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Motivation

> Shared hardware like caches & TLBs introduce timing unpredictability
for real-time systems (RTS).

» Worst-case execution time (WCET) analysis for RTS with shared

hardware resources often so pessimistic that extra processing capacity of
multicore systems is negated.
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»>a) Memory ref hits in L1 cache — Access latency: 1-4 cycles.
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»>b) Memory ref misses L1 & L2 cache — Access latency: 40-100 cycles.
»c¢) Memory ref misses in TLB — Access latency: +1000 cycles.

> Tighter WCET estimates can be established if we know which
references hit in the cache and which do not.

% Other shared resources like TLBs show similar timing unpredictability.

Solution

> Our solutions focus on two shared resources: shared caches and TLBs.
» Cache Locking:

* Apply a multiprocessor real-time locking protocol to cache colors.

* Treat each job as a critical section.
» Cache Scheduling:

* Apply existing scheduling algorithms (e.g., Rate Monotonic) to
cache accesses.

* Allows for preemptions w.r.t. the cache (see example).
> Reverse engineer the working of TLBs

* Perform experiments to validate our understanding of the TLBs on
different architectures.

* Gain knowledge on the architectural advances made to TLBs.

*Funded in part by NSF awards 1239135 and 1239246.

Caches — Solutions & Results
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TLBs — Solution & Results

3://allocate a huge array

4: int * data = (int *)
calloc(numOfElements,4);

5: pageOffset = 0;

6:

7: //access pages for the first time
8: PAPI read(eventSet, valuel);

Pseudo code for TLB reverse engineering

16: //access pages repeatedly

17: GetTimeStamp() nnread TSC
register

18: fori=0!n do

19: pageOffset = 0;

20: PAPI read(eventSet, value3);
21: for j = 0'noOfPagesToAccess

22: temp = data[pageOffSet];
23: process(temp);

9: for i = 0 to noOfPagesToAccess do 24: pageOffset = pageOffset + (s*

10: data[pageOffset] = 1;

11: pageOffset = pageOffset + (s *
1024);

12: end for

13: PAPI read(eventSet, value2);
14: initial misses = value2 - valuel;
15:

1024);

25: end for

26: PAPI read(eventSet, value4);
DTLB misses = DTLB misses +
(value4 -value3);

28: calculateMaxMisses()

29: calculateMinMisses()

30: end for

31: GetTimeStamp()
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Conclusions

»> Developed 2 techniques based on cache coloring
- eliminate cross-core cache evictions.
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Implemented in a mixed-criticality scheduler: LITMUSRT
Evaluated on an ARM Tegra 3 platform

Conducted overhead-aware schedulability study
- based on measured overheads.

Cache scheduling & cache locking = improved schedulability

-> over a system with unmanaged cache.
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TLBs not using LRU replacement = maybe PLRU (ongoing work)
TLB-miss bounds not deterministic = even for accessing <4 pages.

Current work: mechanisms & policies for TLB predictability




