
ABSTRACT

VIJAYAKUMAR, KARTHIK. Probabilistic Communication and I/O Tracing with Deterministic
Replay at Scale. (Under the direction of Dr. Frank Mueller and Dr. Xiaosong Ma.)

As supercomputer performance approached and surpassed the peta-flop level, concerns
about low application efficiency have led application developers to rely increasingly on analysis
tools to diagnose problems with the performance and scalability of their codes. Root cause
analysis for performance problems often identifies poor communication and I/O performance
as a major problem for many scientific applications. Several tools exist to collect communica-
tion and I/O traces to assist in such root cause analysis. However, these tools either produce
extremely large trace files that complicate performance analysis, or sacrifice accuracy to collect
high-level statistical information using crude averaging.

This work contributes Scala-H-Trace, a multi-level event tracing tool that collects com-
munication and I/O traces at several levels in the High Performance Computing (HPC) I/O
stack and also features new techniques for more aggressive trace compression than any previous
approach, particularly for applications that do not show strict regularity in Single Program
Multiple Data (SPMD) behavior.

Such code characteristics are increasingly common due to data-dependent communication,
I/O and internal dynamic computational rebalancing such as adaptive mesh refinement (AMR),
that require redistribution of data via communication. Past approaches fail to provide scalable
tracing and experience rapid increases in traces sizes for such scenarios. Scala-H-Trace uses
histograms expressing the probabilistic distribution of arbitrary communication and I/O pa-
rameters to capture variations. Yet, where other tools fail to scale, Scala-H-Trace guarantees
trace files of near constant size, even for variable communication and I/O patterns, producing
trace files orders of magnitudes smaller than using prior approaches. We demonstrate the abil-
ity to collect traces of applications running on thousands of processors with the potential to
scale well beyond this level.

Aggressively compressed traces create significant challenges to accurately replay traced
events for application analysis. We present the first approach to deterministically replay such
probabilistic traces (a) without deadlocks and (b) in a manner closely resembling the origi-
nal applications. We embrace the challenge of lack of knowledge to match senders with their
receivers due to the loss of information in histograms but compensate with a distributed, or-
chestrated replay that does not require back-channel communication to preserve causal event
ordering for correctness. Our contributions also include automated trace analysis to collect
selected statistical information of I/O calls by parsing the compressed trace on-the-fly.

We evaluated our approach with the Parallel Ocean Program (POP) climate simulation

code, the FLASH parallel I/O benchmark and two benchmarks, CG and MG, from the NAS
suite. Our results show either near constant sized traces or only sub-linear increases in trace file
sizes for POP, FLASH I/O benchmark and CG, irrespective of the number of nodes utilized.
Even with the aggressively compressed histogram-based traces, our replay times are within 12%
to 15% of the runtime of original codes in most cases. Statistical information gathered via the
automated trace analysis reveals insight on the number of I/O and communication calls issued
in POP and FLASH I/O. Such concise traces resembling the behavior of production-style codes
closely and our approach of deterministic replay of probabilistic traces are without precedence.

c© Copyright 2010 by Karthik Vijayakumar

All Rights Reserved

Probabilistic Communication and I/O Tracing with Deterministic Replay at Scale

by
Karthik Vijayakumar

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Computer Science

Raleigh, North Carolina

2010

APPROVED BY:

Dr. Xiaosong Ma
Co-chair of Advisory Committee

Dr. Xuxian Jiang
Member of Committee

Dr. Frank Mueller
Co-chair of Advisory Committee

DEDICATION

To my entire family.
Amba, aunt Jothi and uncle Mahesh.

ii

BIOGRAPHY

Karthik Vijayakumar was born on March 22, 1983 to Mrs. P.V.Umadevi and Mr. P.S.Vijayakumar
in Madurai (Tamilnadu, India) and grew up in Chennai, India. He received his Bachelor of
Technology degree in 2004 from Madras Institute of Technology, which is a constituent col-
lege of Anna University, Chennai, India. He then worked at Infosys Technologies Limited as a
Programmer Analyst for four years.

Karthik joined the Masters program in the department of Computer Science at North Car-
olina State University in Fall 2008. Since then, he has been working with Dr. Frank Mueller
and Dr. Xiaosong Ma. With the defense of this thesis, he is receiving Master of Science degree
in Computer Science from NCSU, in December 2010.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisors Dr. Frank Mueller and Dr. Xiaosong Ma for their support,
guidance and faith in me. I am very grateful towards Philip C. Roth for letting me work at
the Oak Ridge National Laboratory in the summer of 2009 and guiding me throughout my
thesis work. I would like to thank Dr. Xuxian Jiang for serving on my advisory committee.
This research used resources of the National Center for Computational Sciences(NCCS) at Oak
Ridge National Laboratory, which is supported by the Office of Science of the Department of
Energy under Contract DE-AC05-00OR22725 and I would like to thank NCCS for providing
the access to their resources. I would also like to thank Abhik, Chris, Manav, Amey and my
other labmates for their help and inputs. I am also very grateful towards my uncle Mahesh and
aunt Jothi for supporting me throughout my degree program.

iv

TABLE OF CONTENTS

List of Tables . vi

List of Figures . vii

Chapter 1 Introduction . 1
1.1 Motivation . 2
1.2 Our Approach . 4
1.3 Hypothesis . 5
1.4 Contributions . 5

Chapter 2 Background . 7
2.1 Trace Compression . 8
2.2 Time Preservation . 9
2.3 Timed Replay . 9

Chapter 3 Multilevel I/O Trace Collection . 10
3.1 MPI-IO Trace Generation . 10
3.2 POSIX I/O Trace Generation . 12

Chapter 4 Histogram Based Trace Collection . 13
4.1 Intra-node Event Histogram . 14
4.2 Inter-node Event Histogram . 15
4.3 Function Parameter Histogram . 16
4.4 Histogram Construction . 17

Chapter 5 Deterministic Replay and Trace Analysis 18
5.1 Deterministic Replay . 18

5.1.1 Scala-H-Trace Replay . 19
5.1.2 Challenges for Deterministic Replay: Point-to-Point Messages 20
5.1.3 Challenges for Deterministic Replay: Collective Communication 21

5.2 Trace Analysis . 24

Chapter 6 Experimental Results . 25
6.1 Trace Compression Effectiveness . 26
6.2 Histogram-based Trace Replay . 30
6.3 Trace Sensitivity Study . 33
6.4 Trace Analysis . 34

Chapter 7 Related Work . 37

Chapter 8 Conclusion . 39

References . 40

v

LIST OF TABLES

Table 4.1 Varying Loop Iteration . 15

Table 5.1 Uncompressed Trace . 22

Table 6.1 Number of Multi-Scale MPI/POSIX I/O and Communication Calls for
Flash I/O . 35

Table 6.2 Number of I/O & Communication calls in POP 35

vi

LIST OF FIGURES

Figure 1.1 Typical Compute Node I/O Stack . 3

Figure 3.1 Scala-H-Trace Design . 11

Figure 6.1 FLASH I/O Benchmark . 27
Figure 6.2 Parallel Ocean Program . 27
Figure 6.3 CG Benchmark . 28
Figure 6.4 MG Benchmark . 29
Figure 6.5 POP Replay . 30
Figure 6.6 CG Replay . 31
Figure 6.7 MG Replay . 32
Figure 6.8 POP Trace Sensitivity for 512 nodes . 34

vii

Chapter 1

Introduction

Supercomputers already surpassed petaflop level performance and their system design is becom-
ing increasingly complex year after year. These computers are used extensively in the research
and development for simulations in various domains like physics, chemistry and nuclear engi-
neering. Many countries around the world spend millions of dollars every year in constructing
faster supercomputers for the advancement in research. The supercomputing community even
ranks supercomputers based on their performance. As of June 2010, ORNL’s Jaguar is rated
as the fastest supercomputer in the world on Top500 [4] website. Many scientific applications
are developed to harness these system resources. For example, Streitz et al. [22] studied solid-
ification process in metals at high pressure using supercomputers. The simulations performed
in supercomputers enabled them to obtain totally different insight in the solidification process,
which otherwise would not have been possible to obtain.

Most scientific simulations perform complex computations utilizing thousands of cores avail-
able in supercomputers. One important reason for using these systems is to achieve good
speedup in the overall application execution time. These applications utilize parallelization
techniques to obtain very high speedup and utilize system resources quite effectively. Ma-
jor performance gains are obtained by splitting large simulation input data into small chunks
across multiple compute cores and by working on different data sets in parallel. These small
chunks from different compute cores are later combined to get the desired result. One impor-
tant factor that affects speedup in such applications is that the communication involved across
cores to transfer intermediate simulation results. These intermediate results are then used by
neighboring cores for their local calculation.

Another major factor affecting speedup is due to the file input/output (I/O) involved in
scientific applications. Since simulations run for tens of hours and also for multiple days,
these applications take checkpoints of current execution context at regular time intervals. In
the event of system failure in the middle of application execution, these regular checkpoints

1

help in restarting application runs from that point of time instead of restarting the entire
run. Hundreds of nodes write these checkpoint files simultaneously, clearly affecting the entire
execution time. A significant amount of work is being carried out by the research community on
improving the I/O efficiency for scientific applications utilizing supercomputers, which lead to
the development of parallel I/O technologies. Several improvements have been made in parallel
I/O technology to improve the overall I/O processing time. Current supercomputers employ
parallel file systems and also use separate I/O nodes connected to compute cores using special
high speed networks. Compute cores then transfer all I/O data to I/O nodes, which writes into
the underlying file systems.

1.1 Motivation

As supercomputers progress in scale and capability toward exascale levels, characterization of
communication and I/O behavior is becoming increasingly difficult due to system size and com-
plexity. Today, many scientific applications execute in ten thousands of cores or more. More-
over, modern supercomputers are equipped with complex network interconnects to improve the
speedup of parallel applications. Apart from the network complexity, different vendors em-
ploy different interconnect designs to improve the overall communication performance, thereby
achieving better speedup. For example, the IBM Blue Gene family of supercomputers employs
five different network interconnects [5]. Such interconnects mandate performance study of ap-
plications for efficient use of available resources. Even finding the most efficient task mapping
to nodes has become difficult with complex, new system designs.

