
Performance Analysis of a Multi-Tenant In-memory Data Grid

Anwesha Das, Frank Mueller, Xiaohui Gu

North Carolina State University

Email: {adas4,fmuelle}@ncsu.edu, gu@csc.ncsu.edu

Arun Iyengar

IBM T. J. Watson Research Center

Email: aruni@us.ibm.com

Abstract—Distributed key-value stores have become indis-
pensable for large scale low latency applications. Many cloud
services have deployed in-memory data grids for their enter-
prise infrastructures and support multi-tenancy services. But
it is still difficult to provide consistent performance to all
tenants for fluctuating workloads that need to scale out. Many
popular key-value stores suffer from performance problems
at scale and different tenant requirements. To this front, we
present our study with Hazelcast, a popular open source data
grid, and provide insights to contention and performance bot-
tlenecks. Through experimental analysis, this paper uncovers
scenarios of performance degradation followed by optimized
performance via end-point multiplexing. Our study suggests
that processing increasing number of client requests spawning
fewer number of threads help improve performance.

Keywords-Multi-Tenancy; Performance Evaluation; In-
memory Data Grid; Key-Value Store.

I. INTRODUCTION

Performance of storage systems and in-memory key-value

stores have been the focus of research for a while. Both

academically and commercially, high-performance key-value

stores have recently gained substantial attention. Although

several such data stores exist, it is still hard to provide

consistent performance to every client. MemcacheD [1] in

particular has been used by researchers [2], [3] to solve

problems related to key-value stores. Besides commercial

usage [3]–[10], novel key-value stores have been contributed

from academia e.g. Silt [11]. Sustained performance is a

primary concern for tenants accessing such stores under

fluctuating workloads. In this paper, we present our study

of Hazelcast [12], an open source in-memory data grid that

supports multi-tenancy. We have conducted experiments to

substantiate the fact that performance degradation is indeed

high as the number of clients increases. Our study suggests

that an increase in the number of executing threads with

rising number of client end-points is one cause. We further

show how to alleviate performance degradation in Hazelcast.

We believe that our experimental evidences can help indicate

a viable solution to improve performance in similar multi-

tenant architectures.

II. BACKGROUND

With in-memory data grids being used widely, shared

cluster storage catering to multiple tenants still suffers from

This work was supported in part by NSF grants 1217748 and 0958311.

performance problems.

A. Challenges

Key-value stores cater to a combination of read (get) and

write (put) requests. Ensuring enhanced throughput for ever

increasing numbers of tenants is challenging because:

• Data placement and eviction in such stores is oblivious

to external tenant and data characteristics. E.g. if tenant

A’s and B’s keys share the same cluster instance and every

time B’s data is accessed A’s data gets evicted, then A may

experience low throughput.

• Every operation accesses data that was previously

stored. Hence, co-location of data and computation is im-

portant in such clusters. Multiple tenants may need to be

serviced by the same instance but, if that instance happens to

host the required keys, it is difficult to ensure well balanced

and distributed request handling.

• Prior work [13] has indicated an imbalance in data

center environments such as workload skews and fluctuating

request patterns. A system coping with such fluctuations that

tries to deliver the desired throughput encounters resource

contention.

• With an increase in the number of instances in a cluster

and clients, the available network bandwidth becomes a

bottleneck. Hence, performance suffers under high cluster

load even with access to sufficient resources. This network

inflated delay can be particularly overwhelming for low

latency operations.

• Based on workload size and type, throughput tends to

vary. Ensuring tenant performance is a challenge because of

the inherent, unpredictability of the workload.

B. Hazelcast

Hazelcast [12] is an open source in-memory data grid

for distributed computing. Hazelcast’s decentralized perfor-

mance benefits and its easy deployment makes it a good

choice for our study. Figure 1 gives an overview of Hazel-

cast’s threading model. Although several parameters like

client-thread-pool are configurable, every cluster instance by

default has 7 threads serving I/O operations and 5 threads

handling events. Additionally, there are dedicated threads

to perform partition aware, generic, or priority operations

(see [12] for details). A new client operating in an instance

is expensive since several multi-threaded operations are

Figure 1. Threading Model
Figure 2. Two-level pinning Figure 3. Multiplexing Channels in Hazelcast

associated with a client. Thus, with increasing number of

clients per instance, there is an increase in the client threads

per instance, and the more the clients talk to members,

the higher will be the internal sharing of data structures

across multiple threads. In other words, increasing client

end points increases internal resource consumption through

threads and work queues which could create imbalance.

