Bringing the Multicore Revolution to Safety-Critical Cyber-Physical Systems”

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

Students: Bryan W:

'University of North Ca

lina Chapel Hill

2North Carolina State University

PIs: Dr. James Anderson' & Dr. Frank Mueller?

I, Jonathan Herman!, Christopher Kenna!, Shrinivas Panchamukhi?

Motivation

> Shared hardware like caches & TLBs introduce timing unpredictability
for real-time systems (RTS).

» Worst-case execution time (WCET) analysis for RTS with shared

hardware resources often so pessimistic that extra processing capacity of
multicore systems is negated.

Problem

Main
memory

L1
cache

L2 cache

»>a) Memory ref hits in L1 cache — Access latency: 1-4 cycles.

L1
cache

Main
memory

L2 cache

»>b) Memory ref misses L1 & L2 cache — Access latency: 40-100 cycles.
»c¢) Memory ref misses in TLB — Access latency: +1000 cycles.

> Tighter WCET estimates can be established if we know which
references hit in the cache and which do not.

% Other shared resources like TLBs show similar timing unpredictability.

Solution

> Our solutions focus on two shared resources: shared caches and TLBs.
» Cache Locking:

* Apply a multiprocessor real-time locking protocol to cache colors.

* Treat each job as a critical section.
» Cache Scheduling:

* Apply existing scheduling algorithms (e.g., Rate Monotonic) to
cache accesses.

* Allows for preemptions w.r.t. the cache (see example).
> Reverse engineer the working of TLBs

* Perform experiments to validate our understanding of the TLBs on
different architectures.

* Gain knowledge on the architectural advances made to TLBs.

*Funded in part by NSF awards 1239135 and 1239246.

Caches — Solutions & Results

~

/ Cache Locking
Q AN A
$& $& oo \ﬁqﬁ
I
Color 0
...... T
Color 1 :
: Ts—
N ==
A
Color 31
K _Locked D
/ Cache Scheduling
. Color Red l:‘ Color Green

N

1

200
B o

S chedulability
o
Mg

o]

_

Overhead-Aware
Schedulability Results

— Unmanaged Cache _

- Cache Locking

\

Cache Scheduling

C Il
0 20 40

60 80 100120 140160180 200

Systemn Utilization(%}
Cache locking and cache scheduling, significantly improve

hard real-time schedulability.

)

TLBs — Solution & Results

3://allocate a huge array

4: int * data = (int *)
calloc(numOfElements,4);

5: pageOffset = 0;

6:

7: //access pages for the first time
8: PAPI read(eventSet, valuel);

Pseudo code for TLB reverse engineering

16: //access pages repeatedly

17: GetTimeStamp() nnread TSC
register

18: fori=0!n do

19: pageOffset = 0;

20: PAPI read(eventSet, value3);
21: for j = 0'noOfPagesToAccess

22: temp = data[pageOffSet];
23: process(temp);

9: for i = 0 to noOfPagesToAccess do 24: pageOffset = pageOffset + (s*

10: data[pageOffset] = 1;

11: pageOffset = pageOffset + (s *
1024);

12: end for

13: PAPI read(eventSet, value2);
14: initial misses = value2 - valuel;
15:

1024);

25: end for

26: PAPI read(eventSet, value4);
DTLB misses = DTLB misses +
(value4 -value3);

28: calculateMaxMisses()

29: calculateMinMisses()

30: end for

31: GetTimeStamp()

Consecutive pages
No of misses vs no of pages

S0 | o Reosast s i

No of misses

0 20 40 60 80
Noof pages accessed
High no. of misses past

the TLB size for x86 Xeon ES

Z
X

Multiple runs with no of pages =1

No of pages = 1

No of misses
cmbwsmoane
std deviation

Experiment no

Max bounds not deterministic.

Pages map to same TLB set

No of misses vs no of pages accessed
0

f e

5 Noofpaghaceessed 15

of pure LRU r

Pages map to same TLB set, no of
Repeated accesses = 1

Page access vs (misses cycles)

N~

il mises 5
i s
el

No of misses

0 s 10 1535

Noof page accesses
Page accesses and cycles not
proportional.

Conclusions

»> Developed 2 techniques based on cache coloring
- eliminate cross-core cache evictions.

Y V V

Y

Implemented in a mixed-criticality scheduler: LITMUSRT
Evaluated on an ARM Tegra 3 platform

Conducted overhead-aware schedulability study
- based on measured overheads.

Cache scheduling & cache locking = improved schedulability

-> over a system with unmanaged cache.

Y V V

TLBs not using LRU replacement = maybe PLRU (ongoing work)
TLB-miss bounds not deterministic = even for accessing <4 pages.

Current work: mechanisms & policies for TLB predictability