The large numbers of processors/cores, increased aggregate memory capacity, and opti-
mized interconnects allow applications to grow not only in targeting larger problem sizes, but
to explore more sophisticated communication models. Extreme-scale applications are often
complex codes, integrating multiple software components exercising vastly different computa-
tion/communication models. Such codes are becoming more dynamic and diverging from strict,
regular single program, multiple data (SPMD) behavior. Examples include multi-physics or
coupled codes, where partitions of nodes implement different simulation models, work on sepa-
rate datasets, or even conduct analytics tasks such as data reduction. Such applications exhibit
multiple program, multiple data (MPMD) behavior as multiple nodes work on multiple sections
of the program. E.g., in climate simulations, some nodes simulate climate changes over land
and while other nodes work on sea models. Hence, different modules, like land and sea, use
different input data and algorithms resulting in different communication behavior within each
module. Other examples include Adaptive Mesh Refinement (AMR) codes, where the data set
is dynamically re-constructed (refined) and periodically re-balanced.

Apart from complex communication behavior, these applications possess I/O behavior with

2

different complexities due to the multi-level layering of I/O modules and architectural variations
in storage systems as shown in Figure 1.1. Although these layers provide essential abstractions
to the end user by hiding complex implementation details behind simpler interfaces, these
details ultimately impact the actual behavior of any I/O calls issued at high-level layers. These
abstractions may also hide any inherent performance bottleneck caused by poor implementation
at lower layers, such as low-level synchronization issues.

Application!

Kernel!

POSIX I/O!

MPI-IO!

HDF!
NetCDF!

Figure 1.1: Typical Compute Node I/O Stack

Several studies have investigated the communication and I/O characteristics of applica-
tions. They focus on three main classes: tracing tools, capable of capturing and recording all
message events at the cost of high storage requirements; profiling tools, designed to provide
low-overhead performance summaries trading off storage space for detail level; and communi-
cation and I/O kernels that eliminate computation and retain only application communication
and I/O behavior. Although application kernels are designed to capture the exact application
behavior, it is difficult to keep these kernels up-to-date since the applications constantly evolve
over time. Application traces, in contrast, can be readily generated by simple instrumentation
of an application, to keep up with a changing code base. This makes performance analysis via
traces a preferred method to analyze parallel applications in practice.

The combination of job scale and application complexity, however, creates unique chal-
lenges for parallel tracing tools. On one end of the spectrum, traditional tracing tools (such
as Vampir [15]) record all events sequentially for each parallel process. For large application
runs on leadership-class supercomputers, this approach generates unmanageable trace file sizes,
introducing prohibitive overheads, e.g., for copying trace files from temporary to permanent
storage, hitting the maximum storage limit, and even the need for a cluster plus another par-
allelized tool to perform trace analysis [6]. On the other end of the spectrum, tools that only

3

report statistical information (such as mpiP [23]) may fail to deliver the level of detail needed
in performance analysis or debugging.

1.2 Our Approach

In this work, we propose Scala-H-Trace, which provides two novel capabilities to collect concise
communication and I/O traces. First, we provide the capability to collect I/O traces at multiple
levels of the I/O stack. Next, we provide a unique histogram-based trace collection approach for
applications exhibiting non-SPMD behavior. Past approaches [17, 20] utilize lossless on-the-fly
trace compression techniques to collect communication traces and dramatically reduce trace
file sizes. However, effective compression builds on the homogeneous behavior across processes
(inter-node compression) and repetitive behavior within a process (intra-node compression).
With complex, irregular, or self-adjusting applications, such assumptions do not hold and com-
pression fails due to mismatches between traced events. In other words, while past approaches
proved effective for the easier problems of tracing SPMD codes, this work focuses on the much
harder problems of tracing communication and I/O calls for non-SPMD codes.

Scala-H-Trace is motivated by the tradeoff between exact details and manageability of trace
file size. Although having exact details helps in root cause analysis, lossless tracing becomes
increasingly unaffordable on ultra-scale machines. Histograms in Scala-H-Trace provide an op-
portunity to collect overall statistical details, e.g., data send volume, which can be useful in
studying network characteristics of the application. They provide an overall “big picture” of
an application’s communication behavior. Scala-H-Trace employs histograms with multiple
bins whose value ranges are dynamically adapted as trace data is recorded on-the-fly. In ad-
dition to representing a distribution, each bin also retains certain crude statistical information
(min/max/avg/stddev), potentially useful for root cause analysis.

Scala-H-Trace also enables the user to set a precision level during trace collection. This
precision level drives the compression efficiency by collecting statistical information for varying
traces in unique histogram bins. The trace precision is also ensured to fall within the user set
value. If the trace precision falls below the specified precision, mismatching trace events are
recorded without histogram-based compression, i.e., traditional structural compression tech-
niques are employed and may fail to provide concise traces in the absence of SPMD behavior
of the code [17] but result in exact event recording. The size of such a trace file then be-
comes a function of the desired precision level, which can be tuned to obtain a manageable
size while retaining trace artifacts suitable for performance analysis or even detect root causes
in performance. At the same time, our unique approach to collect histogram-based statisti-
cal information captures the overall trend in communication and I/O behavior of applications
executing on thousands of nodes.

4

While histogram-based tracing can effectively reduce trace data volumes, it creates several
challenges for accurate replay of the traced events. To ensure the correctness of the captured
trace and to reproduce the communication and I/O behavior, we also provide a novel replay fa-
cility. This replay tool reissues the recorded trace events without decompressing the compressed
trace. If the compressed trace is lossless, sender-destination node information and communi-
cation volume are recorded precisely. Also, the causal ordering of the original application is
preserved. For lossy, histogram-based traces, our tool employs a distributed, orchestrated and
deterministic replay capability.

1.3 Hypothesis

We contend that, using the above mentioned approaches, it is possible to collect communication
and I/O traces of either near constant size trace files or trace files with only a sub-linear increase
in size for applications that exhibit not only perfect SPMD behavior but also non-SPMD behav-
ior. We also hypothesize that histogram-based trace compression techniques suffice to capture
the communication and I/O characteristics of applications close to the original behavior and
will assess this claim by accuracy of replay times relative to the original application.

1.4 Contributions

Our contributions are as follows:

• We provide the capability to record lossless and concise communication and I/O traces
for non-SPMD programs.

• We provide the capability to record traces at several layers of abstraction in the software
stack of system and library I/O interfaces;

• We create novel capabilities for more aggressive trace compression based on a precision
level, selected by the user, that drives both compression efficiency and trace accuracy.

• We support a replay technique that reissues trace events without decompressing the orig-
inal trace file.

• we create novel capabilities to automate trace analysis for collecting statistical information
from the traces;

• We provide a distributed approach to deterministically replay statistical traces that does
not require back-channel communication to preserve causal event ordering for correctness.

5

We evaluated our approach with the Parallel Ocean Program (POP), Flash I/O benchmark
and two benchmarks from NAS parallel benchmark suite. Our results provide one to two orders
of magnitude smaller trace files than any previous approach. We also evaluated our replay tool
by reissuing histogram-based traced events. The replay time only deviated 12% to 15% from the
original application’s time in most cases, even for most aggressively merged histogram-based
traces.

6

Chapter 2

Background

Scala-H-Trace is a novel design of a communication and I/O tracing tool that shares its method-
ology for representing the resulting trace on a single file (instead of one file per node), both
otherwise relies on histogram-based data collection. While Scala-H-Trace was derived from the
publicly available code of ScalaTrace [17, 20], Scala-H-Trace provides entirely novel compres-
sion capabilities and also provides capabilities to collect I/O traces at multiple levels of the I/O
software stack.

ScalaTrace collects communication traces using the MPI Profiling layer (PMPI) [14] through
Umpire [24] to intercept MPI calls and to collect MPI traces. It features aggressive trace
compression that generates a single, concise and lossless trace file from any large-scale parallel
application run. It also preserves timing information in the compressed form along with the
calling context of events being traced. In this paper, we develop Scala-H-Trace, which provides
even more aggressive trace compression techniques to serve real-world scientific applications
that do not show strict SPMD regularity.

ScalaTrace performs two types of compression: intra-node and inter-node. The former ex-
ploits the repetitive nature of timestep simulation in parallel scientific applications. The latter
exploits the homogeneity in behavior (SPMD) among different processes running the applica-
tion. Intra-node compression is performed on-the-fly within a node. Inter-node compression
is performed across nodes by forming a radix tree structure among all nodes and sending all
intra-node compressed traces to respective parents in the radix tree. This results in a single
compressed trace file capturing the entire application run across all nodes. The compression
algorithm is discussed in detail elsewhere [17, 20]. Scala-H-Trace employs a different intra- and
inter-node compression algorithm due to its reliance on histograms but still shares the reduction
over a radix tree with ScalaTrace.

7

2.1 Trace Compression

We briefly introduce several techniques used in ScalaTrace to allow a later comparison with
Scala-H-Trace. Repetitive events in different iteration of loops are collected as Regular Section
Descriptors (RSD) [9] and power-RSDs capture RSD events in nested loops [13], both of which
are represented in constant size. Consider the following code snippet:

for(i = 0; i < 10; i++) {

for(j = 0; j < 100; j++) {

compute1();

MPI_Irecv(...); // Receive from left neighbor

MPI_Isend(...); //Send to right neighbor

MPI_Waitall(...);

}

MPI_Allreduce(...); //Collective reduction operation

}

Trace compression results in the following tuples: RSD1:{100, MPI Irecv, MPI Isend, MPI -
Waitall} representing 100 iterations of MPI Irecv, MPI Isend and MPI Waitall in the inner loop,
PRSD1: {10, RSD1, MPI Allreduce} denoting 10 iterations RSD1 followed by MPI Allreduce
in the outermost loop. The algorithm uses the calling context of events to match repetitious
behavior. This ensures that identical MPI functions originating from different call paths of the
application are not compressed together. Since trace events from different nodes are collected
and merged in a single output trace file, the task rank information of nodes participating in an
event is also compressed and encoded concisely in the compressed trace. This participant node
information is represented in a tuple containing starting rank, total number of participants
and an offset value separating ranks. Even multi-dimensional information is captured in this
encoding format.

