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Abstract—Communication traces help developers of high-
performance computing (HPC) applications understand and im-
prove their codes. When run on large-scale HPC facilities, the
scalability of tracing tools becomes a challenge. To address this
problem, traces can be clustered into groups of processes that
exhibit similar behavior. Instead of collecting traces information
of each individual node, it then suffices to collect a trace of a small
set of representative nodes, namely one per cluster. However,
clustering algorithms themselves need to have low overhead, be
scalable, and adapt to application characteristics. We devised an
adaptive clustering algorithm for large-scale applications called
ACURDION that traces the MPI communication of code with
O(log P) time complexity where P is the number of processes.
First, ACURDION identifies the parameters that differ across
processes by using a logarithmic algorithm called Adaptive
Signature Building. Second, it clusters the processes based on
those parameters. Experiments show that collecting traces of
just nine nodes/clusters suffices to capture the communication
behavior of all nodes while retaining sufficient accuracy of trace
events and parameters. In summary, ACURDION improves trace
scalability and automation over prior approaches.

I. INTRODUCTION

The increasing size of HPC systems often requires appli-
cations to be carefully designed for scalability. One of the key
challenges is to utilize communication efficiently. Program-
mers generally understand the semantics of MPI communica-
tion routines, but they may not know trade-offs and limitations
in a concrete implementation of MPI, particularly when a
problem surfaces only at a larger scale but not in constrained
testing with small inputs. In such scenarios, communication
traces often provide the insight to detect inefficiencies and
help in problem tuning [21], [4]. Traces are also utilized to
drive HPC simulations to determine the effect of interconnect
changes for future procurements [17], [25], [14], [19], [26].

Today’s tracing tools either obtain lossless trace infor-
mation at the price of limited scalability (e.g., Vampir [5],
Tau [16], Intel’s toolsets [6], and Scalasca [8]) or preserve
only aggregated statistical trace information to conserve the
size of trace files (e.g., mpiP [20]). In general, the scalability
of tracing tools becomes a challenge when an application is
run on large-scale HPC facilities.

The work by Bahmani and Mueller [2] employed a hierar-
chical, signature-based clustering algorithm using two 64-bit
signatures. The first level of clustering is call-path clustering
where processes with different numbers or sequences of events
are discovered. During the second phase, this algorithm applies
parameter clustering using a 64-bit signature. This signature is
composed of the parameters of an MPI event, such as its count,
type, source, destination, etc.

Even though this previous work is suitable for large-scale
applications, it has several limitations. The size of the signature
is the first problem. The algorithm is very space efficient due
to the 64-bit signature for all of the MPI parameters, but

compressing the parameters could result in loss of information.
For instance, 16 bits for message sizes (COUNT) is not
enough. On the other hand, expanding signatures blindly to
a larger scale could increase space complexity significantly
and cause scalability problems.

The second limitation is observed for benchmarks such as
CG [3]. The unique communication behavior of the processes
causes the number of parameter clusters to increase linearly
with the number of processes, which is not scalable. To tackle
the problem, user input plug-in functions were utilized to
specify the communication pattern. The problem with the user
plug-in functions is that finding user plug-ins for complex
benchmarks is not easy.

The third problem is a scalability challenge due to hi-
erarchical clustering, which already improves on ScalaTrace.
ScalaTrace employs a two-stage trace compression technique,
namely intra-node (loop level) and inter-node compression.
The latter is consolidating traces in a reduction step over a
radix tree. While intra-compression is fast and efficient, inter-
compression is costly as it depends on the number of tasks.
Hierarchical clustering lowered this overhead so that it depends
on the number of clusters, but some application codes still
require a number of clusters linear to the number of tasks in
order to retain trace accuracy.

This paper contributes, ACURDION, a scalable clustering
algorithm for large scale applications. ACURDION first finds
parameter differences between processes through Adaptive
Signature Building, a O(logP ) algorithm. Then, ACURDION
applies the K-farthest neighbor algorithm on the selected
signatures to group processes into K clusters. This lowers the
complexity of inter-node compression to just be dependent on
K, which is a constant in practice (K = 9 for the programs
studied). Consequently, user plug-ins are no longer needed for
complex communication patterns, i.e., ACURDION advances
trace automation as well.

Contributions:
• We develop, ACURDION, a O(logP ) clustering algorithm
with low time and space overheads.
• We develop novel signature finding algorithms that help
prune unnecessary metrics and only consider parameters cov-
ering differences among the traces.
• We evaluate ACURDION for a set of HPC benchmarks
showing its effectiveness at capturing representative applica-
tion behavior for communication events. The resulting number
of clusters is a constant for all benchmarks.
• We compare the accuracy of traces generated by ACUR-
DION with prior work on signature-based trace clustering.