Section III-C discusses the performance impact of increasing

client connections, threads, and queues.

III. EXPERIMENTAL EVALUATION

This section describes the observed performance in terms

of overall throughput for varying clients. The YCSB [14]

benchmarking tool is used to generate load on the system.

A. Evaluation Methodology

Experiments were conducted on a local cluster, where

each cluster node is equipped with a quad-core Xeon

2.53GHz CPU and 8GB memory connected to a Gigabit

network switch. Each host runs Ubuntu 12.04 64-bit with

KVM 0.9.8. The guest VMs run Ubuntu 12.04 32-bit and are

configured with two virtual CPUs and 4GB memory. An 8

instance Hazelcast cluster is setup across 2 hosts and 4 VMs.

JVM and Hazelcast server instance are used interchangeably

to indicate a Hazelcast cluster instance henceforth. A sep-

arate host outside the cluster ran multiple instances of the

YCSB client to create a multi-tenant workload.

B. JVM-VCPU Pinning

This section observes the effects of pinning a JVM to

a specific physical core. The idea is to prevent thread

migration across cores, to increase cache locality, and to

reduce overall context switch overhead which might arise

due to contention. Figure 2 depicts a two-level pinning,

where every JVM has access to two physical cores. We tried

to design a symmetric set-up to avoid any unnecessary bias

in resource allocation for a JVM. 8 JVMs were running

on 4 VMs, two on each. Each VM was assigned 2 vcpus.

Each vcpu was pinned to 2 physical cores. Each JVM was

pinned to 1 vcpu. taskset, a Linux utility that internally uses

sched setaffinity, was used for pinning, along with changes

in the VM configuration file. Two sets of experiments

were conducted: a) every YCSB client was started with 25

threads, b) the overall thread count in the system from the

client’s perspective remained fixed. Clients are distributed

equally among the 8 server instances to avoid unevenness.

This thread count refers to the number of client threads.

A combination of target throughput and number of client

threads is used to fine-tune the workload. The overall number

of system-level threads created by the Hazelcast cluster

remains fixed at all times from the server’s perspective. We

wanted to see if the client thread count had any significant

impact on performance. In the load phase, Workloada was

used consisting of 50% gets and 50% puts. In the transaction

phase, a Zipfian distribution was used setting the target

(expected per client throughput) to 4000 ops/sec.

As seen in Figure 4, there is no change in performance

with pinning. Even a thread count variation does not affect

performance. Hence, thread migration context switches do

not contribute significantly to overhead. Figure 5 shows an

increase in update latency with an increase in number of

clients with a larger thread count. However, the average up-

date latency perceived by each client does not deviate much

if the overall number of threads generated by the workload

remains fixed. The same trend is observed in Figure 6 for the

95th percentile latency illustrating the fact that 95% of the

operations completed under the indicated latency on Y-Axis.

This indicates that when the workload is well distributed

across the clients by keeping the overall client thread count

constant, there is less variation of average response time.

Increasing the number of threads per client further increases

parallelization, which increases overall latency.

C. Multiplexing Client Channels

This section describes our observation with modifications

to Hazelcast. We studied and then modified less than 10% of

the Java source code in an effort to pipeline multiple client

requests through a single proxy entry point. Our observations

indicate a performance improvement with increasing number

of clients. Since prior experiments confirmed that keeping

the number of system-level threads created by the Hazelcast

 0

 200

 400

 600

 800

 1000

 1200

 1400

4 8 12 16 20

A
v
g
.
P

e
r

C
lie

n
t
T

h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
)

Number of Clients

Throughput with Workloada, Target 4000 ops/sec

Total 200 threads, unpinned
Total 200 threads, pinned

25 threads/client, unpinned
25 threads/client, pinned

Figure 4. JVM-VCPU Pinned vs. Unpinned

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

4 8 12 16 20

A
v
g
.
U

p
d
a
te

 L
a
te

n
c
y
/C

lie
n
t
(u

s
e
c
s
)

