the starting node rank, and a sequence of ( iters, stride )
pairs represent the iteration count and stride, one each per
dimension.

The original ScalaTrace tool compresses event sequences
only if their call stack signatures, MPI parameters and loop
structures match. The new version of ScalaTrace [15] (Sca-
laTrace II) is designed to generate scalable traces for ap-
plications that have inconsistent task level and loop level
behavior. Event parameters, including loop information, are
represented through a novel format, the elastic data element
representation.

III. FRAMEWORK OVERVIEW

Figure 1 outlines the process of generating a benchmark
skeleton, and simulating it using xSim. First, the application
is linked with the ScalaTrace library and executed to produce
a trace file. The trace file is fed into the benchmark genera-
tor, which outputs a corresponding benchmark program. The
benchmark generator can be run on a standalone machine.
The generated benchmark is a normal C program that can be
executed like any other parallel MPI program, reproducing the
timing and communication behavior of the original application.

Application Trace File Benchmark
ScalaBenchGen II

ScalaTrace II

(library)

Benchmark

(xSim header)

xSim

(library)

Fig. 1. Benchmark Generation and Simulation Process

As the generated benchmark is a normal C program, it
can also be executed in the simulated environment of xSim
like any other MPI application. xSim’s header file is included,
the benchmark is recompiled and linked against the simulator
libraries. To perform studies using xSim, the simulated pro-
cessor and network need to be configured. To accelerate these
studies, xSim’s application model mode (explained later) is
utilized to remove unnecessary simulation overhead by trans-
ferring the MPI message envelope only, without the payload.



IV. SCALABENCHGEN II

ScalaBenchGen [14] generates communication benchmarks
from the traces of ScalaTrace [10], [12]. Each event in the trace
maintains MPI call parameters along with the time elapsed
from the previous event. The benchmark program is a C
program that issues MPI calls for each event in the trace.
Computation between two events is abstracted by sleeping for
a duration equal to the elapsed delta time since the previous
event. This makes the wall clock time of both application and
generated benchmark program closely resemble each other.
Wrapper functions are designed for MPI events to hide the
details of parsing the parameters and to invoke the actual MPI
function with appropriate values. Retrieving communicators
and generating request handles are also implemented in the
wrapper functions. Thus, the generated benchmarks are both
accurate and readable. A detailed description of the benchmark
generator is presented in [14].

In ScalaTrace II, the trace format is completely redesigned
to be able to capture more complex application patterns.
Hence, ScalaBenchGen also requires a redesign including
novel algorithms for expanding elastic representations to gen-
erate benchmark programs from the traces of ScalaTrace II. In
this work, we describe ScalaBenchGen II, a tool to generate
benchmarks from the traces of ScalaTrace II. The following
sections contribute novel algorithms required for benchmark
generation specifically for elastic traces.

A. Elastic Data Element Representation

ScalaTrace II introduced a new format, the elastic data
element representation, to capture all data elements such as
source, destination and count. An elastic data element is a
list of < valuevector, ranklist > pairs, where the former
denotes a list of values for each iteration corresponding to the
ranklist. This allows an event in the trace to assume different
values of a parameter when values vary with the current rank
or iteration of the enclosed loop. For instance, consider the
scenario when an MPI Send communicates 5 and 10 elements
in two successive iterations of a loop for ranklist R1, but sends
15 and 20 elements for Ranklist R2. Then, the count parameter
of the event is represented as: 5,10 : R1;15,20 : R2

The benchmark generator passes elastic data elements of a
parameter as a character string to the MPI event wrapper
function. Inside the wrapper function, this string is parsed for
the first time and an integer value vector is constructed. To
avoid parsing the string every time, a value vector and the
last accessed index are maintained in the benchmark code.
Thus, ScalaBenchGen II can generate scalable benchmarks
without much overhead by using the elastic data element
representation.