II. BACKGROUND

In this section, we briefly introduce several of the key ideas
and techniques relevant to MPI tracing because our work builds
on ScalaTrace as an MPI tracing toolset [23].



ScalaTrace uses the following two main data structures:
Regular Section Descriptors (RSD) that capture MPI events
in the innermost loop, and Power-RSDs (PRSDs) that capture
RSDs from higher-level loop nests. Consider the example in
the following code segment:

for i = 0→ 1000 do
for k = 0→ 100 do
MPI Irecv(...);
MPI Send(...);
MPI Wait(...);

end for
MPI Barrier(...)

end for
RSDs and PRSD of the above code segment are

RSD1:<100, MPI Irecv1, MPI Send1, MPI Wait>, and
PRSD1:<1000, RSD1, MPI Barrier1>, respectively.

The main three properties of ScalaTrace are as follows: (1)
Location-independent encodings: ScalaTrace leverages relative
encodings of communication end-points, i.e., an end-point is
denoted as ±c for a constant c relative to the current MPI
task ID [15]. Fig. 1(a) depicts the relative encoding of node
7 in terms of communication end-points, namely −4, −1, +1
and +4, i.e., the node has identical relative communication
end-points.

(2) Call sequence identification: To distinguish between
MPI calls from different locations, ScalaTrace captures the
calling context by recording the calling sequence that leads to
the MPI event. The calling context is obtained from the stack
backtrace of an MPI event where each location is a unique
signature of the stack trace called the stack signature [15].

(3) Communication group encoding: To store communi-
cation groups in a scalable way in traces, ScalaTrace lever-
ages a special data structure called ranklist. A ranklist is
represented as 〈dimension, start rank, iteration length, stride,
iteration length, stride〉, where dimension is the dimension of
the group, start rank is the rank of the starting node, and the
iteration length stride pair is the iteration and stride of the
corresponding dimension [22].

In Fig. 1(b), the shaded nodes are presented as ranklist 〈2
0 4 4 2 1〉. The ranklist reads as a 2D ranklist starting at task
0 with four entries in the first dimension and a stride of 4
(implying tasks 0, 4, 8 and 12) with two entries in the second
dimension with a stride of 1 (implying tasks 1, 5, 9 and 13).
The ACURDION algorithm introduced in the next section is
working on top of the intra-node compression step.

(a) Communication En-
coding

(b) Group Encoding

Fig. 1: Communication and Group Encodings

III. A NOVEL CLUSTERING ALGORITHM

ACURDION has two main phases. First, the adaptive
signature building phase discovers signatures suitable for the
clustering. Second, the clustering phase involves a single-
step (where all signatures are considered in the K-farthest
algorithm), or a double-step where during the first phase it
applies K-farthest clustering on the Call-Path signature and

then in the second phase it applies the K-farthest algorithm on
all other signatures within the Call-Path clusters. This section
details design and implementation of the single- and double-
step algorithms of ACURDION and the reference clustering
algorithm.
A. Signature Building

There are eleven signatures by default involved in clus-
tering. The first one, the Call-Path signature, helps to cluster
processes with different sequences of MPI calls.

As noted previously, to capture calling context, ScalaTrace
uses the stack signature consisting of a number of backtrace
addresses of the program counter (return addresses), one for
each stack frame. The Call-Path signature, a 64-bit signature,
is the XOR of all 64-bit stack signatures. In order to create the
Call-Path signature, capturing the calling context is sufficient
for distinguishing MPI events from each other in most bench-
marks. Moreover, to order events, we multiply the modulo 10
plus 1 of the sequence number of each event by the 64-bit stack
signature and then use this value in the Call-Path signature.
This ensures that signatures cannot cancel out each other due
to permutations on call sequences and recursion, which could
otherwise happen in rare cases (e.g., NAS MG code).

All other signatures are averaged parameter signatures
composing parameters of the MPI call event (COUNT, SRC,
DEST, KEY, COLOR, Tag, Computation time, Communication
time, LOOP iteration and Data+Operation+Communicator
type). For the first eight above-mentioned signatures, aggre-
gating their values and then taking the average could result in
an overflow. To address the overflow problem, we utilized an
estimation function.