Apart from matching calling contexts, the compression algorithm matches function param-
eters and merges them along with compressed events ensuring that no information is lost.
In typical parallel applications, communication end-points differ across nodes as a result of
communication with neighboring nodes. These varying end-points inhibit event compression.
ScalaTrace uses a unique location-independent encoding to represent communication end-points
in events like MPI Send and MPI Recv. It also encodes MPI opaque pointers like MPI File
and MPI Comm, which do not exhibit repetitive patterns, potentially inhibiting effective com-
pression. There are special cases in which events with matching calling context can have
non-matching function parameters. These non-matching function parameters are compressed
using a vector representation, so that the particular event can be concisely represented in the

8

trace.

2.2 Time Preservation

Another important feature of ScalaTrace is the time preservation of captured traces. Instead of
recording absolute timestamps, the tool records delta time of computation durations between
adjacent communication calls. During RSD formation, instead of accumulating exact delta
timestamps, statistical histogram bins are utilized to concisely represent timing details across
the loop. These bins are comprised of statistical timing data (minimum, maximum, average
and standard deviation). More details on collecting statistical timing information are provided
elsewhere [20].

2.3 Timed Replay

ScalaTrace not only supports scalable tracing, it also supports a scalable replay engine. Given
a single, compressed trace file, the replay engine allows all communication calls to be reissued
without trace decompression while preserving event ordering. The replay engine runs as an MPI
job with the same number of tasks as its original application. It replays communication events
in each node with their original parameters except for actual file content/message payloads.
Instead, a random buffer of the same size as the original file/message buffer is used. Additionally,
computation time on each node is simulated by a delay between traced events based on recorded
delta time.

9

Chapter 3

Multilevel I/O Trace Collection

File I/O operations in large-scale scientific applications typically go through a multi-level soft-
ware stack, such as the one depicted in Figure 1.1. A parallel application often performs file
I/O through high-level scientific data format libraries, such as HDF5 [2] and netCDF [3], where
shared file access capabilities may be built on general-purpose parallel I/O libraries such as
MPI-IO. Applications may also directly use MPI-IO interfaces to perform parallel I/O, where
the I/O operations are passed to the parallel file system clients running on each compute node.
Eventually, I/O calls are made through the system I/O libraries.

With such an increasingly deep I/O stack, I/O performance depends not just on application
access behavior, but also on the interaction between different abstraction layers. It is important
to isolate an application’s behavior at a certain level, or to correlate activities at multiple levels.
With our prototype system, we make initial effort to expose these layers and enable the analysis
of multi-level traces in a scalable way, to better understand I/O behavior of an application on
a specific architecture.

In our implementation, Scala-H-Trace collects traces of MPI-IO and low-level POSIX I/O
function calls. Both MPI-IO and POSIX calls represent the high and low levels of the I/O
software stack. Scala-H-Trace can, of course, be extended further to collect traces at any layer.
Figure 3.1 below shows different modules assisting in trace collection.

3.1 MPI-IO Trace Generation

At the surface, the methodology to collect MPI-IO traces resembles trace collection of MPI
communication calls. Scala-H-Trace contains an interposition engine based on the Umpire tool
[24] to automatically create wrappers for trace events from a specification of the corresponding
instrumentation actions. The wrapper engine generates modules that assist in trace collection
(header files, a wrapper file containing all MPI function overrides, and lookup files containing

10

MPI Application

MPI
Function

call

MPI Profiling Layer

POSIX Wrappers

Task level compression
framework

Cross node compression
framework

Figure 3.1: Scala-H-Trace Design

details of MPI functions used internally).
However, certain I/O function parameters, such as file name, offset and MPI File opaque

objects, require special handling to achieve scalable trace compression, as detailed below.
Regarding file names, we consider several widely used approaches for performing periodic

I/O in parallel applications. In many applications, all processes send output data to a root
process (process 0), which then performs I/O. Alternatively, all processes may use parallel I/O
to write one or more shared checkpoint/snapshot files, either with collective or individual I/O
calls. In a third and currently less common approach, each process creates its own output file.
The checkpoint files and/or snapshot files are written periodically, typically once per c (where c
is some constant) timesteps, identified by a timestep number in the file name. In case separate
files are created per process, files are typically differentiated by encoding the process/node rank
in file names. For efficient intra- and inter-node trace compression, Scala-H-Trace parses the
file names to identify the “static” and “dynamic” component strings. For example, file names
checkpoint-001-0.nc, checkpoint-001-1.nc, etc. will be recognized as having static components
of “checkpoint-001-” and “.nc”. During compression, file names from disjoint nodes are merged
into a single event if the static file name components match. Process ranks can be substituted
by RSDs, which are expanded during replay (see below).

Similarly, Scala-H-Trace needs to identify and merge parallel MPI-IO accesses to shared
files across I/O timesteps and across processes. For example, assume each of 10 nodes writes a
disjoint range of 1000 bytes in a shared file, i.e. node 0 accesses the byte range of [0,999], node

11

1 accesses [1000,1999], etc. Scala-H-Trace encodes such access pattern into three fields (start
position, stride, and the total number of elements) during intra- and inter-node compression,
so that multiple file accesses with the same call stack will be compressed into a single event.

Finally, MPI File handles representing file objects are opaque pointers handled internally
by the MPI library and do not exhibit repetitive patterns. Scala-H-Trace stores these handles
in a buffer, added upon the file open operation. Subsequent accesses to open files are recorded
by referencing the corresponding handle’s offset in the buffer rather than the handle itself. This
allows us to compress and replay the I/O traces appropriately.

Apart from MPI-IO calls, Scala-H-Trace provides support to record traces for creating
custom data types, such as MPI Type create darray, which are widely used in collective file
accesses. These custom data type handlers are also opaque pointers and are treated in the
same manner as file handlers.

3.2 POSIX I/O Trace Generation

Scala-H-Trace also collects traces from POSIX I/O calls. Compared to MPI-IO, POSIX I/O
calls belong to the lower level in the I/O stack and potentially can provide more information on
the actual requests made to the parallel file system. Tracing POSIX calls can help in identifying
performance bottlenecks in the middle and lower I/O stack layers, as well as in capturing I/O
activities that do not go through a higher-level I/O library. Many of Scala-H-Trace’s techniques
in MPI-IO trace collection, compression, and replay can be applied to POSIX I/O as well. We
discuss several POSIX-specific design and implementation issues below.

We exploited GNU linker’s link time function interposition facility to provide instrumenta-
tion for POSIX I/O calls and to collect traces. The “–wrap” option enables function calls, such
as open, write, etc., to be redirected to corresponding interposition functions (e.g., wrap -
open()). The interposition wrappers implement trace collection and call the corresponding
native (actual) function (e.g., real open()). Scala-H-Trace provides a separate library for
POSIX wrappers, which, together with the Scala-H-Trace library, is statically linked with the
application using the link switch “–wrap” to signify which I/O functions are interposed.

Most of the function parameters in POSIX calls are similar to those of MPI-IO calls (e.g.,
file name, number of bytes read/written). During our initial testing with Scala-H-Trace, we
discovered that several files had been opened even before application execution and thus prior
to our I/O inter-positioning. These activities are accessing the internally managed resources
and sockets opened by the MPI runtime system. We observed many I/O calls on these files
during the initialization phase to coordinate application execution and system activity. Since
these I/O calls were outside the application scope, we filtered them out by recording the traces
with the files opened only after MPI Init.

12

Chapter 4

Histogram Based Trace Collection

Noeth et al. [17] provide trace compression techniques resulting in an almost constant sized trace
file or sublinear increases in trace file size with strong scaling (increasing number of nodes). Yet,
these results only hold for SPMD-style benchmarks, not for production size applications with
non-SPMD patterns. ScalaIOTrace [25] provides mechanisms to collect both the communication
and I/O traces for scientific applications like the Parallel Ocean Program (POP) [19]. But for
some scientific applications, including POP, the inter-node compression technique fails to obtain
a near-constant sized trace file with increasing number of nodes. Instead, we see a linear increase
in the trace size due to non-SPMD style programming.

POP performs ocean simulation for multiple time steps. Each time step performs a set of
computations and communications of an inner loop in multiple iterations. Due to different data-
dependent convergence points in the computation across different timesteps, the number of inner
loop iterations varies from timestep to timestep. Even though all MPI events originate from
the same calling sequence (call stack), varying loop iteration counts in each timestep inhibit
intra-node compression and thus negatively impact inter-node compression across all nodes.
This behavior can also be observed in many Adaptive Mesh Refinement (AMR) applications in
which the input set is dynamically rebalanced on a periodic basis.

To address these problems, we propose a novel method of tracing. We promote histogram-
based trace information for a predefined user-tunable precision level to obtain higher compres-
sion rates of trace events — at the expense of accuracy. For example, if the user sets the
precision level to 95%, then events with matching calling contexts but with non-matching func-
tion parameters will be merged if and only if that parameter differs at most a margin of 5%.
Should the parameters differ by more than 5%, we fall back to lossless tracing. This provides
an opportunity for users to work with a significantly smaller trace file than other previous
techniques.

Our approach uses histograms to collect probabilistic information on varying trace events

13

and event parameters that otherwise inhibit trace compression. Histogram-based collection
employs a technique to collect statistical information in dynamically balanced bins. The online
balancing algorithm equalizes the number of items per bin while adjusting their value range
constraints. This ensures that the histogram captures outliers and other statistical distribution
properties missed by simple aggregate statistical collection like maximum, minimum, average
and variance. We also collect maximum and minimum participant rank information along with
the frequency in bins so as to enable root cause detection, e.g., due to load imbalance. Even
with this lossy trace information, histograms help in providing more insight into the general
characteristics of the traced application. Histogram details can be collected at various levels in
the trace. The following explains what trace information is collected as histogram and discusses
possible tradeoffs in collecting statistical information versus non-lossy information.