B. Generating Benchmark Code for Loops

ScalaTrace identifies the loops in a program and represents
them using the PRSD format [9]. Whenever a loop is encoun-
tered in the trace, ScalaBenchGen generates a for loop and
places all members of the loop in it. ScalaTrace compresses
repetitive events into a loop only when all events match across
iterations. Loops across ranks are merged if and only if all
its loop members are identical. ScalaTrace II redesigns the
compression algorithms, such that a sequence of events is

compressed as a loop even if the loop members differ across
ranks or iterations. Loop information is also encoded using
the elastic data element representation to achieve good com-
pression. Hence, to generate benchmark code for loops, new
techniques need to be introduced in the benchmark generator.

Inter-node compression in ScalaTrace II is loop structure
agnostic in nature. The loop head maintains the information
about a loop, i.e., the number of members (events) and
iterations, as elastic data elements. While merging two loop
heads, loop information is compressed as elastic data elements
such that the difference in loop structure across tasks is
captured through the elastic data element representation. But
this compression mechanism provides the following unusual
properties to loop members, which makes the code generation
process difficult:

• The number of events in a loop can be different per rank
and iteration of an outer loop.
• An event can be part of a loop in one rank but may not be

part of the loop in another rank.

Rank 0:
1: for(i=0;i<10;i++){
2: E1;
3: E2;
4: E3;
5: }

Rank 1:
1: for(i=0;i<20;i++){
2: E1;
3: E2;
4: }
5: E3;

Fig. 2. Rank specific behavior in loops

Figure 2 illustrates the aforementioned task-specific be-
havior in loops. Rank 0 has a loop of 10 iterations with
three events: E1, E2, and E3. But Rank 1 has only two
events, E1 and E2, in the loop with a trip count of 20.
ScalaTrace II merges these two loops by annotating loop
structure information with the loop head event, i.e., E1. The
trace for Figure 2 is E1(3,10)[0],(2,20)[1] E2 E3, where the
subscript of E1 indicates that rank 0 has a loop with 3 events
and 10 iterations, whereas the loop in rank 1 has 2 events and
20 iterations.

ScalaBenchGen II uses the elastic data element
representation to reflect any task specific behavior in
loops. Whenever a loop is encountered in the trace, a for
loop is placed in the benchmark code. Like other MPI data
parameters, elastic data element strings are constructed for
both iteration and member counts of a loop. They are parsed
before executing the loop to determine the current iteration
and member counts of the loop. The loop tail, i.e., the last
event in the trace that can be part of the loop across all ranks,
will also be identified. All the events from loop head to loop
tail are placed in the generated for loop. This may result in
a placement of events in the loop such that certain events are
executed in the loop only for a subset of ranks. For the example
in Figure 2, events E1, E2, and E3 are placed in a loop, but
E3 is not part of the loop for rank 1 and, hence, should only
execute once. Thus, to guarantee the correctness of a program,
a conditional check is placed before every loop member,
is loop member(rank, event ranklist, nesting depth).
This predicate ensures that events are executed in their correct
order and for the correct number of times. The predicate
evaluates to true only if the following two conditions are
satisfied. First, the current rank should be a member of the
ranklist. Second, for a given iteration, the number of events



executed so far should be less than the total member count of
the loop, except for the last iteration. For instance, Figure 3
shows the simplified benchmark code for the example in
Figure 2. Here, for rank 1, events E1 and E2 will be executed
in all iterations of the loop but E3 will be executed only in
the last iteration. However, for rank 0, all events are executed
in each iteration of the loop.

iter_cnt = get_param('10,0;20,1');
mem_cnt = get_param('3,0;2,1');
for(iter=0; iter<iter_cnt; iter++){

if(is_loop_member(...))
E1;

if(is_loop_member(...))
E2;

if(is_loop_member(...))
E3;

}

Fig. 3. Benchmark code for the loop with rank specific behavior

C. Generating Benchmark Code for Computation

Each event in the trace records the time taken for computa-
tion, i.e., the time elapsed in execution since the last event. The
benchmark generator simulates this computation time by in-
troducing a sleep() call before the event for the recorded time.
An event can have multiple time records as its previous event
can be different based on the rank and iteration of the loop.
The initial version of ScalaBenchGen [14] places conditional
checks such that the correct value is chosen for computation
based on the entry path. This approach does not hold for
the traces of ScalaTrace II. As described in sections IV-A
and IV-B, ScalaTrace II aggressively compresses events even
though their parameters and loop membership vary with the
rank and iteration. This could lead to many entry paths for an
event. For example, in the program shown in Figure 2, event
E1 has an entry from E3 for rank 0, but it also has an another
entry from E2 for rank 1. Compressing nested loops might
increase entry paths even more. Placing conditional checks for
every entry path increases the size of the generated benchmark
program and reduces its readability.