For the Loop signature, considering the importance of
nested loops, we know that multiplying the bounds of nested
loops could cause overflow as well. To avoid this, we divide
64 bits into four sections. The least significant 16 bits are
assigned to the average of the inner most loop sizes (or the
least important loop), then the second 16 bits are assigned to
loop above the first section, etc. Anything above three levels is
considered part of the fourth section (most significant bits). As
a Data+Operation+Communicator Type signature, we assign a
bit such as 0:MPI CHAR, 32:MPI MAX, and 55:MPI COMM
SELF, etc., per MPI data type, MPI operation type, and MPI
communicator types. After creating signatures at the node
level, the first step of ACURDION is to enter an adaptive
signature building phase.

Set your signature format to 0;
if a left/right child exists then

Receive its signatures;
if your signature 6= child signature then

update the signature format;
end
Receive the child’s signature format;
signature format = signature format OR child’s
signature format;

end
if a parent exists then

Send your signatures to your parent;
Send your format signature to your parent;

end
Broadcast signature format by rank root;

Algorithm 1: Adaptive Signature Building

The time complexity of the algorithm is log(P ). Fig. 2



shows an example of signature building. This procedure uses
a set in which there is a bit (per signature) indicating whether
or not the signature should be stored. At the beginning, all bits
are zero. When two different clusters are partially overlapping,
bits corresponding to the different signatures are set to 1. As
shown, leaf nodes (such as 5 and 6) send their signatures to
the parent node 2. Then, node 2 compares its own signatures
with the received ones. If it finds any difference, it flips the
corresponding bit in the signature format to 1. Here, nodes 6
and 2 differ (captured at node 2).

Fig. 2: A Sample of Signature Building
This process continues up to the root of the tree. The

root then broadcasts the bitmap to all nodes. At the end of
this stage, all nodes know which signatures are subjected to
clustering.
B. Single-Step and Double-Step Clustering

Fig. 3: Overview of Proposed Clustering Algorithm
Fig. 3 provides a simple illustration of ACURDION, where

it first finds the signature format, i.e., shape and color in
this example. It then either follows the single-step K-farthest
algorithm (all signatures are considered in clustering) or the
double-step K-farthest algorithm (first, only Call-Path or shape
in this figure, and second, all other signatures are considered
for the clusters created in the first step). In this figure, color
is the second dimension. After finding the top K clusters and
selecting the top K representatives (nodes) to create the global
trace file, inter-compression on the selected traces is applied.

In our design and implementation, we considered both
Euclidean and Manhattan distances. Before calculating the
distances, ACURDION dynamically normalizes them, i.e., it
groups signatures based on their importance. The importance
ordering is as follows: Group1={COUNT, COMM Time and
COMP Time}, Group2={SRC, DEST, KEY, COLOR, TAG}
and Group3={Call-Path, Data+Operation+Communicator
Type}. Compromising on group 1 does not perturb the
application time significantly, as experiments show. Loops are
covered by group 2 and 3. Group 3 is the most important group

because we do not want to lose any events by compromising
on Call-Path. We further observed that Call-Path also covers
the Data + Operation + Communicator signature in
practice.

Since COUNT is a 32-bit integer, its average is also 32-
bits. The largest value for COMP/COMM time is 136 years,
so the largest value of group1 needs 32 bits. In our implemen-
tation, we assumed there is a boundary on the maximum value
of group 2 which is also 32. With these assumptions, we can
shift group 2 based on group 1, and then group 3 based on
the smaller groups in such a way that the value of the larger
group becomes larger than the smaller ones.

We tested ACURDION on all benchmarks with both the
Manhattan and Euclidean distance functions. We then calcu-
lated the distance between the output of clustering to the non-
clustering version. According to our experiments, both metrics
are giving close distances, so we chose the Manhattan distance
for our experiments.

if a left/right child exists then
Receive list of left K / right K clusters;
Receive signature of head of top left K / right K
clusters;
Merge left K / right K clusters + yourself into Top
K list;
if left K + right K + 1 > K then

Calculate the distance matrix for Top K list;
while Size of selected list < K do

Find the farthest cluster to the selected ones;
end
while Other cluster have not been selected do

Find the closest cluster;
Assign the cluster to the closest one;

end
end

end
if a parent exists then

Send your list of K clusters to your parent;
Send signature of head of top K clusters to your
parent;

end
Broadcast Top K by root;

Algorithm 2: ACURDION K-farthest algorithm clustering
algorithm

ACURDION algorithm operates over a radix tree. At each
node, if it has a child, it first receives the K selected clusters
and their head’s signatures. Then, the received node compares
the number of clusters plus one (i.e., its own cluster) to
determine whether or not it is less than K. If the result is
positive, then it adds its own cluster to the list of selected
clusters and sends it to its parent. If not (the number of clusters
is larger than K) then it needs to find the top K clusters.