4.1 Intra-node Event Histogram

The loop iteration count denoted by PRSDs can be collected as a histogram. This enables
better compression of repeating events in many scientific applications that otherwise would fail
to compress due to data dependencies. Although the exact iteration count is lost in the final
trace, the number of loop iterations directly depends on the computation, which, in turn, varies
with different input sets. Hence, collecting statistical loop iteration counts only has a minor
impact in capturing the communication behavior of the application. The main advantage of
this approach is the ability to obtain a concise trace file by allowing a small percentage of lossy
trace collection that otherwise would have resulted in a trace file of unmanageable size.

Consider the code snippet:

for(i = 0; i < 50; i++) {

//Perform calculation till the result converges

while(result > convergence_factor) {

do_calculation();

MPI_Irecv(...); //Receive from neighbors

MPI_Send(...); //Send to neighbors

MPI_Wait(...);

}

}

In the above example, if the iteration count matches across time-steps, the resulting PRSD
will be of form PRSD1:{50, RSD1}. Due to mismatching convergence points across different
time-steps, the following sample events can occur:

RSD1: <39, MPI_Irecv, MPI_Send, MPI_Wait>

RSD2: <40, MPI_Irecv, MPI_Send, MPI_Wait>

14

RSD3: <39, MPI_Irecv, MPI_Send, MPI_Wait>

RSD4: <42, MPI_Irecv, MPI_Send, MPI_Wait>

.... till RSD50

The expected PRSD is not formed due to mismatching RSDs across time steps. This leads
to cascading compression failures across nodes. As a result, the trace file size increases linearly
with the increase in participating nodes. Histogram-based trace collection ensures that the
varying iteration count is captured in histogram bins. Hence, the resulting trace will have just
one PRSD for the entire time-step calculation.

4.2 Inter-node Event Histogram

With inter-node event compression, compressed traces from different nodes are merged together.
During this process, a radix tree structure is formed among all nodes. Child nodes send their
respective intra-node compressed traces to their parents. A parent node performs compression
of matching events from its child nodes. For each and every event from the parent node, a
matching child event is searched. If there is a match, the parent event’s participant list is
updated with the rank of the child node and the child event is discarded. Other unmatched
events will be reordered according to its dependency with other events.

In applications with non-SPMD behavior, loops created during intra-node compression can
have matching events across nodes, but fail to compress across nodes due to a mismatch in the
loop iteration count. This prevents the entire loop from being merged, increasing the trace file
size linearly with the number of nodes.

As an example, consider the code snippet from the Section 4.1 again. Table 4.1 shows one
such scenario in which computation dependent loop iterations fail to merge across nodes. By
collecting loop iterations in histogram, all events merge successfully across nodes. Note that
we enable merge only when all events inside the loop match perfectly. If events from two loop
candidates do not match, then these loops are considered to represent different scenarios in the
original application and are hence not merged.

Table 4.1: Varying Loop Iteration

Participants:0-3 Participants:4-7
Loop 50 times Loop 51 times
MPI Irecv from 0-3 MPI Irecv from 4-7
MPI Send to 0-3 MPI Send to 4-7
MPI Wait MPI Wait

15

4.3 Function Parameter Histogram

Apart from collecting loop iteration counts in histograms, MPI function parameters, such as
Send/Recv volume, tag and sender/destination ranks, can also be recorded in histograms. The
Send/Recv data volume is important to capture the network load due to the communication
calls issued by the application. Send/Recv volumes often vary across different timesteps in AMR
applications. This variation in volume inhibits compression of communication calls originating
from the same call stack, thereby inhibiting compression across an entire loop due to a small
deviation in the data volume parameters. There are other methods to collect exact volumes.
One such method is to collect the volume information in a vector along with the rank information
of participating nodes. But this results in a linear growth with the increase in number of
participating nodes, which is non-scalable.

For applications that do not exhibit a regular communication pattern, it is impossible to
compress repeating communication events originating from the same call stack with different
sender/destination ranks. The approach of location-independent relative encoding of communi-
cation end-points provides a novel opportunity for event compression. But even this approach
only succeeds in the case of applications with regular communication patterns. There are ap-
proaches in which the communication function call can be expressed as a PRSD but different
end-points in different loop iterations have to be collected as a vector. Again, such an approach
is not scalable for applications executed on thousands of nodes. An example of collecting
function parameters as a vector is given below:

Loop iterations: 1 - 5

Participants: 0 - 9 (node ranks)

Event: MPI_Send

Data volume: 90 bytes [ranks: 0,1,4,5,8,9],

92 bytes [ranks: 2,3,6,7]

Destination: relative rank 1 [ranks: 0,2,4,6,8],

relative rank 9 [ranks: 1,3,5,7,9]

......

Assume MPI Send is executed in a loop 5 times. With lossless trace collection, both data
volume and destination will be recorded along with the rank information of the corresponding
participant. The relative ranks shown above is location independent: 1 represents “the next
right neighbor” and 9 represents “the next left neighbor”. This compression results in a more
concise representation than its uncompressed equivalent, but it still suffers from increases in
the trace size proportional to the number of nodes since no regularity for rank lists could be
deduced.

Using histograms to collect relative end-points and data volume allows better compression

16

of repeating events originating from the same call stack. For this example, histograms will
record both destinations 1 and 9 in bins along with its frequency. In addition to binning
communication end-points, we also collect relative ranks in a bitmap and encode it in the
trace file. This provides information on exact values that are missing from the histograms and
aids post-mortem analysis tools. In the above example, an analysis tool may choose relative
ranks of either 1 or 9 while relative ranks between 2 and 8 are excluded from the pseudo-random
selection. We reiterate that we provide this lossy trace collection as a feature and the decision to
use this feature is entirely upon the users. Users may choose to enable histogram-based tracing
and configure the precision level in response to their application analysis needs, overheads and
storage availability.

4.4 Histogram Construction

We have designed our system in a way to collect exact trace information as much as possible.
Users can set a target precision level expressed as a percentage. Our compression algorithm
attempts to match events originating from the same call stack and compresses events only if
all function parameters match. Histogram collection is triggered only if there is a mismatch
in function parameters or in the loop information. In such cases, the difference between two
non-matching values is checked in terms of the user specified precision level. If the difference is
within the target precision range, then events are merged and the non-matching parameters are
recorded in a histogram from there on. If the difference falls out of the target precision range,
then either event compression will fail or data is recorded in a vector as shown in the example
in 4.3.

In our current implementation, the number of histogram bins is fixed at the start of the
application run, but the value ranges in bins are dynamically adjusted. We provide an option to
set an interval after which bins are adjusted. Two bins with the lowest frequencies are combined
and the bin with maximum frequency is split into two bins. We further store auxiliary infor-
mation in bins, such as minimum/maximum/average/variance, which are adjusted accordingly.
Apart from per-bin statistical information, we also collect maximum/minimum values over the
entire value range (all bins) and the node ranks associated with those. This provides outlier
information and can be used in the replay studies and other performance analysis tools.

17

Chapter 5

Deterministic Replay and Trace

Analysis

5.1 Deterministic Replay

While histogram-based trace collection is powerful in compressing irregular or dynamically
changing events, the collected traces themselves create challenges for replaying and subsequent
performance analysis. The core challenge of histogram-based replay is to ensure that events
are issued in a deterministic manner across nodes and with coordinated parameter value se-
lections for common communication end-points of sends and receives. Since Scala-H-Trace
collects statistical values for communication volume, tags, and end-points, the conventional
ScalaTrace replay design for lossless traces, which takes an independent, uncoordinated ap-
proach among nodes, can lead to potential deadlocks due to statistical uncertainty, or may fail
to re-create the original communication or I/O pattern with reasonable proximity. The nature
of histogram-based traces mandates a distributed, orchestrated replay with coordination among
all participating nodes to ensure deterministic event sequences during replay for Scala-H-Trace.
All nodes must read all trace events. They need to agree on a specific value selected from the
statistical information found in the trace.

We have fundamentally redesigned the replay tool [17] to reissue MPI calls from lossless
traces such that the trace data collected using histograms is honored during event replay. Our
replay tool issues MPI calls using the compressed trace independent of the original application
and without decompressing the trace. This tool verifies the correctness of the collected trace. It
can also assist in the performance tuning of MPI communication and facilitates projections of
network requirements for future procurements. Apart from replaying MPI calls, this basic replay
framework can also be extended to integrate with other performance analysis/tuning tools and
it can be used to perform automated communication and network metric calculations.

18

Before we discuss the design of our new Scala-H-Trace replay tool, we first review the
conventional design of replay for lossless traces in ScalaTrace [17]. For lossless traces, all
participating nodes parse the trace file and only act on events if the current node is a member
of the participant list. Then all nodes reissue MPI events one by one by identifying loops using
the PRSD information and extracting individual MPI function parameters from the recorded
trace. This replay tool also reads the delta time information from the trace and simulates the
computation time by sleeping in place of computation. This simulates the exact communication
and I/O behavior of the application in terms of interconnect characteristics, such as contention.
The replay tool helps to verify the correctness of the trace. By design, it ensures absence of
deadlocks if the original application did not have any deadlocks for a given trace. Replay also
preserves the time taken in terms of the original application’s runtime.

5.1.1 Scala-H-Trace Replay

With the histogram-based trace, the existing parallel replay functionality requires a complete
overhaul to cope with statistical data instead of precise data. In our Scala-H-Trace approach, all
participating nodes parse the entire trace file during replay. In contrast to ScalaTrace, all nodes
read and interpret all MPI events. Such interpretation amounts to the selection of a random
value following the histogram distribution of any recorded events, for each node in the trace. All
nodes “know” the random values used by the other nodes. However, a given node only issues
MPI calls if the current node is a member of the participant list in the recorded trace. The
interpretation of histogram values for events that are not issued is crucial to provide efficient
replay with histograms: It obviates a need to coordinate value selection across nodes and,
hence, back-channel communication that might otherwise be required due to randomization, as
discussed after the next paragraph.