Number of Clients

Latency with Workloada, Target 4000 ops/sec

Total 200 threads, No pin
Total 200 threads, Pinned

25 threads/client, No pin
25 threads/client, Pinned

Figure 5. Update Latency Pinned vs. Unpinned

 50

 100

 150

 200

 250

 300

 350

 400

4 8 12 16 209
5
th

 p
e
rc

e
n
ti
le

 U
p
d
a
te

 L
a
te

n
c
y
 P

e
r

C
lie

n
t(

m
s
e
c
s
)

Number of Clients

95th percentile Latency with Workloada, Target 4000 ops/sec

Total 200 threads, No pin
Total 200 threads, Pinned

25 threads/client, No pin
25 threads/client, Pinned

Figure 6. 95th percentile latency plot

cluster fixed while increasing client end points invariably

degrades throughput, we wanted to see if performance is

affected by reducing the number of threads through multi-

plexing multiple client connections. This reduces the number

of runnable I/O threads needed to handle the client threads.

Our preliminary study indicates a performance improvement

over non-multiplexed connections. The netty [15] library

was used to multiplex multiple client connections with

changes in Hazelcast’s nio-based connection implementa-

tion. The contents of multiple registered clients (inbound

channels) are pipelined to the contents of a single outbound

channel, containing multiple client data. This outbound

channel talking to the selector reduce the overall channel I/O

improving balance per instance. We noticed that hazelcast

created lesser number of threads (I/O, service, execution)

than the naive implementation owing to the reduced out-

bound channel. Figure 3 shows the modifications made by

passing the contents of multiple socket channels into a

single channel before processing it. Each experiment was

repeated 3 times and both mean and standard deviation are

reported. Figure 7 shows the improved performance with

multiplexed connections with as many as 8 clients. As the

number of clients increases, pipelining overhead increases

and there arises a problem with buffer allocation and writing

on the outbound channel. However, a marginal improvement

in per client throughput justifies our claim that, indeed,

multiple threads started for every client right at the outset

causes contention, even though the internal data structures

used are asynchronous and non-blocking. These threads,

spawning multiple additional threads along the way, impact

overall performance. Figure 8 shows the mean and standard

deviation of the experiments. The standard deviation did not

exceed 50 and the percentage increase in throughput is more

than 15% for certain number of clients (see Figure 7).

IV. LIMITATIONS

Some experiments were conducted by over-stressing the

system over limited scale. This is a limitation considering

the fact that demanding much higher than the system’s

maximum threshold (which is likely in a real-life scenario)

is not the correct way to perform experimental evaluations.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 1 2 3 4 5 6 7 8 9
A

v
g

.
P

e
r

C
lie

n
t

T
h

ro
u

g
h

p
u

t(
o

p
s
/s

e
c
)

Number of Clients

Throughput with Workloada, Target 4000 ops/sec

Original
Multiplexed

Figure 7. Multiplexed connections

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 1 2 3 4 5 6 7 8 9

M
e
a
n
 P

e
r

C
lie

n
t
T

h
ro

u
g
h
p
u
t(

o
p
s
/s

e
c
)

Number of Clients

Figure 8. Mean and Standard Deviation of Throughput

Our results are limited to 8 clients, only. More research

needs to be conducted into statistical multiplexing of diverse

client requests to a cumulative outbound channel so as to

prevent buffer overflow. With higher numbers of clients

& limited buffer sizes, mapping n client requests through

m channels needs to be further investigated. Moreover,

multiplexing approach is intrusive and may be inconvenient

for deployment in stores having message-based communi-

cation (Cassandra [4] uses RPC-Remote Procedure Calls).

However, the focus in this paper has been fast in-memory

key-value stores. These applications mostly use at least

one if not all of the Java/ReST/MemcacheD-style client

protocols, which internally use TCP/HTTP. Hence, our idea

and insights to performance improvement can be easily

extrapolated to the majority of such popular stores.

V. RELATED WORK

We discuss briefly how prior state-of-the-art is relevant

in our context. Centralized Solutions: Pisces [2], Google’s

Borg [16] are intrusive centralized schedulers focusing on

resource allocation and management complementing our

work focusing on contention analysis.

Decentralized Solutions: Apollo [17], Sparrow [18],

Omega [19], Mercury [20], Cake [21], Mesos [22], and

Yarn [23] either propose a comprehensive scheduler in-

frastructure, which is too complex and unfit for our target

systems or are not fine-grained enough focusing on Hadoop-

style applications.