First, it calculates the distance matrix between all potential
clusters based on the signature format. Second, it selects the
top K clusters farthest from all other selected clusters. Third, it
distributes the rest of the clusters (which have not be selected)
to their nearest cluster. Fourth, if the current node has a parent,
it will send the top K clusters and their signatures to its parent.

In single-step ACURDION, clustering happens over the en-
tire signature format. For example, if COLOR and Call-Path
are parts of a signature format then the algorithm calculates
the normalized distances from the signatures. The double-step



version, in contrast, first clusters over Call-Path and then (at
the second level) within the clusters created at the first level
over other dimensions such as COLOR.

Note that the computational cost of our clustering algorithm
is O(logP ), where P is the number of processes. K can be
any constant value. In our experiments, K = 9 was shown to
preserve sufficient accuracy (discussed in Section V).

By the end of this stage, the algorithm has clustered all
processes with disjoint behavior. Then, the algorithm creates
the complete trace based on the cluster information.
C. Aggregating the Traces

The time complexity of inter-compression reduction of
ScalaTrace is O(n2), where n is the size of the PRSD-
compressed intra-node event trace. Since for ScalaTrace with-
out clustering, all processes are participating in this operation
over a radix tree, the time complexity is O(n2logP ). On the
other hand, for ScalaTrace with the clustering algorithm, only
a set of representative K nodes with different signatures are
participating in this operation. During the last phase of Fig. 3,
K, different nodes are merged.

The cost of inter-compression with clustering is
O(n2logK), where K = 9 in our experiments and the
cost of the clustering algorithm is O(logP ).

To create the full trace out of the clustered trace, before
merging, K selected representatives update their trace file
considering all members of the cluster. This operation is linear,
i.e., representatives linearly traverse their trace and replace a
cluster ranklist (representing all members’ IDs) with an event
ranklist (compatible with the original ScalaTraceV2 format).
D. Reference Signature

We use a reference clustering approach to evaluate the ac-
curacy and scalability of our algorithm. The reference signature
utilized by the reference clustering is a sequence of events. It
concatenates the Call-Path signatures by adding a sequence
number to each MPI event, and features parameter clustering
by keeping the parameters of each MPI event uncompressed.

In Section V, we provide the results of the experiments
conducted with different benchmarks to compare the space
complexity of the ACURDION and the reference signature
algorithms.

IV. EXPERIMENTAL SETUP

TACC’s Stampede [18], a state-of-the-art HPC cluster, is
utilized to conduct experiments. It consist of a total of 6400
nodes, each with two Intel Xeon E5 processors and one Intel
Xeon Phi coprocessor. The compute nodes are interconnected
with Mellanox FDR InfiniBand technology (56 Gb/s) in a two-
level fat-tree topology.

Each experiment was run five times, and their averages
and standard deviation are reported. The aggregate wall-clock
times across all nodes for these benchmarks are reported. We
conducted experiments with a variety of codes: (1) the NPB
suite (version 3.3 for MPI) with class D input size [3]; (2)
Sweep3D [11], a solver for the 3-D, time-independent, particle
transport equation on an orthogonal mesh, which uses a
multidimensional wavefront algorithm for “discrete ordinates”
deterministic particle transport simulation with a problem
size of 100×100×1000; (3) Lulesh, which approximates the
hydrodynamics equations discretely by partitioning the spatial
problem domain into a collection of volumetric elements [1].
Results of ACURDION are compared to reference clustering
and related work on signature-based clustering [2] of which

we obtained a copy.
V. RESULTS AND ANALYSIS

To assess the accuracy of the proposed clustering algo-
rithm, we conducted two types of experiments. First, we
tested the accuracy of point-to-point communication through
heatmaps. Second, to verify the accuracy of collective opera-
tions, we replayed the traces and compared the wall-clock time
of the clustered and non-clustered versions.

Our first experiment assesses the effect of ACURDION
on point-to-point communication. Fig. 4 depicts heatmaps
of Lulesh for 64 processes each. The (a) original version
and the (b) ACURDION version of are shown. The x- and
z-axes denote mutual communication end-points, and the
number of sends is depicted on the y-axis. The average time
in seconds is depicted as heatmaps (dark=low to white=high).
Since the ACURDION heatmaps are a perfect match to
the non-clustering ones for BT, Sweep3D, LU and SP, we
only show Lulesh’s heatmap. The heatmaps for Lulesh differ
slightly before (Fig. 4(a)) and after (Fig. 4(b)) clustering (same
for CG and MG, figures omitted due to space).