During the random selection of replay parameters, end-points of MPI Send/MPI Isend
events are selected. Upon encountering an MPI Send, once a node identifies itself as a re-
ceiver, the receiver node issues a receive call (MPI Irecv) instead of a MPI Send. Hence, all
receive communication events like MPI Recv and MPI Irecv are ignored. Since a particular
receiver can also be a sender, only MPI Irecv calls are internally issued followed by an internal
MPI Wait call when a node rank identifies itself as a receiver of a recorded MPI Send event.
Such internal MPI Wait calls are issued last, after all ranks have been parsed and all MPI -
Send/MPI Irecv calls have been issued. Any MPI Wait/Waitall calls in the original recorded
trace are ignored.

The selection of a random value for histogram-recorded parameter for any event parameters,
such as send/destination rank and data volume, requires that sending and receiving nodes make
the same decision on matching end-points for a message exchanged between them. To ensure

19

that sender and receiver nodes agree on their end-points for a message exchange, all nodes use
the same random seed during initialization. Hence, all nodes agree on the random value upon
each selection of a replay parameter within the range of 0 and total number of elements in the
histogram. No coordination via communication is required as all nodes interpret all events in
the same order, even if only a subset of (one or more) nodes actually issues an MPI call.

The selected random value is internally used to select an appropriate bin. The average
value recorded for that bin is then chosen as a parameter for the MPI event. This approach
ensures that the value selected from the histogram is uniformly distributed to replicate the
original application behavior as closely as possible. The following section discusses distributed
coordination for random selection in more detail.

5.1.2 Challenges for Deterministic Replay: Point-to-Point Messages

The following code snippet is an example of climate simulation in which first 50 nodes work
on land simulation and the next 50 nodes work on sea simulation. These simulations are
performed in multiple time steps in which nodes perform calculations and communicate the
result to surrounding neighbors. The destination nodes and communication volume can vary
for land and sea simulation.
//Land simulation participants - Node 0 to 49

//Sea simulation participants - Node 50-99

int * resultbuf; //Buffer to hold results

for(timesteps from 0 to 100) {

int destination[100]; //Array to hold dest. ranks

int source[100]; //Array to hold source ranks

do_calculations(resultbuf);

if(simulation == land) {

volume = 80 bytes;

get_my_land_neighbors(destination, source);

else {

volume = 90 bytes;

get_my_sea_neighbors(destination, source);

}

for (i = 0 to total_neighbors_count) {

MPI_Irecv (resultbuf,volume,source[i],...);

MPI_Isend(resultbuf,volume,destination[i],...);

MPI_Waitall (...); //Wait for Irecv

MPI_Waitall (...); //Wait for Isend

20

}

}

In the code above, all participating nodes perform calculations and communicate the results
to corresponding neighbors. All MPI function calls originate from the same call stack but
communication volume and source/destination endpoints vary across nodes. This results in
perfectly compressed intra-node traces with the following events:

RSD1: {MPI_Irecv, MPI_Isend, MPI_Waitall, MPI_Waitall}

PRSD1: {total_neighbors_count, RSD1}

PRSD2: {total_timesteps, PRSD1}

Since communication volume and endpoints vary across nodes, the inter-node compression
fails for the above section. With an appropriate user-specified precision level, communication
volume and endpoints are collected in histogram bins during inter-node compression and the
trace is compressed across all nodes. Hence, all nodes need to agree upon the message payload
(data volume) and send/receive endpoints during replay. With such an agreement between
nodes for the selection of a particular value for replay, potential deadlocks could occur.

For example, an original send/receive pair for sender (node 1) / receiver (node 2) might
result in arbitrary selection of communication end-points without our distributed coordination
scheme. In other words, the sender (node 10) may issue a message to node 20, both randomly
selected on node 10, while node 20 interprets the send event as a message originating from
node 13 and directed at node 23 per uncoordinated random selection. In such a case, node 10
would deadlock as the message is never received. Similarly, receives (or waits for completion of
receives) may deadlock if no corresponding send is ever issued.

Our distributed, coordinated approach to randomized selection ensures that all nodes inter-
pret the send event as originating from node 10 and being directed at node 20. While node 10
issues a send (and node 20 a receive), all other nodes (13 and 23) will not issue any MPI call.
The fact that the original event was a message from node 1 to 2 is probabilistically replayed
as a message from one node (here: 10) to another (here: 20), i.e., histograms do result in
randomized end-points but retain the original number of messages for the example.

5.1.3 Challenges for Deterministic Replay: Collective Communication

With the coordinated replay approach, there are situations in which deadlocks can occur due
to causal ordering of uncompressed traces. Consider the sample trace below with 8 nodes:

Both columns in Table 5.1 contain an uncompressed sequence of MPI events originating from
the same call stack. Each MPI call is preceded by a sequence number as recorded by intra-
node compression. The first set of nodes, 0 to 3, issues 2 sets of MPI Irecv/Send/Wait calls
followed by a MPI Bcast. The second set of nodes, 4 to 7, issues only one MPI Irecv/Send/Wait

21

Table 5.1: Uncompressed Trace

Participants:0-3 Participants:4-7
110-111: MPI -
Irecv(2 iterations)
1st. iter: from 0-3,
2nd iter: from 4-7

130: MPI Irecv from
0-3

112-113: MPI -
Send(2 iterations)
1st. iter to 0-3, 2nd
iter: to 4-7

131: MPI Send to 0-
3

114: MPI Wait (2
counts)

132: MPI Wait

115: MPI Bcast 133: MPI Bcast

followed by MPI Bcast. These events fail to compress due to mismatching Send/Recv counts
across different sets of nodes. This results in the final trace with events 110-115 followed by
events 130-133.

With the coordinated compression of Scala-H-Trace and its corresponding replay, the MPI -
Send in sequence 112 will be issued and the corresponding MPI Irecv will be issued internally by
respective destination ranks as shown in the sample trace. (MPI Irecv/Wait are ignored during
histogram-based replay.) Next, MPI Bcast will be issued by ranks 0 to 3. This will block
ranks 0 to 3 until the corresponding MPI Bcast (seq. 133) is issued by ranks 4-7. But before
issuing the broadcast in sequence 133, nodes with ranks 4-7 issue the MPI Send in sequence
131 with destination 0-3. Since nodes of ranks 0-3 are already blocked in MPI Bcast (seq.
115), they cannot issue an corresponding internal MPI Irecv, eventually leading to a situation
in which nodes 4-7 cannot proceed to other events. This situation occurs frequently. In many
scientific applications, two sets of nodes can execute different sections of a program leading
to compression failure interspersed with collectives, such as barriers. This causal ordering of
events in the trace can lead to deadlock when replayed using the above approach. We employ
a novel design for the inter-node compression algorithm to forcibly merge collectives even if an
entire PRSD loop of other events does not merge properly.

Inter-node compression attempts to match an entire sequence of events subject to the same
PRSD loop across nodes. Even if there is a single mismatch, the entire sequence would conven-
tionally not be merged but rather be written consecutively as shown in the sample trace above.
We employ a novel design for inter-node compression to greedily merge any subset of events,
e.g., collectives inside a loop. We then rearrange other communication calls with collectives as

22

synchronization points. This ensures that deadlocks cannot be introduced during the replay of
MPI events.

We next prove that our novel merge algorithm, which rearranges non-merging communica-
tion calls with a collective as a synchronization point, will not introduce deadlocks. We assume
that the original application is deadlock free (which is reasonable since the event trace was
collected from a terminating application) and provide the proof below:

Theorem 5.1.1 A replayed trace of a program with events reorder to synchronized collectives
does not result in deadlock if the original trace was deadlock free.

Proof Follows from Lemmas 1-3.

Lemma 5.1.2 Lemma 1: A replayed trace of a program with only collectives will not deadlock.

Proof By construction of traces, all recorded participants engage in a collective during replay
in the same order as recorded. Collectives are blocking. Hence, all participants complete a
collective at (nearly) the same time (as collectives provide global/group synchronization).

Lemma 5.1.3 A replayed trace of a program with only point-to-point communication will not
deadlock.

Proof Blocking/non-blocking point-to-point calls are replayed in the same order as recorded.
Hence, if the original trace did not deadlock, replayed point-to-point messages in the same order
will not deadlock either.

Lemma 5.1.4 A replayed traces with mixed events of collectives and point-to-point messages
will not deadlock.

Proof (a) If collectives provide a fence where all point-to-point messages are consumed prior to
a collective, a trace has alternating phases of only point-to-point messages and only collectives.
Replaying such a trace is deadlock free for each region by Lemmas 1 and 2 and thereby also for
the entire trace since each section is causally independent.

(b) If point-to-point messages are crossing collectives (sent before but received after a col-
lective across a pair of nodes that also participates in the collective), then the same send will
be issued during replay before the corresponding collective, and the corresponding receives will
be issued before the collective. Hence, if the application with its traced events was deadlock
free, the replay will also be deadlock free.

(c) By structural induction over (b), replays of traces with (i) multiple send/receive pairs
crossing a collective, (ii) a send/receive pair crossing multiple collectives and (iii) a combination
of (i) and (ii) will not deadlock if the original application did not deadlock during trace recording.

23

(d) Single/multiple event pairs crossing a sequence of collectives and point-to-point messages
that do not cross collectives will not deadlock during replay due to structural induction over
(b) plus Lemma 1 and 2.

5.2 Trace Analysis

Based on the specialized replay facility discussed in 5.1, we designed a generic and novel auto-
mated post-mortem trace analysis framework. Our design provides generic event handlers for all
recorded trace functions. These handles can then be interposed or substituted by user-specific
code when the trace is traversed in our generic analysis engine. While trace analysis could
also be performed in a more conventional manner during application execution with interposed
events within Scala-H-Trace, post-mortem generic trace analysis provides several advantages.