Although prior work has investigated performance of dis-

tributed storage systems, focusing on sources of contention

and ensuring consistent client response remains challenging.

The existence of performance degradation was demonstrated

(Figure 4) and a solution (Section III-C), even if intrusive,

was shown to especially aid cloud computing infrastructures.

VI. CONCLUSION

In this paper, we study an in-memory data-grid called

Hazelcast in the context of multi-tenancy to assess its perfor-

mance. Our findings unveil the following interesting insights:

1) JVM pinning does not help; 2) maintaining several threads

per client with its own data structures and spawning other

internal I/O threads with a work queue per member instance

degrades throughput. Even though internal data structures

used are asynchronous and nonblocking intended for sharing,

an increase in end-to-end instances with increasing clients

causes resource contention. Our preliminary results indicate

that multiple client requests with fewer runnable instances

can alleviate contention. This analytical study provides a new

perspective of looking at the problem. Instead of determining

how to partition data or allocate shared resources or schedule

requests, the best way to process data through multiple entry

points should be analyzed further. Pipelining channels to

avoid excessive parallel threads considering the scale of a

cluster with the objective of maximizing performance should

be a point of further investigation.

REFERENCES

[1] B. Fitzpatrick, “Distributed caching with memcached,” Linux
J., vol. 2004, no. 124, pp. 5–, Aug. 2004.

[2] D. Shue, M. J. Freedman, and A. Shaikh, “Performance
isolation and fairness for multi-tenant cloud storage.” in
OSDI, 2012, pp. 349–362.

[3] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,
H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab et al.,
“Scaling memcache at facebook.” in NSDI, vol. 13, 2013, pp.
385–398.

[4] P. Menon, T. Rabl, M. Sadoghi, and H.-A. Jacobsen, “Cas-
sandra: An ssd boosted key-value store,” in International
Conference on Data Engineering, March 2014, pp. 1162–
1167.

[5] J. L. Carlson, Redis in Action. Greenwich, CT, USA:
Manning Publications Co., 2013.

[6] “Mongodb: http://www.mongodb.org/.”

[7] “Amazon dynamodb: http://aws.amazon.com/dynamodb/.”

[8] “Cloudant cloud service: https://cloudant.com/.”

[9] “Couchdb nosql database: http://couchdb.apache.org/.”

[10] “Joyent cloud services: https://www.joyent.com/.”

[11] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky, “Silt:
A memory-efficient, high-performance key-value store,” in
Symposium on Operating Systems Principles, 2011, pp. 1–
13.

[12] “http://hazelcast.org/.”

[13] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny, “Workload analysis of a large-scale key-value
store,” in ACM SIGMETRICS Performance Evaluation Re-
view, vol. 40, no. 1, 2012, pp. 53–64.

[14] “Ycsb: https://github.com/brianfrankcooper/ycsb/wiki/getting-
started.”

[15] “http://netty.io/.”

[16] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes, “Large-scale cluster management
at google with borg,” in European Conference on Computer
Systems, 2015, p. 18.

[17] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian,
M. Wu, and L. Zhou, “Apollo: scalable and coordinated
scheduling for cloud-scale computing,” in Operating Systems
Design and Implementation, 2014.

[18] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Spar-
row: distributed, low latency scheduling,” in Symposium on
Operating Systems Principles, 2013, pp. 69–84.

[19] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes, “Omega: flexible, scalable schedulers for large
compute clusters,” in European Conference on Computer
Systems, 2013, pp. 351–364.

[20] K. Karanasos, S. Rao, C. Curino, C. Douglas, K. Chali-
parambil, G. Fumarola, S. Heddaya, R. Ramakrishnan, and
S. Sakalanaga, “Mercury: Hybrid centralized and distributed
scheduling in large shared clusters,” pp. 485–497, 2015.

[21] A. Wang, S. Venkataraman, S. Alspaugh, R. Katz, and
I. Stoica, “Cake: enabling high-level slos on shared storage
systems,” in ACM Symposium on Cloud Computing, 2012,
p. 14.

[22] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. H. Katz, S. Shenker, and I. Stoica, “Mesos: A
platform for fine-grained resource sharing in the data center.”
in NSDI, 2011, pp. 22–22.

[23] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth
et al., “Apache hadoop yarn: Yet another resource negotiator,”
in Symposium on Cloud Computing, 2013, p. 5.