ScalaBenchGen II avoids multiple conditional checks by
maintaining the timing records of an event in the benchmark
code itself. Each timing record of an event in the trace
includes the previous event’s stack signature along with the
computation time. Instead of maintaining incomprehensible
stack signatures, the benchmark generator annotates every
event with a sequence number and uses it as a reference in
the timing record. The number of the most recently executed
event is maintained as a state in the benchmark code. A
wrapper function, do compute(), is placed before every event
to parse the list of timing records and to simulate the required
amount of computation based on the event that was executed
previously. As the parsing logic is completely embedded in
the wrapper function, the generated benchmarks can still be
concise and readable, even if there are multiple entry paths.
For the program given in Figure 2, the benchmark code for
the computation at event E1 is:

times={{t(E2),E2},{t(E3),E3},{t(P),P}};
do_compute(times,...);

where the first field in the times array contains the computation
time, and the second field indicates the corresponding previous
event number. Here, P represents the event before the loop.

V. XSIM

The Extreme-scale Simulator (xSim) [2], [3], [4], [7] is a
performance investigation toolkit that permits running native
HPC applications or proxy/mini applications in a controlled
environment with millions of concurrent execution threads,
called simulated MPI processes, while observing application
performance in a simulated extreme-scale system for hard-
ware/software co-design. Using a lightweight parallel discrete
event simulation (PDES), xSim executes an application on a
much smaller HPC system in a highly oversubscribed fashion
with a virtual wall clock time, such that performance data can
be extracted based on a processor and a network model with
the appropriate simulation scalability/accuracy trade-off.

xSim is designed like a traditional performance tool, as an
interposition library that sits between the MPI application and
the MPI layer, using the MPI performance tool interface. It has
essential support for simulated MPI point-to-point communi-
cation and full support for simulated MPI data types, groups,
communicators, and collective communication. In total, xSim
supports 88 simulated MPI functions for each supported pro-
gramming language, C and Fortran. An application is run in
the simulator using the following steps:

• Add #include xsim-c.h to the C source code, or #include
xsim-f.h to the Fortran source code.
• Recompile the application and link it with the xSim library,

i.e., -lxsim, and the respective xSim programming language
interface library, i.e, -lxsim-c for C or -lxsim-f for Fortran.
• Run the application with: mpirun -np <real process cout>
<application> -xsim-np <virtual process count> [other
xSim arguments] [application arguments].

The PDES-driven simulation accounts for the execution
time for each simulated MPI process using a processor model.
It is based on the actual execution time on the real hardware
platform scaled to the simulated processor speed. It does
support heterogeneous processor cores with different speeds
and operating system noise simulation. Calls by the application
to sleep() and usleep() correspondingly advance the simulated
process time. Calls to gettimeofday() perform a native execu-
tion time measurement and apply the processor model to return
the absolute execution time since process start.

The simulation also accounts for the wait time incurred
by communication for each simulated MPI process using a
network model. It offers latency and bandwidth restrictions
with different network architectures, such as star, ring, mesh,
torus, twisted torus and tree. It also supports hierarchical com-
binations, such as to simulate network-on-chip and network-
on-node, as well as, rendezvous protocols and sender/receiver
process contention simulation. For scalability reasons, the
network model does not provide full contention modeling for
shared network interfaces or routers at this point.