Conventional trace analysis requires a priori knowledge about performance problems in or-
der to collect and correlate the subset of I/O and communication events that may contribute to
performance problems or application characterization footprints. Short of such a prior knowl-
edge, conventional trace analysis is generally repeated with different refinement steps, which
requires a separate application execution each time. In contrast, our generic post-mortem trace
analysis facilitates the detection of anomalies or identification of communication patterns in the
applications by iterative refinement without re-running the application. Instead, different trace
analysis interposition functions at the replay level operate directly on compressed traces, and
by omitting time-accurate replay, can be traversed rapidly taking only a fraction of the original
application’s execution time.

In this work, we exploit generic trace replay to demonstrate its capabilities in one spe-
cialization example. By providing aggregation interposition functionality, we obtain statistical
details on the number of I/O operations and collective/blocking/non-blocking communication
calls across all nodes. This could easily be refined for group-specific analysis of MPI communi-
cators or subsets of traced events originating from certain code sections based on per-call stack
backtrace information.

24

Chapter 6

Experimental Results

We evaluated Scala-H-Trace in four aspects: (1) its effectiveness of trace file compression, (2) its
statistical trace replay feature, (3) its trace compression sensitivity to precision level settings,
and (4) its capability to collect statistical information on I/O and communication activities
via replaying the compressed traces. Experiments (1) and (2) utilize forced histograms at a
precision level of 0%, which is discussed in more detail in the context of experiment (3).

Our experiments were conducted on Jaguar, the Cray XT4 system at ORNL. Each of
compute node features a 2.1 GHz quad-core AMD Opteron 1354 processor and 8GB of DDR2
memory. The login nodes run a full-featured Linux version while the compute nodes run the
Compute Node Linux microkernel.

We analyze the efficacy of Scala-H-Trace using a production-scale application, the Parallel
Ocean Program (POP) [10], as the main challenge. The Parallel Ocean Program (POP) is
an ocean circulation model developed at Los Alamos National Laboratory. Our experiments
exercise a one degree grid resolution in which the problem size is 320x384 blocks and the
individual block size is 5x6 resulting in a total of 4096 (64x64) blocks distributed to individual
nodes. POP exhibits non-SPMD behavior, which leads to trace file size increases with the
number of nodes for conventional trace tools, including ScalaTrace. Hence, this application
provides an opportunity to show-case the effectiveness of histogram-based trace collection of
Scala-H-Trace. We conducted experiments by varying the maximum number of blocks assigned
to each node.

We further utilize the CG and MG benchmarks from the NAS parallel benchmark suite for
inputs sizes C to study the efficacy of Scala-H-Trace for different types of application behavior.
Both CG and MG mostly exhibit SPMD behavior but differ significantly in the communication
pattern impacting the compression effectiveness during trace collection. These benchmarks are
also selected from the NAS benchmarks as these two were the challenging cases for ScalaTrace’s
lossless compression: Both were reported to results in sub-linear increases in the trace file size for

25

ScalaTrace [17]. We also utilized the Flash I/O benchmark, which simulates the I/O behavior
of the FLASH application, to check the effectiveness of I/O trace compression. The FLASH
application is a block-structured adaptive mesh hydrodynamics code [1].

6.1 Trace Compression Effectiveness

We collected traces based on two different compression techniques. First, lossless trace com-
pression featuring ScalaTrace is used, in which all events are recorded with exact loop details
and function parameters captured. Second, our novel histogram-based trace compression fea-
turing Scala-H-Trace is used, in which trace information is collected in histograms for events
and parameters that otherwise would not have compressed with the lossless trace compression.
Trace file sizes are assessed under strong scaling, where we vary the number of nodes while
keeping the overall problem size fixed. Lossless traces, obtained from ScalaTrace, are useful
to identify exact details of the communication and I/O patterns exhibited by the application.
Histogram-based traces are obtained from Scala-H-Trace, attempting to capture lossless infor-
mation for trace events where feasible while non-matching events are recorded in histogram
bins. We hypothesize that histograms suffice to capture the “big picture” of the application
behavior and will assess this claim by accuracy of replay times relative to the original appli-
cation. For applications exhibiting non-SPMD behavior, such as POP, histogram-based trace
collection (Scala-H-Trace) collects concise traces, which could not otherwise be obtained with
lossless trace compression (ScalaTrace).

First, we will discuss the effectiveness of compression for both communication and I/O calls
for the FLASH I/O benchmark. Figure 6.1 depicts the size of trace files generated by two
approaches, uncompressed flat traces and lossless inter-node compressed traces, over increasing
number of nodes, both on log scale. The size of the uncompressed trace files grows linearly
with increasing number of nodes. The reason for this behavior is that each node writes its own
trace file and the number of files created grows with the increase in the number of nodes. In
contrast, the size of the inter-node compressed traces is almost constant under strong scaling.
This behavior of perfect inter-node compression is attributed to the SPMD programming style
in the Flash I/O benchmark without any data-dependent conditional statements. FLASH I/O
does not contain any loops. Hence, intra-node compressed traces are similar to flat traces and
thus omitted in the results. FLASH I/O depicts the best case of perfect SPMD behavior, in
which case even the earlier lossless trace compression resulted in trace file of constant file size.

Figure 6.2 depicts the trace file size for both lossless and histogram-based traces when
varying the number of nodes. Note that the y axis is in log scale. Since POP exhibits non-
SPMD behavior, we observe a linear increase in the trace file size in the case of lossless trace
collection up to 256 nodes. The trace file size then stabilizes for 512 nodes and even declines

26

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

2 4 8 16 32 64 128 256 512 1024

Tr
ac

e
fil

e
si

ze
 in

 b
yt

es

Number of nodes

Flat

Lossless inter-node

Figure 6.1: FLASH I/O Benchmark

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

32 64 128 256 512 1024 2048 4096

Tr
ac

e
F

ile
 S

iz
e

in
 b

yt
es

Number of nodes

Lossless Trace

Histogram Trace

Figure 6.2: Parallel Ocean Program

27

for 1024 nodes. We identified that the timestep behavior becomes more regular at these levels,
resulting in more effective inter-node compression. But we again observed an increasing trend
in the case of 2048 nodes. For 2048 nodes and above, we could not even collect traces anymore
as the trace file size was growing unmanageably fast and the time taken to merge hundreds of
megabytes of per-node traces became prohibitive. With the histogram-based approach, there
is a sub-linear increase in the trace file size. Moreover, histogram-based trace files are two
orders of magnitude smaller than the lossless traces. This considerable reduction is obtained by
aggressive compression of events and their associated function parameters in histograms. This
clearly shows the efficacy of Scala-H-Trace to collect concise trace files even with applications
exhibiting irregular behavior.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

32 64 128 256 512 1024 2048 4096

Tr
ac

e
F

ile
 S

iz
e

in
 b

yt
es

Number of nodes

Lossless Trace Histogram Trace

Figure 6.3: CG Benchmark

Figures 6.3 depict trace file sizes for the CG benchmark. We observe an interesting trend
in CG in which the trace file size for lossless traces is consistently 50% less than that of the
histogram traces up to 1024 nodes, yet sizes match at 2048 node. Even though lossless traces
are initially smaller than histogram traces, there is a consistent increase in the trace file size
for the lossless case. In contrast, the size of histogram traces is almost constant with the
increase in number of nodes. For lossless traces, non-matching function parameters for events
with the same call stack are collected in vectors associated with a participant rank list. This
representation is more concise than histograms for smaller number of nodes. With thousands
of nodes, the vector-participant list pair for each event has increased in size to where it is at

28

par with histogram traces. Unlike vector-participant lists, histogram representation is constant
with the increase in number of nodes as the number of bins is fixed during the application run
and even the outlier participant rank information is absorbed as constants in bins. It should
also be noted that the trace file size for CG is in the order of hundreds of kilobyte. For larger
applications with a similar communication behavior as CG yet with trace file sizes in hundreds
of megabytes, such a linear (or even sub-linear) growth for lossless traces may simply not be
scalable due to inter-node merge overheads, as discussed.

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

32 64 128 256 512 1024 2048

Tr
ac

e
F

ile
 S

iz
e

in
 b

yt
es

Number of nodes

Lossless Trace Histogram Trace

Figure 6.4: MG Benchmark

Figure 6.4 depicts the results for MG. Both lossless and histogram traces grow linearly in
size with the increasing number of nodes. But the file size of histogram traces is always 50%
to 60% smaller than that of lossless traces. The linear increase in trace file size is attributed to
failure in inter-node compression across different subsets of nodes. While analyzing the trace
file, we discovered that loops identified during intra-node compression differ across individual
nodes. An explanation for such differences is that boundary nodes in communication patterns
may exhibit different loop identification than internal nodes of the pattern for MG. Our inter-
node compression algorithm does not compress loops with different events even if there is a
matching loop iteration count.

29

6.2 Histogram-based Trace Replay

We studied the replay effectiveness of histogram-based traces by comparing the original ap-
plication execution time with the time taken to replay the recorded events. We discuss the
effectiveness of the distributed approach of replaying statistical traces. We also discuss the im-
pact of trace compression on the replay behavior for histogram-based traces. We show that even
with statistical histogram-based traces, replay can still be employed to check the correctness of
a recorded trace and also to perform “what-if” analysis for system procurements.

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

32 64 128 256 512 1024 2048

E
xe

cu
tio

n
tim

e
in

 s
ec

Number of nodes

Original Time

Replay Time

Figure 6.5: POP Replay

Figure 6.5 depicts the replay time of histogram-based trace events compared to that of
the application’s original execution time. The compressed traces are fully forced histogram
trace events where any non-matching function parameters or loop iterations are collected as
histograms. Even with these traces, we see that the replay time for traces collected for 32-512
number of nodes are within 5% of the original execution time (with the exception of replay
time for 128 nodes). Replay time accuracy drops to 12% for 1024 and 2048 nodes. Due to our
experiment with strong scaling for POP, the original execution time for both 1024 and 2048
nodes (30 seconds) is much lower than that for fewer nodes (>100 seconds) so that even small
deviations in absolute values during replay increase the error percentage. We conjecture that
such deviations are unrealistic as POP for this particular input does not scale beyond 512 nodes
so that such short times are unrealistic. Similarly, this problem would not occur under weak

30

scaling as runtimes would not decrease with larger number of nodes. Overall, we observe that
the replay time is close to the original execution time, even for fully forced histograms, due
to two reasons: (1) Since our histograms are dynamically balanced, a random value selected
from histogram bins during replay falls within a commonly used value range in the original
application run. (2) The inter-node compression algorithm effectively merged events across
nodes so that communication calls are not split in the trace file. The impact due to ineffective
inter-node compression is discussed below for MG benchmark.