Table I indicates varying parameters selected during the
signature building phase for these benchmarks. On average,
the size of the signature was reduced by 43%.

TABLE I: Signature Format
Code Callpath Count Src Dest Comp Comm Tag Loop
BT X X X X X X
CG X X X X
LU X X X X X X
MG X X X X X X X
SP X X X X X

Sweep3D X X X X X X X X
Lulesh X X X X X X

We next define an accuracy metric of trace replay as

ACC = 1− |t− t′|
t

where t and t′ are the replay times without and with clustering,
respectively.

Table II covers the percentage of matching clustered param-
eters relative to non-clustered ones. The similarity of point-
to-point events was already depicted in Fig. 4. Some codes
may experience different endpoints in sends/receives after
clustering, but the overall patterns are preserved. In other
words, if concrete endpoints differ then only by a slight shift so
that the overall behavior remains close to the original program,
which is also confirmed in terms of wallclock time later.

TABLE II: Matching Percentage
Benchmark COUNT LOOP # EVENTS SRC DEST TAG

BT 99.9% 100% 100% 100% 100% 100%
CG 100% 100% 100% 80.90% 80.90% 100%
LU 97.12% 98.16% 100% 100% 100% 100%
MG 99.7% 100% 100% 96.80% 96.80% 99.03%
SP 100% 100% 100% 100% 100% 100%

Sweep3D 96.86% 87.37% 100% 100% 100% 100%
Lulesh 82.35% 75% 100% 70.37% 70.37% 100%

We chose a maximum number of nine clusters (K = 9)
for ACURDION, which we experimentally determined based
on captured communication patterns of related work [2].
This suffices to represent average communication time, send
count, and source and destination ranks for point-to-point
communication. Table III also shows that for CG increasing
the number of clusters does not improve the accuracy of trace.
In fact, we observed that the key element with respect to trace
accuracy is the number of Call-Path clusters. Covering all
distinct events over all traces results in acceptable accuracy.



(a) Lulesh (b) Lulesh*
Fig. 4: Heatmaps of Point-To-Point Communication for Lulesh for 64 Processes Through ACURDION (K=9)
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(b) Execution Overhead
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(c) Replay Time of Traces
Fig. 5: Execution Overhead and Replay Time for BT benchmark: Strong Scaling, Nodes/Tasks=1/16

Due to the iterative nature of parallel programs, the number of
different Call-Path patterns is limited to a small number. For
our tested benchmarks, this value was nine, which is sufficient
to cover stencil codes. Nonetheless, we can change the value
of K dynamically should the number of Call-Path patterns
increase during adaptive signature building.
TABLE III: Accuracy and Number of Clusters: CG Class D
and P=256

# Clusters 9 27 81 243
Overhead (s) 1.09 3.22 9.54 27.91

Accuracy 98.92% 99.05% 96.88 97.75%

All benchmarks result in the same number of main clusters
and sub-clusters under ACURDION, which often reflects the
shape of communication patterns in these codes.

But we also observed minor differences. For example,
BT and SP have the same communication pattern but
slightly different message payloads (COUNT parameter) after
clustering, a difference of around 0.1% reported in Table
II.Communication patterns are always retained after clustering,
e.g., the stencil pattern of Sweep3D and LU . Here, S3D*
retains pattern and send volumes while LU* reflects the
communication pattern but diverges slightly in send volume
(COUNT ) under ACURDION.

The Lulesh (Livermore Unstructured Lagrange Explicit
Shock Hydrodynamics) proxy application (proxy app) [1] is
a shock hydrodynamics code developed at Lawrence Liver-
more National Laboratory (LLNL). Lulesh is large enough to
be more complex than traditional benchmarks, yet compact
enough to support a large number of implementations [10].
We observe a slight diffusion in the communication pattern in
Fig. 4(b). However, clustering covered all events and retained
parameters such as COUNT and LOOP as Table II showed.

MG has different clusters as data partitioning (sub-grid
creation) depends on input size, number of processes, and two
different communication patterns (halo/boundary exchange and
cross-grid interpolation). Due to changes in grid resolution

per iteration, boundary geometry also changes. As the al-
gorithm moves from coarser to finer, more boundaries are
created. Nonetheless, heatmaps (omitted due to space) show
that ACURDION clustering captures this pattern relatively
accurately as it closely resembles that without clustering (albeit
with some shifts of individual points). Table II also indicates
that clustering accurately covers the parameters.

