
Evaluation of MPIP with IRS Benchmark: Final Report
CSC 591C – Cluster Computing

May 2, 2003

Anwar Ali Annika Edwards Nhon Nguyen

Introduction

In this project we seek to understand fully how MPIP is used, and how the output can
help us to determine where communication time should be reduced. For example, if a
large amount of time is being spent on an MPI_BARRIR call in several processes, this
may indicate a load imbalance.

We will use the IRS Benchmark Code (IRS) which executes on both SMP and multi-
node systems, to measure and compare the performance of a large application on the
cluster. This will help us understand more about large scale applications on SMP
machines and parallel architectures.

Installation of MPIP and IRS Benchmark

MPIP
First download and extract the file: "MPIP_2002_07_08.tar". Then run "confgure".
Change "Makefile" to use "mpicc" compiler. Finally build MPIP with "make".

MeshTV/Silo (Need Silo only for IRS application)
First download and extract the file: "meshtv4_3_1.linux.tar.gz", and follow,
"INSTALL_NOTES" for Linux. Next Modify "configure" as follows:

 Change: $CPP to use "gcc"
 Change all paths "/usr/local/*" to "/usr/*"

Then modify "confugure.in" by changing all paths “/usr/local/*” to “/usr/*.” Run
"configure" and "make."

The IRS Benchmark Code
Download and extract the file: "irs1.3.tar". Go to "scripts" directory, modify all "irs_*"
scripts; change the path

“#!/usr/local/bin/perl" to "#!/usr/bin/perl".

Go to the "build" directory. Modify "Makefile" for the following:

Silo Library Path:
 SILO_LIBS = -lsilo
 SILO_LIBPATH = -L/home/nvnguyen/meshtv020506/lib
 SILO_INCPATH = -I/home/nvnguyen/meshtv020506/include

MPI Path:

MPI_LIBPATH = -L/opt/mpich-1.2.4..8/lib
MPI_INCPATH = -I/opt/mpich-1.2.4..8/include

OpenMP path
OPENMP_LIBPATH = -L/opt/intel/compiler70/ia32/lib
OPENMP_INCPATH = -I/opt/intel/compiler70/ia32/include

Now modifiy make file to compile with “mpicc". And build with:
 Build: make <build-option>

opt: builds the optimized code
debug: builds the debug code
lint: runs lint on the code
gcc: runs gcc as a syntax checker on the code

Benchmark Testing
Inputs
IRS provides a set of decks, labled zrad.XXXX, that input for optimized for XXXX
number of processes. We used the three input files zrad.0008.seq, zrad.0008, and
zrad.0064. zrad.0008.seq is optimized to run on pure OpenMP, while zrad.0008 and
zrad.0064 can be used with MPI alone or with an MPI/OpenMP hybrid.

Methodology
We ran the following tests:

Pure OpenMP Threads
We on the code compiled for pure OpenMP as follows:

irs -k omp_seq zrad.0008.seq
irs -k omp_<nds> zrad.0008.seq -threads

The firt test runs the code without threads. The second run will run the same file with
threads. The number of threads used was set using,

export OMP_NUM_THREADS=<nthrds>

where <nthrds> was set to 2 and 4.

Pure MPI
We ran the code compiled for pure MPI on 2, 4, and 8 processors the input file zrad.0008.
We also used zrad.0064 when using the MPIP profiling tool. This was accomplished with
the following command:

mpirun -np <nds> irs -k mpi.<nodes> zrad.<nprocs>

where <nprocs> was set to 0008 and 0064

MPI and OpenMP Threads
We ran the code compiled for MPI+OpenMP on 2, 4, 8 processors, with the number of
threads varying from 2 to 8.

export OMP_NUM_THREADS=<nthrds>
mpirun -np <nds> irs -k mpi/omp.<nds><thrds> zrad.<nprcs> -threads

Problems
We were unable to run the IRS code to completion. When we attempted to let the
program continue beyond a certain number of cycles the program would hang until killed.
The cycle number where this occurred varied depending on the number of processes
being used. We chose fifty cycles as a minimum cycle where all programs still made
progress.

Results
Pure MPI

Time Vs. Nodes for Pure MPI

0.000

500.000

1000.000

1500.000

2000.000

2500.000

3000.000

2 4 8
Nodes

Ti
m

e
(n

s)

10 Cycles
20 Cycles
30 Cycles
40 Cycles
50 Cycles

Graph 1

Time vs Cycles for Pure MPI

0.000

500.000

1000.000

1500.000

2000.000

2500.000

3000.000

10 20 30 40 50
Cycles

Ti
m

e(
ns

)

2 Nodes
4 Nodes
8 Nodes

Graph 2

 Time (ns)
Cycle 2 Nodes 4 Nodes 8 Nodes
10 9.232 1.200 9.232
20 62.247 1.814 62.247
30 383.571 2.610 383.571
40 1292.231 2.711 1292.231
50 2595.515 2.736 2595.515

Table 1.

Graph 1 and 2 show how the time the program reaches a cycle number varies as the
nodes increase. The performance of IRS is optimal when there are four nodes. It seems
implausible but the cause may be that when the number of nodes is below four the
program can not compute fast enough to compensate for the communication and
synchronization. Parent thread will have to send larger messages to get the data
distributed evenly on the two processors. If there are greater then four processors the
synchronization may overwhelm the computation. I say this is implausible because this
experiment was run using the zrad.0008 input file. This should be optimized to run on
eight processors. The experiment was run several times to make sure the behavior was
repeatable. We observed the same result for every run we made, so the problem is not
easily attributed to other student traffic on the server. There seems to be no explanation
to this.