We observe nearly 50% deviation in the case of 128 nodes for POP. To investigate the
cause, we calculated the time spent by nodes in other communication calls and found that
some nodes are engaged in more communication calls than the majority of nodes. This created
load imbalances where the remaining nodes wait at collectives for nodes participating in larger
number of events. This type of behavior was rare for POP but more pronouncedly evident
for the MG benchmark. The reason for this replay time deviation is discussed in detail in the
context of MG below.

0

5

10

15

20

25

30

35

40

45

32 64 128 256 512 1024 2048

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

Number of nodes

Original Time

Replay Time

Figure 6.6: CG Replay

Figure 6.6 depicts the replay time for the CG benchmark. In the majority of cases, the
replay time is with 10% to 15% of the original application runtime. Since the original execution
time for CG is within 10 seconds for 1024 and 2048 nodes, even small changes in the absolute
replay execution time increase the error percentage considerably. The replay time deviation
can be attributed to the loop iterations recorded in histograms. Again, CG stops scaling at

31

512 nodes for this input size so that larger application runs are unrealistic. Furthermore, if the
random loop iteration selected from histograms is close to the maximum value, then all nodes
participate in more communication calls than in the original application. This is a fundamental
trade-off between accuracy and manageability of trace file sizes.

0

10

20

30

40

50

60

70

80

90

100

110

120

32 64 128 256 512 1024 2048

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

Number of nodes

Original Time

Replay Time

Figure 6.7: MG Replay

The replay time for MG benchmark is depicted in Figure 6.7. We observe that the replay
time deviates by a factor of 3 to 4 from the original application runtime. This issue is similar
to the deviation in POP for 128 nodes, but the behavior is more pronounced in MG. The
reason for the big deviation is two fold: First, with imperfect inter-node compressed traces,
many nodes coordinating one Send/Recv call in the original applications will be split into
multiple unmerged events in the recorded trace file. With our new replay approach of all nodes
interpreting every MPI Send call, these unmerged events introduce increased synchronization.
This results in some nodes having to wait for other nodes to join in a particular Send event.
Second, MG uses a 7-point stencil communication pattern in a 3-dimensional space. With this
type of communication pattern, nodes on the boundaries behave differently than the internal
nodes. Even though we record relative communication end-points in histograms, we lose details
such as which boundary node communicates with a particular end-point.

Since Scala-H-Trace’s replay picks a random value from end-point histograms, boundary
nodes may be selected in communication calls that would otherwise not have been on boundaries
in the original application. Such additional communication with boundary nodes also increases

32

the time to synchronize with other nodes. This behavior is more prominently seen for lower
number of nodes where the majority of nodes act as boundary nodes. With thousands of nodes,
the ratio of boundary to internal nodes is lower. This is the primary reason for the exponential
decrease in replay time deviation with an increasing number of nodes.

We plan to address these challenges in the future by enhancing Scala-H-Trace’s replay tool.
Instead of all nodes interpreting every trace event, nodes will only need to interpret events
they actually participate in for lossless trace portions. The histogram-based events will still
be interpreted by all nodes for the sake of distributed coordination, yet events are reissued
only by randomly chosen participants (if the participant list was a histogram). We can also
increase the precision level for MG to collect more exact traces. This would eventually improve
the replay accuracy when combined with the proposed replay enhancements. The increase in
precision level should only have a minor impact in the trace file size for MG as events do not
even compress properly with the most aggressive forced histogram approach.

Exception for MG, as discussed, replay for Scala-H-Trace generated traces with forced his-
tograms results in runtimes that are within 12-15% of the original application for most cases.
This result is interesting as forced histograms are equivalent to a 0% precision level, which is
the most aggressive compression possible with Scala-H-Trace. More accurate replay may result
from higher precision levels at the cost of slightly larger traces, as discussed next.

6.3 Trace Sensitivity Study

Next, we study the effect of varying trace precision levels on trace file sizes. This experiment
serves as an illustration for the benefits of user-specified precision levels as a means to steer
compression, which should improve as precision decreases. Precision levels provide a tunable
parameter to select target trace file size as required by operating environments or performance
analysis experiments. Lossless traces may be desirable for exact analysis of application behavior
and users with access to excessive storage may happily utilize this feature even if the trace file
size becomes large. When desiring a more compact trace file and when inter-node merges
become prohibitive for lossless traces, users can decrease trace precision to target a desired
trace file size and tracing overhead.

Figure 6.8 depicts the impact of verifying trace precision levels on the final trace file size. We
fixed the number of nodes to 512 for POP and measured trace file sizes for varying precision
levels. We observe that even with a small decrease in the precision from 100% to 95%, the
trace size reduced by more than a factor of three. This significant reduction is due to merging
events with varying numbers of loop iterations for the timestep in POP. With lossless traces, two
different sets of loops with the exact same events fail to compress due to varying numbers of loop
iterations across the timestep. This variation is data dependent and induced by computation as

33

0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

1.0E+08

1.2E+08

1.4E+08

1.6E+08

1.8E+08

2.0E+08

100 95 90 80 70 60 50 40 30 20 10 0

Tr
ac

e
F

ile
 S

iz
e

in
 b

yt
es

Trace Precision Level in %

Figure 6.8: POP Trace Sensitivity for 512 nodes

explained in the section 4.1. The trace file size is constant up to a 70% precision level. At 60%
precision, sizes drop again by almost 50%. This second reduction has been attributed to function
parameters collected as histograms. Many events with varying function parameters are not
combined under lossless tracing or result in vectors collected to represent varying parameters.
Both contribute to the significant increase in the trace file size and prevent trace scalability with
increasing numbers of nodes. Finally, another three-fold reduction in trace sizes is observed for
forced histograms (0% precision level). At the 0% precision level, all non-matching values are
represented as histograms, which results in the most concise trace possible with Scala-H-Trace.
Overall, sensitivity experiments to precision levels show that small reductions in precision can
significantly reduce the overall trace sizes. This particularly aids production-scale codes like
POP, which otherwise cannot be feasibly traces without loss of information for thousands of
nodes.

6.4 Trace Analysis

Finally, we demonstrate that our proof-of-concept trace analysis module is able to perform
post-mortem analysis to examine the traces, such as how many calls have been issued and how
I/O operations behave under strong scaling. While such statistics are common information
items, Scala-H-Trace has the unique advantage of avoiding either rerunning the application or
going through large-sized trace files. Tool features can be easily extended in the future to plug

34

in user supplied trace processing routines for customized analysis.

Table 6.1: Number of Multi-Scale MPI/POSIX I/O and Communication Calls for Flash I/O

#
nodes

MPI-
IO at
0

POSIX
I/O at
0

Comm.
at 0

MPI-
IO
Other

POSIX
I/O
Others

Comm.
Other

2-1024 194 171 299 85 56 299

Table 6.1 shows the statistical information collected exploiting Scala-H-Trace’s generic anal-
ysis feature with a specialized module for aggregation of event statistics. It shows that FLASH
I/O issues the same number of I/O and communication calls under weak scaling with increasing
number of nodes while the overall output file size increase due to the larger number of nodes.
Since parallel HDF5 uses MPI-IO, which in turn uses POSIX I/O, separate aggregation results
are reported for both MPI-IO and POSIX I/O. We observe that the number of MPI-IO calls
for both node 0 and all others is greater than that of corresponding POSIX I/O calls. This is
due to MPI File set view calls issued before writing to the file.

Table 6.2: Number of I/O & Communication calls in POP

#
nodes

I/O at
0

Coll. at
0

Block.
at 0

NB at 0 Coll.
Other

Block.
Other

NB
Other

2 1589 21247 129034 231714 21247 0 385350
4 1573 21257 179284 308952 21257 0 388838
8 1573 21277 210140 308952 21277 0 393393
16 1573 21317 1444912 386190 21317 0 447680
32 1573 21397 858648 386190 21397 0 451373
64 1573 12225 858648 386190 8575 0 382512
128 1573 21877 463372 386190 21877 0 441344
256 1573 22517 470288 386190 22517 0 426550
512 1573 23797 239932 386190 23797 0 424329
1024 1573 26357 240198 386190 26357 0 412485

Table 6.2 shows the statistical information collected similar to the one reported for FLASH
I/O benchmark. Since only node 0 performs I/O operations, we report results for I/O operations
and collective (Coll.)/blocking (Block.)/non-blocking (NB) communication operations for node

35

0 separately and the average number of operations for all other nodes. We identified that all
of the blocking communication calls at node 0 are I/O induced. This confirms that using any
parallel I/O methodology would have definitely reduced the communication overhead involved
in I/O.

With more nodes, the average number of non-blocking calls does not change significantly.
This shows that the fraction of non-blocking receives relative to the corresponding blocking
sends from node 0 is almost negligible. We also observe that the communication overhead
increases due to strong scaling to solve the problem across even larger number of nodes. We
further infer from trace analysis that communication is performed in sub-groups as the average
non-blocking calls in other nodes is greater than that for node 0. We derived from the trace
analysis that even collective operations, such as MPI Allreduce, are performed in sub-groups.
This is also the explanation for the difference in collective communication between node 0 and
other nodes for the 64-node experiment. Here, the collective operations at node 0 operate in one
sub-group while the average number of collectives across all the other nodes is lower (dominated
by other sub-groups). We manually verified the correctness of this result.