CG shows similar shifts that diffuse the regularity of the
pattern without clustering (figure omitted due to space), but
the overall number of communication exchanges and the send
volume are retained. Table II indicates that ACURDION clus-
tering captures the parameters accurately. In related work [2],
CG’s pattern could only be captured via a user-supplied plugin
function, which captured unique parameters that otherwise
would significantly increase the total number of clusters. It
would be preferable to avoid such user plugins where possible
as it is difficult for users to provide such functions for complex
benchmarks. ACURDION provides the means to retain a
concise trace representation without user plugins, but the price
is a more diffuse communication matrix. We will later see
that this has little effects on replay accuracy, which shows the
benefits of K-farthest clustering.
A. Strong Scaling

The second set of experiments focuses on the accuracy of
wall-clock time comparing replayed traces with ACURDION
and without clustering, first under strong and then under
weak scaling. Some of the benchmarks only support strong
scaling (most NAS codes) while others support weak scaling
(Sweep3D, Lulesh) so that different sets of benchmarks are
reported in these experiments.

Strong scaling features a set of experiments where the
number of tasks is changed while the program input remains
the same. This effectively reduces the amount of work per
task as the input problem is partitioned into smaller pieces
while potentially inflicting more (but smaller) messages as the



number of tasks increases. In these experiments, 16 MPI tasks
were mapped onto one node (with 16 cores).

Fig. 5(b) depicts the wall-clock time on a logarithmic scale
(y-axis) for different number of MPI tasks (x-axis) of the
respective benchmarks. Per task size, the average execution
time over five runs is reported for (a) reference clustering, (b)
no clustering (vanilla ScalaTrace V2 with intra- and inter-node
reduction), (c) double-step and (d) single-step ACURDION
clustering, and (e) base application time without instrumenta-
tion. For ACURDION results, bars are stacked to distinguish
the base instrumentation overhead (blue/bottom) from the
clustering overhead (red/top). This distinction is omitted for
reference clustering. The last bar (e) is shown as a reference
to get an idea how much time would be spent on tracing
compared to base application runtime.

For instance, BT for 256 tasks has about an order of
magnitude lower trace overhead with ACURDION clustering
than without (or with reference clustering), which is nearly
two orders of magnitude smaller than application runtime.
Within ACURDION, half the time is spent in clustering. For
4096 tasks, ACURDION incurs an order of magnitude lower
overhead than reference/no clustering but results in application
overhead of about 20%. The clustering time, however, within
ACURDION is negligible. Similar observations were made for
CG and SP. LU has low instrumentation overhead under clus-
tering (even reference clustering) while the overhead without
clustering is significant and outstrips application runtime at
4096 tasks. ACURDION cuts down overheads to about half or
even a quarter of that for reference clustering, which is nearly
two orders of magnitude smaller than application runtime
regardless of the number of tasks (up to 4096 tasks). Most of
the tracing overhead is due to clustering under ACURDION.
MG’s overhead for ACURDION clustering changes from being
two orders of magnitude smaller than application runtime at
256 tasks to match application runtime at 4096 tasks, yet
remains about an order of magnitude smaller than reference
and no clustering. Overall, single- and double-step clustering
perform equally well, and ACURDION outpaces the other
techniques due to the lower number of processes involved in
inter-node compression after clustering.

The next set of experiments assess the accuracy of the trace
information obtained in the techniques featured so far. To this
end, a trace replay tool, ScalaReplay [23], is utilized to issue
MPI events in the same order and over the same number of
nodes that they were originally recorded during application
execution. Yet, instead of computing, the recorded time spent
for computation is “replayed” as sleep time to resemble the
same distance between communication calls. The communi-
cation calls themselves are issued with the same parameters
as recorded, except for slight differences in send volume and
end-points due to clustering (see previous discussion about
communication patterns). The message payload is a buffer of
the indicated size (but with some random content as content
is not recorded during tracing, nor is it required for correct
replay as computation has been replaced by sleep). Nodes
interpret the same trace file during replay but transpose MPI
communication endpoints relative to their task ID (due to the
relative encoding of end-points in ScalaTrace). For clustering,
a different event is generated per cluster, which results in up
to K = 9 different events for subsets of tasks (compared to
a single event without clustering). All other parameters are
replayed directly from the trace.

