
Background

 Motivation

Solution Design

Results (Extrapolated from Related Work)

 References:
 [1] M. Du, F. Li, G. Zheng, and V. Srikumar. 2017. DeepLog: Anomaly Detection and Diagnosis
 from System Logs through Deep Learning. In CCS.
 [2] S. Gupta, T. Patel, C. Engelmann, and D. Tiwari. 2017. Failures in Large Scale Systems:
 Long-term Measurement, Analysis, and Implications. In SC.
 [3] Z. Lan, Z. Zheng, and Y. Li. 2010. Toward automated anomaly identification in large-scale
 systems. IEEE TPDS.
 [4] X. Yu, P. Joshi, J. Xu, G. Jin, H. Zhang, and G. Jiang. 2016. Cloudseer: Workflow monitoring
 of cloud infrastructures via interleaved logs. SIGOPS OS Review.

Research Goals

Solution Design

Results (cont.)

Conclusions

Aarohi: Efficient Online Failure Prediction
Anwesha Das, Frank Mueller --- North Carolina State University

What is missing?
– Real-time Failure Detection

– Accurate lead times with location

– Scalable data mining techniques

– Reusable paradigms sustainable with
system evolution

Challenges ?
– Detection speed slow w.r.t log generation

speed (msecs to μSecs)

– ML based schemes effective off-line
trainers, unfit for real-time processing
speed

– Software/Logging upgrades breaks the
detection scheme, minimize overhead

ERROR: Type:2; Severity:80;
Class:3; Subclass:D; Operation: 2

AER: Multiple Corrected error
received

MCElog: failed to prefill DIMM
database from DMI data

CorrectableMemErr : Link CRC
error (cnt: 4)

System + Job Logs

 Log analysis in Cloud+HPC

 Failure Characterization [2]

 Anomaly Detection [1, 3, 4]

 Root Cause Diagnosis

Detector Interface

Parser Grammar Rules

Test Data

 T11 P12
 T24 P26
 T36 P32...
…...

 Scanner

Trained Event Chains

1. P1, P2, P5, P7...
2. P14, P15, P16, P17...
3. P32, P33, P34, P35..…...

Node “X” will
Fail in “Y”
minutes !!

Detector Warning

Eliminate Phrases
that are not in
Trained Chains Set

Implementation: C++,
Flex/Bison Parser

Times Phrases
21:13:01.. cpu_apic_timer..
21:14:10.. task_PC_stack_pid...
21:14:19.. Call Trace...
21:14:30.. LNET: Dropping Put..
21:15:00.. Lustre:_Connection ...
21:23:10.. Debug_NMI_detected..
21:23:15.. Kernel_panic_not_syncing..

Test Data

cpu_apic_timer.. Send P1, T1
task_PC_stack_pid.. Send P2, T2
Call Trace... Send P3, T3
LNET: Dropping Put.. Eliminate Unseen
Lustre:_Connection... Eliminate Unseen
Debug_NMI_detected..Send P4, T4
Kernel_panic_not_syncing..Send P5, T5

Scanner (Regular Expressions)

Rule Check + Chain Match
 If P1, P2, P5, P7... Matched Chain 1 in Time t1 secs
 If P14, P15, P16, Matched Chain 2 in Time t2 secs

 Observations:
– Figure 1 – The detection time standard deviation is within ± 0.32. The detection times are

stable and vary based on the length of the failure chains.

– Figure 2 – Aarohi’s time complexity is comparatively less than the other popularly used M/L
techniques such as LDA, LSTM and related work such as DeepLog[1] & CloudSeer [4].
(Preliminary estimate, extrapolated from the available/obtained performance numbers)

Observations:
– Figure 1 – Same sized chains have similar detection times. (e.g., C1, C2 & C8 → length 7 →

~1.5 msecs, C3 & C6 → length 12 → ~2.10 msecs)
– As #phrases increases from 6 to 31, failure detection time increases from 1.6 to 6 msecs.
– The scanning time increases with the chain size.