For better simulation scalability, xSim supports the exe-
cution of application models in the application model mode.
Similar to an MPI trace replay, application models, or the
generated benchmarks in this paper, feed the simulator with
the same timing and communication behavior, but do not
require certain resources, such as memory and processor
usage, to scale with the simulation. The simulated time is
simply advanced according to the time the application would
have spent between MPI calls on actual execution using the



simulated sleep() and usleep() calls. Simulated MPI calls are
executed without actually sending MPI message payloads, as
the MPI message envelope containing the metadata is enough
to accurately simulate communication behavior.

xSim has been run up to 134,217,728 (227) communicating
MPI tasks, each with its own process context, using just a 960-
core Linux-based cluster. The toolkit is relatively easy to use
and the scalability/accuracy trade-off offered by xSim provides
a unique opportunity for extreme-scale studies.

VI. EVALUATION

The developed framework is evaluated on a cluster using
a subset of the NAS parallel benchmarks [1] (version 3.3.1).
These benchmarks are chosen as they perform both point-to-
point and collective communication, which are prevalent in
HPC applications. All experiments are conducted with 256,
512 and 1024 MPI ranks, except for SP and BT. As the number
of MPI ranks needs to be a perfect square for these bench-
marks, those two are executed with 64, 256 and 1024 MPI
ranks. All benchmarks are executed with class D input problem
sizes to produce sufficient computation and communication
at this scale. Execution time metrics are reported as averages
over three runs with a relative standard deviation of no more
than 4.88% across all benchmarks. For the wall clock time
taken for simulation, we observed relative standard deviations
as high as 64% for outliers as simulation time can be more
erratic for extremely short runs (less than 20 seconds), which is
due to dominant system overheads for very short runtimes that
tend to skew results. The average relative standard deviation
(without outliers) across all benchmarks is only 8.36%, which
is more meaningful and, most significantly, applies to longer
runs. We also observed stability issues for simulation at 1024
MPI ranks with an oversubscription factor of 1 for certain
benchmarks (MG, SP and BT), which result in lost heartbeats
within Open MPI’s runtime layer (ORTE). We reported the
results of a single run in this case (just for simulation under
xSim), and we are in the process of obtaining additional runs
and of identifying the cause of these problems.

Initially, trace files are collected using ScalaTrace II by
executing the selected NAS parallel benchmarks on the cluster.
From these traces, corresponding benchmark skeletons are
generated using ScalaBenchGen II. The generated programs
are executed on the cluster and on xSim in a simulated
platform that matches the configuration of the cluster. The
simulation experiments using xSim are performed on the
cluster as well. This methodology offers a good perspective
on the performance and accuracy of the generated benchmark
skeletons on the evaluation platform and on the simulated
platform. It also offers insight into the capabilities of xSim
using generated benchmark skeletons.

A. Evaluation Platform

The evaluation cluster consists of 108 compute nodes, each
with 2 AMD Opteron 6128 (Magny Core) processors. Each
processor has 8 compute cores, i.e., each node has 16 cores
and 32 GB DRAM. The nodes are connected via InfiniBand
with a fat tree network topology as follows: The 108 compute
nodes are connected through 6 layer 1 (L1) switches and 3
layer 2 (L2) switches. Each L1 switch has 36 ports, where the

lower 18 ports are connected to the compute nodes and the
upper 18 ports are connected to L2 switches (6 per switch). For
MPI communication, the raw InfiniBand (IB) or TCP over IB
may be used. Table I shows a significant difference in effective
bandwidth between both. The NAS parallel benchmarks and
the generated skeleton benchmarks are executed over IB with
Open MPI 1.5.4.

The simulator is configured to match the IB configuration.
However, due to the requirement for multithreading in xSim,
xSim itself is executed using the 8-times slower IB-over-
TCP with Open MPI 1.5.4 and MPI multithreading support
(since native IB does not support MPI multithreading). As
xSim supports oversubscription, its performance is evaluated
by increasing the oversubscription from a 1:1 ratio of physical-
to-simulated MPI processes to a 1:16 ratio, i.e., reducing the
number of physical processes by half in each step.