Fig. 5(c) depicts the replay time in seconds on a linear
y-axis for traces resulting from clustering as opposed to not
using reference clustering, no clustering, single-/double-step
ACURDION clustering and also the corresponding application
time without instrumentation for comparison. A match to
the latter means that traces retain application behavior. We
observe that the replay times over all methods, task sizes and
applications matches the original application very closely. We
observe an accuracy level of more than 95% across the set
of benchmarks and experimental parameters. This illustrates
that ACURDION is competitive with any other scheme, even
though it retains only a subset of the trace information of other
methods and requires lower overhead.
B. Weak Scaling

The next experiments cover weak scaling, which features a
sequence of experiments where the input size and the number
of tasks are increased at about the same rate. The objective is
to ensure that the input size per task (after input partitioning)
remains constant so that execution times (in the ideal case)
also remain constant as we scale up. Of course, changes in
communication overhead may influence this behavior. Input
constraints on several benchmarks limit the set of experi-
ments that we could conduct for weak scaling to Sweep3D
and Lulesh. The input size for Sweep3D is chosen to be
100×100×1000 per node. For Lulesh, weak scalability tests
were run at a problem size of 323 per node.

Fig. 6(b) depicts the overheads in seconds on a logarithmic
scale (y-axis) for different number of processors (x-axis)
for Lulesh and Sweep3D. Lulesh results in about one order
of magnitude lower overhead for any clustering approach
than without clustering. Single/double-step ACURDION takes
about the same time as reference clustering, even though it
has to perform the K-farthest algorithm. And clustering tech-
niques incur instrumentation overhead 1-2 orders of magnitude
smaller than application runtime. Sweep3D results in even
lower overheads of 1-2 orders of magnitude for clustering
over no clustering. Its instrumentation cost is 3-5 orders of
magnitude smaller than the corresponding application runtime.
Here, single-step outperforms double-step slightly whereas in
all previous experiments no clear winner could be declared
between the two. Reference clustering outperforms ACUR-
DION here for the first time. However, we will later show
that ACURDION outperforms reference clustering in terms
of space complexity, which can have a significant impact for
large-scale tracing.

Fig. 6(c) features the overhead per replay method and in
comparison to original application runtime in seconds on a
linear scale (y-axis) for a different number of tasks (x-axis). We
observe that replay times are uniformly resembling the original
application runtime irrespective of which tracing method was
used. The overall accuracy of ACURDION is 95%-97%.
C. Signature-based vs. ACURDION

To compare the accuracy of trace files generated by ACUR-
DION to signature-based clustering [2], we conducted two
experiments covering both strong and weak scaling on the
same platform, where all machines were 2-way SMPs with
AMD Opteron 6128 processors with 8 cores per socket. Each
node is connected by QDR InfiniBand. In the first experiment,
we compared ACURDION and signature-based clustering for
CG class C under strong scaling. Figure 7 shows that the
accuracy of traces for signature-based and ACURDION are
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98.73% and 98.93% compared to non-clustering. The second
experiment covers weak scaling for Sweep3D in Fig. 7. The
average accuracy of traces is 97.96% and 97.91% for ACUR-
DION and signature-based, respectively. While ACURDION
has a high level of accuracy, it does not have the limitations of
the signature-based approach, i.e., no user plug-in is required
and it has lower space complexity.
D. Space Complexity

Let us consider the space complexity of tracing with and
without clustering. The memory space allocated during trace
compression with optional clustering differs from method to
method. Table IV depicts the number of clusters and the re-
quired memory space in KB per method and per benchmark for
256 tasks. We observe that ACURDION (single/double-step
do not differ) requires about an order of magnitude (and up to
two orders of magnitude) less space than reference clustering
or no clustering. The number of clusters for ACURDION is
always nine due to the K-farthest method, which is often
significantly smaller than any other technique. (Notice that
without clustering, each task is considered a cluster of its own).
TABLE IV: Average Space Complexity Per Process for P=256
(P=216 for Lulesh)

ACURDION Reference Clustering Without Clustering
Code # clusters avg space # clusters avg space # clusters avg space
BT 9 2.73KB 41 108.49KB 256 71.71KB
CG 9 1.70KB 256 376.32KB 256 43.82KB
LU 9 2.73KB 16 25.05KB 256 71.71KB
MG 9 11.8KB 72 733.83KB 256 215.15KB
SP 9 2.50KB 53 133.06KB 256 67.73KB

Sweep3D 9 1.50KB 9 4.86KB 256 27.89KB
Lulesh 9 1.51KB 26 17.56KB 216 27.87KB

The required space of ACURDION is on average one order
of magnitude larger compared to signature-based clustering,
i.e., it ranges from slightly smaller (MG) to two orders of
magnitude larger (LU). And the number of clusters of ACUR-
DION is sometimes smaller and sometimes larger compared
to signature-based clustering. But more significantly, the case
(MG) where the number of clusters grows linearly with the
number of tasks for signature-based clustering presents a non-
scalable behavior. In contrast, ACURDION always requires
only K = 9 clusters and still retains similar overheads at a
constant trace size. This is a significant advance in terms of
scaling behavior.