Pure OpenMP
We varied the number of nodes from 1, 2, 4, 8. The data that we collected was the same
for all 4 runs of the code. We rechecked parameters passed to program and ran the tests
several times at different times of day. The results were still identical. The graphs of this
strange fact are no included since they no more clearly show the equality. Increasing the

number of threads does not seem to have any effect on the performance of this
application.

We expected to see the time to complete the cycles decrease from one node to two nodes
since the threads are distributed across the two processors on the node. The explanation
for this did is unclear to us. It is possible that the threads are not placed on two separate
processors.

MPI + OpenMP

Time vs Number of Nodes for MPI+OpenMP
(2 Threads)and zrad.0008

0

5000

10000

15000

20000

25000

30000

2 4 8
Nodes

Ti
m

e
(n

s)

10 Cycles
20 Cycles
30 Cycles
40 Cycles
50 Cycles

Graph 3.

Time vs Number of Nodes for MPI+OpenMP
(4 Threads) and zrad.0008

0

500

1000

1500

2000

2500

3000

2 4 8
Nodes

Ti
m

e
(n

s)

10 Cycles
20 Cycles
30 Cycles
40 Cycles
50 Cycles

Graph 4.

Time vs Cycles for MPI+OpenMP(2 Threads) and
zrad.0008

0

5000

10000

15000

20000

25000

30000

10 20 30 40 50

Cycles

Ti
m

e(
ns

)

2 Nodes
Series2
8 Nodes

Graph 5.

Time vs Cycle Time for MPI+OpenMP (4 Threads) and
zrad.0008

0

500

1000

1500

2000

2500

3000

10 20 30 40 50
Cycle Time

Ti
m

e
(n

s)

2 Nodes
4 Nodes
8 Nodes

Graph 6.

These graphs show the same result as for the pure MPI case. There is really no difference
in the performance seen for 2 or 8 processors. The performance is best for four nodes.
The fact that the performance stays low for four nodded with 1, 2 and 4 threads on a
processor, means this is the optimal case.

These graphs shows that the performance
of IRS improves as you increase the
number of nodes when keeping the threads
count the same.

When the number of threads is increased
while keeping the number of nodes
constant at 4 the performance degrades
from pure MPI. But when the number of
nodes is held constant at 2 or 8 the
performance degrades for 2 threads, and
equal to the optimal for 4 threads.

A single thread works the best for this
application, on 8 nodes. This is the
expected result since the zrad.0008 is
optimized for this case.

MPI+OMP (2 Thr) vs MPI-OMP(4thr) on 2 nodes

0.0000E+00

5.0000E+03

1.0000E+04

1.5000E+04

2.0000E+04

2.5000E+04

3.0000E+04

10 20 30 40 50

Cycles

Ti
m

e
(s

ec
)

M PI/OM P 2 threads
M PI/OM P with 4 threads
PureM PI

Graph 7

MPi+OMP(2 Thr) vs. MPI-OMP(4 Thr) on

4 nodes

0.0000E+00

5.0000E-14

1.0000E-13

1.5000E-13

2.0000E-13

2.5000E-13

10 20 30 40 50

Cycles

Ti
m

e(
se

c)

M PI/OM P 2 threads
M PI/OM P 4 threads
PureM PI

Graph 8

MPI+OMP (2 Thr) vs MPI-OMP(4thr) on 8 nodes

0.0000E+00

5.0000E+03

1.0000E+04

1.5000E+04

2.0000E+04

2.5000E+04

3.0000E+04

Cycles

Ti
m

e(
se

c)

M PI/OM P 2 threads
M PI/OM P 4 threads
PureM PI

Graph 9

MPIP TESTING
The same tests mentioned in the IRS Benchmark testing section were completed for
MPIP to determine where the major bottlenecks in the program were. The MPIP portion
of this report is included in the file mpip.pdf

References

[1] mpiP: Lightweight, Scalable MPI Profiling
 http://www.llnl.gov/CASC/mpip/

[2] The IRS Benchmark Code
 http://www.llnl.gov/asci/purple/benchmarks/limited/irs/

[3] Parallel Implicit Solvers for Radiation Transport Systems
 http://research.nianet.org/~dimitri/ASCI/

[4] The download and reference page for MeshTV/Silo
 http://www.llnl.gov/meshtv/

[4] Statistical Scalability Analysis of Communication Operations in Distributed
 Applications, Jeffrey S. Vetter, Michael O. McCracken,Proc.

[5] ACM SIGPLAN Symp. Principles and Practice of Parallel Programming
 (PPOPP, 2001)
 http://llnl.gov/CASC/people/vetter/people/pubs/ppopp01_scal_analysis.pdf

[6] An Empiracal Performance Evaluation of Scalable Scientific Applications,
 Jeffrey S. Vetter,Andy Yoo,Supercomputing Conf. Tech Paper(2002).
 http://sc-2002.org/paperpdfs/pap.pap222.pdf

Project Web Page

http://www4.ncsu.edu/~aredward/csc591c/index.html