TABLE I. IB VS. TCP-OVER-IB EFFECTIVE BANDWIDTH

Type Within Switch Across Switches

InfiniBand (IB) 2547MB/sec 2546MB/sec
TCP over IB 308MB/sec 303MB/sec

B. Simulated Platform

xSim is configured to simulate the cluster’s performance
characteristics. As xSim’s application model mode is used,
the processor model is not needed. The generated benchmark
skeletons simply call usleep() to advance the simulated MPI
process clock for the execution time of computational phases.
The network model uses a combination of hierarchical net-
works to simulate the on-node communication between cores
at the lowest level, the off-node communication within the
same switch at the middle level, and the off-node communi-
cation across different switches at the highest level. At each
level of the hierarchy, a star network model is employed that
matches the latency and bandwidth performance of the cluster.
The simulation parameters are shown in Table II.

TABLE II. CLUSTER NETWORK PARAMETERS

Level Latency Bandwidth Rendezvous
Threshold

On-node 12 µs 1834 MB/sec 4 kB
Off-node (same switch) 13 µs 2547 MB/sec 64 kB
Off-node (diff. switch) 14 µs 2546 MB/sec 64 kB

As noted earlier, communication contention is only sim-
ulated for each individual simulated MPI process, i.e., a
simulated MPI process cannot send and/or receive multiple
MPI messages without incurring the required cost to send
and/or receive them. However, xSim neither simulates network
contention at the node interface nor at router level at this point.
Furthermore, xSim’s collective MPI calls are implemented in
a linear fashion at the moment. There is no simulation support
for tree-based collectives.

C. Generated Benchmarks Accuracy and Conciseness

Figure 4 compares the wall clock execution times (on a
logarithmic scale on the y-axis) of the benchmark programs (x-
axis) generated by ScalaBenchGen II with the corresponding
original applications. Both are executed on the same evaluation
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Fig. 4. Accuracy of ScalaBenchGen II Benchmarks

platform. From the graphs in Figure 4, we observe that the exe-
cution times of the generated benchmark and the corresponding
application are close to each other. Quantitatively, the mean
percentage error across the benchmarks is 5.5%, indicating
a high accuracy. The maximum percentage error observed is
13.29%. We have calculated the percentage error using the
formula:

|(Tbm − Tapp)|/Tapp × 100

where Tbm and Tapp represent the execution time of bench-
mark program and the corresponding application, respectively.

Table III demonstrates the conciseness of the benchmarks
produced by ScalaBenchGen II. The generated programs are
smaller than the corresponding applications, less than half the
size in most of the cases, even though these were benchmark
programs to begin with. (More significant reductions in size
would be obtained when automatically generating benchmarks
from full-sized HPC applications.) The scalability column in
Table III indicates how the number of lines of code changes
with number of MPI ranks. The numbers of lines of code
remain constant for all the benchmarks, irrespective of the
number of MPI ranks, except for MG. MG performs a complex
7-point stencil communication that results in imperfect trace
compression. However, the increase is only sub-linear with
number of MPI ranks. Here, we reported the change in number
of lines for 256 to 1024 ranks. Most significantly, BT and
CG show a constant size irrespective of the number of ranks,
which could only be obtained by benchmark generation with
ScalaBenchGen II from the elastic trace format (cf. prior sub-
linear results for these benchmarks in [10]).

D. Simulation Performance and Accuracy

We evaluated the effectiveness of our simulation approach
using two metrics: the amount of MPI data communicated

TABLE III. COMPARISON OF NUMBER OF LINES OF CODE

Program Application Benchmark Reduction (%) Scalability

BT 9383 1076 88.53 constant
SP 5067 1022 79.83 constant
CG 1918 954 50.26 constant
LU 6024 1298 78.45 constant
MG 2678 2496· · · 2888 -7.84· · · 6.8 sub-linear