36

Chapter 7

Related Work

There are several tools, such as TAU [21], Vampir [15], Paraver [18] and SCALASCA [8],
that capture communication and/or I/O trace events using library instrumentation similar to
Scala-H-Trace. But only few employ trace compression techniques to control the trace file
size. Many of these tools depend on zlib for compression, which compresses blocks of data
without preserving the structure of the trace, i.e., post-processing/analysis only becomes fea-
sible after decompression. This also increases the memory requirements, effectively rendering
trace analysis infeasible on commodity desktops or laptops and sometimes even high-end work-
stations, depending on the uncompressed trace size. Unlike these techniques, ScalaTrace [17]
compresses traces while preserving the trace structure in terms of order of events. As a result,
post-processing/analysis can be performed without decompression. We utilize this concept
of structure preserving compression in Scala-H-Trace. Yet while ScalaTrace and any of the
aforementioned tracing tools record lossless traces with a subset or all event parameters, Scala-
H-Trace establishes a different methodology. Parameters, event frequencies and participant lists
of nodes are recorded as histograms when lossless compressing cannot be established within a
user-specified precision level. Employing statistical methods results in more concise traces even
for non-SPMD programs at the expense of loss of information. Our replay tool uses an algo-
rithm to issue events on-the-fly using the compressed traces, much like ScalaTrace. Yet recorded
parameters are replayed in a probabilistic manner, which creates novel challenges that are met
by our distributed approach to coordinate event replay across nodes.

The mpiP tool, a lightweight profiling library for MPI applications, collects statistical in-
formation about MPI functions [23]. It collects aggregate metrics like number of MPI events
issued by the application and average execution times. This is useful to provide very high-level
information on communication and I/O calls. Scala-H-Trace, in contrast, captures all events in
traces and employs more sophisticated histogram bins only when the need arises for applica-
tions exhibiting non-SPMD behavior. Beside the histogram information, we also record outlier

37

information associated with each bin to detect communication bottlenecks and to provide a
“big picture” of communication and I/O events in applications.

Kluge et al. [11] employ pattern matching techniques similar to ours to capture POSIX I/O
calls in parallel programs. Unlike our approach, they perform post-mortem pattern matching
only after collecting the application traces. They read the collected trace and create an I/O
dependency graph thereby preserving the event order to do pattern matching. Even though
post mortem pattern matching reduces the trace volume, this approach limits its usefulness in
memory constrained systems like the IBM BlueGene family. Without online compression, either
the memory footprint increases by holding the recorded trace or trace events are frequently
written to disk, which affects the application execution behavior. They also do not employ
pattern matching across nodes so that they require a trace file per node. This limits their
approach in that they struggle with applications utilizing thousands of nodes due to parallel
file system constraints. Our approach is immune to such limitations as a single trace file captures
the behavior of all nodes with statistical information on a per-event and per-parameter basis.

Gao et al. [7] developed an event trace compression technique that performs static analysis
on the application binary and collects loops and functions as structures. Along with these
structure, a path grammar is constructed on-the-fly. Path grammars are then utilized to encode
paths taken during execution. These structures are compressed individually and stored. Even
the iteration count is stored along with the compressed structure traces. This loosely resembles
the RSD and PRSD technique used in related work [9, 13, 16, 20]. But unlike Gao et al.’s work,
our tool does not require the construction of grammars for individual applications separately.
Our work employs a generalized trace compression approach based on call path stacks and
records parameters exploiting statistical means. It is sufficient to link the tool library along
with the application to collect traces. This generalization also enables comparative trace studies
between two different applications.

Lu and Shen [12] proposed multi-layer event tracing and analysis to identify the system layers
responsible for performance bottlenecks. Their evaluation was limited to very small systems (at
most 16 nodes) and their approach does not employ any compression mechanism. With traces
collected from many different layers of I/O subsystems, there will be unmanageable increases
in the trace file size when 100s or 1000s of nodes are used. They have also provided interesting
results on performance issues on parallel file system due to constraints at the operating system
level using trace analysis. In contrast, our tool enables trace analysis using compressed traces
and with even the potential to automate trace analysis by performing a stack walk to identify
the layering information using recorded stack signatures along with event traces.

38

Chapter 8

Conclusion

We presented the design and implementation of Scala-H-Trace, which provides novel capabili-
ties for more aggressive trace compression than any previous approach, collects I/O traces at
multiple levels of I/O software stack and also a generic analysis tool that allows rapid post-
mortem traversal of tracing in their compressed format to gather statistics, detect performance
bottlenecks or analyze event precedence orders. Scala-H-Trace utilizes histograms based on
a user-specified precision level. It features a distributed approach to deterministically replay
statistical histogram traces where events are reissued without decompressing the original trace
file.

Experimental results demonstrate the ability to obtain a single, near constant sized trace file
or only sub-linear increases in the trace file size, even for production-scale scientific applications
such as POP with non-SPMD behavior, the FLASH I/O benchmark and the CG benchmark
of the NAS suite. Results also show that replay time for traced events are within 12%-15% of
the original application execution time in majority of the cases, even for the most aggressive
“forced” histograms. Such concise traces are unprecedented for isolated I/O and combined I/O
plus communication tracing.

Thus, we have achieved the goals we had set and have proven our hypothesis stated initially.
We expect that our trace collection approaches will aid in the study of communication and I/O
behavior of complex extreme-scale applications running on thousands of cores.

39

REFERENCES

[1] FLASH I/O benchmark routine. http://www.ucolick.org/ zingale/flash benchmark io.

[2] Hierarchical data format. http://www.hdfgroup.org/HDF5.

[3] Network common data form. http://www.unidata.ucar.edu/software/netcdf/.

[4] Top 500 list. http://www.top500.org/, June 2002.

[5] N. Adiga and et al. An overview of the BlueGene/L supercomputer. In Supercomputing,

November 2002.

[6] H. Brunst, D. Kranzlmüller, and W. Nagel. Tools for Scalable Parallel Program Analysis -

Vampir NG and DeWiz. The International Series in Engineering and Computer Science,

Distributed and Parallel Systems, 777:92–102, 2005.

[7] X. Gao, A. Snavely, and L. Carter. Path grammar guided trace compression and trace

approximation. High-Performance Distributed Computing, International Symposium on,

0:57–68, 2006.

[8] M. Geimer, F. Wolf, B. J. N. Wylie, E. Abraham, D. Becker, and B. Mohr. The scalasca

performance toolset architecture. In International Workshop on Scalable Tools for High-

End Computing, June 2008.

[9] Paul Havlak and Ken Kennedy. An implementation of interprocedural bounded regular

section analysis. IEEE Transactions on Parallel and Distributed Systems, 2(3):350–360,

July 1991.

[10] P. W. Jones, P. H. Worley, Y. Yoshida, J. B. White, III, and J. Levesque. Practical

performance portability in the parallel ocean program (pop): Research articles. Concurr.

Comput. : Pract. Exper., 17(10):1317–1327, 2005.

40

[11] Michael Kluge, Andreas Knüpfer, Matthias Müller, and Wolfgang E. Nagel. Pattern match-

ing and i/o replay for posix i/o in parallel programs. In Euro-Par ’09: Proceedings of the

15th International Euro-Par Conference on Parallel Processing, pages 45–56, Berlin, Hei-

delberg, 2009. Springer-Verlag.

[12] Pin Lu and Kai Shen. Multi-layer event trace analysis for parallel i/o performance tuning.

In ICPP ’07: Proceedings of the 2007 International Conference on Parallel Processing,

page 12, Washington, DC, USA, 2007. IEEE Computer Society.

[13] J. Marathe and F. Mueller. Detecting memory performance bottlenecks via binary rewrit-

ing. In Workshop on Binary Translation, September 2002.

[14] MPI-2: Extensions to the message-passing interface. July 1997.

[15] W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and K. Solchenbach. VAMPIR: Visual-

ization and analysis of MPI resources. Supercomputer, 12(1):69–80, 1996.

[16] M. Noeth, F. Mueller, M. Schulz, and B. R. de Supinski. Scalable compression and replay

of communication traces in massively parallel environments. In International Parallel and

Distributed Processing Symposium, April 2007.

[17] M. Noeth, F. Mueller, M. Schulz, and B. R. de Supinski. Scalatrace: Scalable compression

and replay of communication traces in high performance computing. Journal of Parallel

Distributed Computing, 69(8):969–710, August 2009.

[18] V. Pillet, J. Labarta, T. Cortes, and S. Girona. PARAVER: A tool to visualise and

analyze parallel code. In Proceedings of WoTUG-18: Transputer and occam Developments,

volume 44 of Transputer and Occam Engineering, pages 17–31, April 1995.

[19] The parallel ocean program (POP), 1996. http://climate.lanl.gov/Models/POP/.

[20] P. Ratn, F. Mueller, Bronis R. de Supinski, and M. Schulz. Preserving time in large-scale

communication traces. In International Conference on Supercomputing, pages 46–55, June

2008.

41

[21] Sameer S. Shende and Allen D. Malony. The tau parallel performance system. Int. J. High

Perform. Comput. Appl., 20(2):287–311, 2006.

[22] Frederick H Streitz, James N Glosli, Mehul V Patel, Bor Chan, Robert K Yates, Bronis R

de Supinski, James Sexton, and John A Gunnels. Simulating solidification in metals at

high pressure: The drive to petascale computing. Journal of Physics: Conference Series,

46(254), 2006.

[23] J. Vetter and M. McCracken. Statistical scalability analysis of communication operations

in distributed applications. In ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, 2001.

[24] Jeffrey S. Vetter and Bronis R. de Supinski. Dynamic software testing of mpi applications

with umpire. In Supercomputing, page 51, 2000.

[25] Karthik Vijayakumar, Frank Mueller, Xiaosong Ma, and Philip C. Roth. Scalable i/o

tracing and analysis. In PDSW ’09: Proceedings of the 4th Annual Workshop on Petascale

Data Storage, pages 26–31, New York, NY, USA, 2009. ACM.

42