– Figure 2 – Lead times range from ~1 min to 4.2 mins for the considered 10 node failures.
These times do not depend upon the chain length but on the time difference between two
adjacent event phrases. This time is calculated before the terminal node failure message
occurs, higher lead times are possible, if warning is flagged ahead in the failure chain.

 ML/DL based learning not fast enough for online detection
1. Obtain accurate trained failure chains through log mining
2. Aarohi enhances the detection speed after step 1.

 Offline trainers require fast stream parsers for real-time processing
 Aarohi, compiler based approach, detects node failure chains

– Regular Expressions, Context Free Grammar (CFG)
 Better detection time

– scanning, parsing and detection
 Generic for diverse system types (system specific failure definition)

– If logs or format change, only scanner will change, parser still remains
flexible, needs minimal updates

 Acceptable lead time
– Suffices for migration/cloning like recovery actions

 Further investigation
 Time optimization, multi-instance parsing,
 Adaptability evaluation with log or software upgrades

Compute Nodes

Supercomputing
System

User Job Failures

Application+Service
Disruptions

 File System

Network Server

Job Scheduler

Node Failures
(c1-0c1s9n3)

Subsystem Failures
Hardware+Software

 Pro-actively Flag Failures

 Procure Short Lead Times

 Fast Failure Detection

 Reduce Computation + Energy
 Wastage

Increase in Failures

Lower MTBF (Mean Time
Between Failures)

Exascale Computing Era

What is required?

Service Nodes

ERROR: Type:2; ...
AER: Multiple...
MCElog: failed to prefill..
CorrectableMemErr : Link ..

Raw System Logs Trainer Failure Chains

N1 P1, P2, P5, P6, .,..
N2 P45, P67, P89, ...
N3 P23, P14, P23,
…… ….....

Parsing
ML, DL based
Training

N2 will fail
in X seconds

Sample Node Failure Chain Snippet

04:22:44.126366 [H/W Error]: CPU *: Machine
Check Exception: * (P1)
04:27:09.598240 [H/W Error]: Machine check:
Processor context corrupt (P2)
04:29:28.414866 Kernel panic - not syncing: Fatal
Machine check (P3)
04:30:40.338310 Call Trace: (P4)
04:30:54.620132 Processor has catastrophic error!(P5)
04:32:58.100694 socket * reports MCERR * (P6)
04:33:59.685959 cb_node_unavailable:
*_found_in_unavailable_event (P7)

~3 mins lead time achievable if failure is flagged at P5.

 Past M/L based solutions [3]: Limited Scalability, Feature extraction hard
 New Systems, Complex Logs: Unsupervised Fast Log mining techniques required

Process Text Logs

Deep Learning Based Training

From DL based
Offline Trainer

AAROHI

Form Failure Chains
Referring to Training Data

Train Data

T1 P1
T2 P2
T3 P3...
…...

Parser
Context Free
Grammar (CFG)

Acknowledgments: This work was supported in part by DOE subcontracts from Lawrence Berkeley
National Lab and Sandia National Lab, a subcontract from Virginia Tech University under contract
AFOSR-FA9550-12-1-0442, and NSF grants 1525609 and 0958311.

Figure 1 Figure 2

Figure 1 Figure 2

Node Failures cause costly checkpoint/restarts,
job failures & service disruption in HPC systems

 Scanner:
 Eliminates phrases not part of the trained failure chains
 Tokenizes the text from regular expression like rules

 Parser:
Context free grammar (CFG) rules formulated from the DL based training output
Tokens checked for a potential match with the diverse failure chains

 Scanner:
 Eliminates phrases not part of the trained failure chains
 Tokenizes the text from regular expression like rules

 Parser:
Context free grammar (CFG) rules formulated from the DL based training output
Tokens checked for a potential match with the diverse failure chains

Rapid Checker
from Test Data

Online Detector

Focus - Efficient Failure Detection

Generic, Scalable, Fast, Adaptive

 Raw system logs processed + trained by any Deep Learning (DL) based log mining
 technique, learn failures from data
 Develop rapid checkers for effective real-time detection

 1

 2

 Learn node failure chains from accurate
 DL based raining in Stage 1

 Design a generic fast parser from the
 chains of Stage 1 for detection in Stage 2

	Slide 1