during simulation and the time taken to complete the simula-
tion. Figure 5 presents the amount of MPI data communicated
(on a log scale on the y-axis) under the simulation for the
different generated skeleton benchmarks (x-axis). Note that the
generated skeleton benchmarks communicate the same amount
of MPI data as the corresponding NAS benchmarks when not
using xSim for simulation. We observe that MPI data transmit-
ted during simulation is 2-4 orders of magnitude smaller than
the amount of data communicated in the actual application.
This is due to the fact that the MPI payload is not transmitted
during simulation. In all benchmarks, a total of only a few giga
bytes are communicated during simulation, even though the
MPI data exchanged in native application execution is in the
order of tera bytes. Also, the amount of transmitted MPI data
decreases with increasing oversubscription, because xSim does
not need to send MPI messages with corresponding metadata
for simulated MPI processes that reside within the same
physical MPI process (using user-space threading). Figure 6
shows the effect of decreasing MPI message counts (on a
log scale) over increasing oversubscription. We observe a
reduction of MPI messages in the order of millions as we
increase the oversubscription factor.

Figure 7 presents the total wall clock time elapsed to
perform the simulation (on a log scale) with different oversub-
scription factors. We observe an initial decrease of simulation
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Fig. 5. MPI Data Exchanged for Different Over-Subscription Scenarios

time with increasing oversubscription and an eventual increase
again in most of the scenarios. We have shown in Figures 5
and 6 that an increase of oversubscription will lower the
number of MPI messages and the amount of MPI data that is
communicated. However, more simulated MPI processes reside
on the same physical MPI process with higher oversubscrip-
tion, resulting in additional overheads for context switching
between them. Each individual simulated MPI message that is
received by a simulated MPI process requires the simulator to
switch to the context of the receiving simulated MPI process.
While the context switch itself consists of a jump in the user-
space stack and a copy-out/in of the data segments, it is not
necessarily by itself a huge performance issue. The context
switch, however, may trigger cache pollution. In addition, the
network model is applied for each simulated MPI message
whether it is sent to a locally residing simulated MPI process
or to a remote one, incurring a small computational overhead.
Programs with high message volumes, such as LU with over
100 million messages, create a noticeable overhead by forcing
context switches and network model computations. Figure 7
further shows an outlier. The simulation of MG at 1024
MPI ranks takes longer than the application independent of
oversubscription, while it is shorter for 256 and 512 MPI
ranks. It appears that its 7-point stencil communication pattern
is causing performance degradation in xSim’s MPI message
processing that is compounded at larger scales.

Figure 8 presents the comparison of the simulated bench-
mark skeleton execution time with the corresponding appli-
cation execution time. The mean percentage error across the
simulated benchmark skeletons is 22.41%. Both times are
decreasing with an increase in the number of MPI ranks.
Hence, even though the simulated benchmark skeleton’s time
is not highly accurate, it follows the same scaling pattern as

the original application. This demonstrates that the presented
approach permits assessing the performance characteristics
of applications using generated benchmark skeletons in a
simulated HPC system of this size.

The simulation accuracy is affected by a number of
factors. xSim does not model network interface and router
contention, which are likely the biggest influence. Furthermore,
MPI collectives are simulated in a linear fashion, which
may not reflect the algorithms used internally by the MPI
implementation at scale. Also, xSim executes the simulated
benchmark skeleton in these experiments in an entirely clean
environment, without simulated operating system (OS) noise
and without any simulated local contention within the MPI
layer for matching messages during receives. This results in
lower execution times for the simulated benchmark skeletons,
especially when they communicate a large amount of data for
which the network contention is not modeled. For instance, we
observed maximum error of 54% for CG for 1024 MPI ranks in
our experiments, where nearly 5.5 TB of data are transferred.
As an extension to this work, a probabilistic approach will be
designed to simulate network contention by changing network
bandwidth following a normal distribution. A less scalable but
accurate network contention model is planned as well.

Our methodology can also be utilized to obtain a trace on
one platform and then simulate another platform as follows.
Processor/memory/network characteristics are provided from
configurations. Even non-linear differences to the original
timings can be modeled. This would require, e.g., tracing to
obtain PAPI cache metrics to allow non-linear changes for
different cache sizes.
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Fig. 6. MPI Messages Exchanged for Different Over-Subscription Scenarios

VII. RELATED WORK

In the context of the presented research, related work
focuses on MPI performance tools that extract and analyze
MPI traces and simulation tools that execute applications or
trace replays in a simulated HPC system.