This scalability result is corroborated by a complexity
analysis of the algorithms. Without clustering, all processes
contribute to the inter-compression step, so the space com-
plexity is linear to number of processes. But for clustering,
only a constant number of representative nodes are involved
in this operation (e.g., one node per cluster). Furthermore, the
size of signatures is a key player for clustering. Thus, we
considered the size of signatures and related algorithms for
space complexity analysis (e.g., adaptive signature building for
ACURDION).

Prior work established the complexity without clustering
(1), reference clustering (2) and signature-based clustering
(3), which resulted in the lowest overhead. In contrast, the
complexity of K-farthest clustering (4) is even lower than
(3) since it depends on the constant K for ACURDION, and
we showed that K = 9 suffices in experiments. Specifically,
the average trace and signature sizes per node are multiplied
by the constant K (instead of the sum of main clusters and
sub-clusters in prior work, which is not constant for some
programs, such as MG).

VI. RELATED WORK

Bahmani and Mueller [2] proposed a signature-based clus-
tering algorithm for ScalaTraceV2. ACURDION enhances this
work in two directions. First, the parameter signature of [2] is a
concatenation of several truncated parameters. At a large scale,
16 bits for representing average COUNT may not be enough to
cover all differences in COUNT. The eleven 64-bit signatures
that are created based on characteristics of the application by
the Adaptive Signature Building phase avoid such deficiencies
in ACURDION. Second, the strength of ACURDION lies in
its independence of user input plug-ins for benchmarks that
have unique communication behavior (e.g., CG).

CYPRESS [27] combines static program analysis with
dynamic runtime trace compression. at least an One of
the main problems of CYPRESS is the overhead of static
and dynamic analysis while the combination of Scala-
TraceV2+Clustering [2] does not have any overhead at the
compile time and extends to binaries/libraries as well.

A density-based clustering analysis [13], [9]uses an ar-
bitrary number of performance metrics to characterize the
application K-means clustering is used in CHARM + +



to select representative data for migration of objects [12].
These clustering algorithms are expensive in terms of time
complexity, especially for large-scale sizes while our work is
a low overhead clustering algorithm with O(logP ) complexity.

Phantom [26], a performance prediction framework, uses
deterministic replay techniques to execute any process of a
parallel application on a single node of the target system. To re-
duce the measurement time, Phantom leverages a hierarchical
clustering algorithm to cluster processes based on the degree of
computational similarity. First, the computational complexity
for most hierarchical clustering algorithms is at least quadratic
in time, and this high cost limits their application in large-scale
data sets [24]. Second, since Phantom focuses on performance
prediction, it emphasizes computational similarity and does not
sufficiently cover communication behavior.

Sampling methods such as Scalasca [28] and CAPEK [7]
cannot produce accurate data but rather represent statistical and
lossy methods. If the sampling frequency is too low, results
may not be representative. Conversely, if it is too high, mea-
surement overhead can significantly perturb the application.
Finding an appropriate rate of sampling is complicated, and the
cost of having a dense CCT is high. In contrast, ACURDION
provides a full trace file without sampling and does so at very
low cost by leveraging 64-bit stack signatures.

VII. CONCLUSION AND FUTURE WORK

This work contributes ACURDION, a novel signature-
based, K-farthest clustering algorithm with a low time com-
plexity of O(logP ) and low space overheads. A signature find-
ing algorithm prunes unnecessary metrics and only considers
parameters representing differences among the traces of nodes.

We evaluated ACURDION in comparison to other clus-
tering algorithms for a set of HPC benchmarks showing its
effectiveness at capturing representative application behavior
for communication events. ACURDION is superior to past
work because it is more scalable in terms of space and time
complexities at sustained accuracy. And in contrast to other
work, it does not rely on user plugins, which may be hard to
construct. Experiments showed that without loss of accuracy,
only nine clusters suffice to represent the behavior of a wide
set of HPC benchmarks codes.
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