Our benchmark generator framework, ScalaBenchGen II,
utilizes traces produced by ScalaTrace II that are constant
in size irrespective of number of MPI ranks. In contrast to
our approach, the size of the traces produced by traditional
tracing tools, such as PARAVER [11] and Vampir [8], increases
linearly with number of MPI ranks.

Xu et al. [16], [17] proposed a framework to construct
performance skeletons to evaluate the performance of corre-
sponding application on a future HPC system. But MPI events
that are not part of a globally dominant communication pattern
are not included in performance skeletons. Hence, communica-
tion behavior of these skeletons may differ from the original
application, unlike benchmarks produced by ScalaBenchGen
II.

The Structural Simulation Toolkit (SST) [13] offers simula-
tion of novel compute-node architectures of future-generation
HPC systems. It scales to a few hundred nodes with different
levels of accuracy, utilizing external modeling and simulation
tools. It can generate traces for larger-scale system simula-
tions. SST/macro is a complementary simulation toolkit that
can process output from the MPI tracing library DUMPI
(http://sst.sandia.gov/about dumpi.html) for performance eval-
uation. SST and SST/macro enable a synergy between small-
scale cycle-accurate and large-scale communication-accurate
simulations by generating traces at smaller scale and extrap-
olating performance at extreme scale. The solution presented

in this paper offers a more practical, versatile and efficient
approach as skeleton benchmarks are generated and executed
in a simulation environment. The data-intensive trace replay
is not necessary and, in contrast to running real applications,
there is no need for computation or communication workload
within the simulation. Furthermore, application code itself is
obfuscated, permitting analysis of the performance character-
istics for proprietary applications.

Other trace-driven PDES solutions exist for performance
estimation of HPC applications on future-generation HPC
systems. For example, DIMEMAS [5] is a simulation tool
that processes MPIDTrace traces acquired from HPC appli-
cations and generates output for performance tools, such as
PARAVER [11] and Vampir [8]. Performance estimations of
architectural changes can be simulated and visualized. While
the presented solution does not feature trace output and visual-
ization, it does offer simulation-based performance estimation
without the overhead of trace-driven simulation.

VIII. CONCLUSION

This work has demonstrated the capability to utilize bench-
marks generated from ScalaBenchGen II to drive HPC ar-
chitectural simulations. The ScalaTrace II framework is used
to produce near lossless scalable and elastic communication
traces. The resulting traces are transformed by ScalaBenchGen
II into a benchmark code, which is of constant size for
most benchmarks irrespective of the number of nodes and
sub-linear for one benchmark, benefiting from novel bench-
mark generation algorithms from elastic traces. This code
is subsequently fed into xSim to run the benchmark within
a simulated environment. Simulating generated benchmarks
instead of the original application enables xSim to avoid the
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Fig. 7. Simulation Time for Different Over-Subscription Scenarios

payload exchange of an MPI event and virtualizes computation
completely. Experimental results showed that with benchmark
skeletons, the total amount of MPI data communicated in
simulation is reduced by several orders of magnitude, and the
time taken for simulation is close to the application’s native
execution time.

The work differs from prior ScalaTrace and xSim papers in
that it is the first description of challenges due to HPC simu-
lation when compressed traces are used, which is an important
contribution to make extreme-scale systems simulations more
feasible. This may become even more important in the future as
such simulation can be derived from traces of real benchmarks,
which can then be extrapolated and analyzed in a simulator at
different levels of granularity. Finding the right granularity is
the challenge, as this paper also shows. xSim was adapted (see
Section 5) to better reflect the details of trace information, a
necessary step for subsequently determining the right level of
detail in simulation.

REFERENCES

[1] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and
S. K. Weeratunga, “The NAS Parallel Benchmarks,” The International
Journal of Supercomputer Applications, vol. 5, no. 3, pp. 63–73, Fall
1991. [Online]. Available: citeseer.ist.psu.edu/article/bailey94nas.html
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