
ABSTRACT

VASAVADA, MANAV M. Innovative Schemes to Support Incremental Checkpointing. (Under
the direction of Dr. Frank Mueller.)

The rapid increase in the number of cores and nodes in high performance computing (HPC)

has made petascale computing a reality with exascale on the horizon. Harnessing such computa-

tional power presents a challenge as system reliability deteriorates with the increase of building

components of a given single-unit reliability. Todays high-end HPC installations require appli-

cations to perform checkpointing if they want to run at scale so that failures during runs over

hours or days can be dealt with by restarting from the last checkpoint. Yet, such checkpointing

results in high overheads due to often simultaneous writes of all nodes to the parallel file system

(PFS), which reduces the productivity of such systems in terms of throughput computing. Re-

cent work on checkpoint/restart (C/R) has shown that incremental C/R techniques can reduce

the amount of data written at checkpoints and thus the overall C/R overhead and impact on

the PFS.

The contributions of this work are twofold. First, it presents the design and implementa-

tion of two memory management schemes that enable incremental checkpointing. We describe

unique approaches to incremental checkpointing that do not require kernel patching in one case

and only require minimal kernel extensions in the other case. The work is carried out within the

latest Berkeley Labs Checkpoint Restart (BLCR) as part of an upcoming release. Second, we

evaluate the two schemes in terms of their system overhead for single-node microbenchmarks

and multi-node cluster workloads. In short, this work is the final showdown between page write

protection and dirty page tracking as a hardware means to support incremental checkpointing.
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Chapter 1

Introduction

1.1 Parallel Computers

Computer systems have evolved over time to become faster and more efficient. Parallel com-

puters or super computers date back a long time back. Supercomputers gained visibility during

1970s and 1980s when large vector based machines were quite popular. Parallel computers lost

some ground during 1990s due to rapid development of fast uniprocessor machines and the

challenge in parallel programming. The parallel computing trend has picked up recently since

the development of uniprocessor machines has hit the frequency scaling wall. Parallel comput-

ing today is available in form of multicore machines, where a single node contains a number of

processor cores sharing some level of cache and other resources, and in form of clusters where

different physical machines are connected through a medium of communication, to coordinate

and synchronize tasks. The later type of parallel computers are also divided into homogenous

and heterogenous clusters, depending on the type and configuration of the nodes present in the

clusters. Parallel computing is also referred to as High Performance Computing (HPC). HPC

or Parallel computing involves exploiting various kinds of parallelism in a given application

and executing some of the tasks in parallel so as to reduce execution time. Many scientific

applications as well as normal applications contain parallelism at various levels, which can be

exploited by HPC systems. The various levels of parallelism are instruction level, data, and

task parallelism.

Since traditional supercomputers are custom made and therefore quite expensive, clusters

are used prominently in academic research. Clusters are made up of components available

off the shelf. These are quite cheap and readily available. The most common programming

paradigm found in such machines is the message passing paradigm. Each machine is allocated to

execute some part of the application. It communicates with other nodes over the network using

a standard set of functions defined in the Message Passing Interface (MPI). There are various
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implementations of MPI out today. Some of the popular ones are OpenMPI [9], MPICH-V [5],

MVAPICH.

With the restrictions in frequency scaling facing the computing field today, more and more

institutions and companies are turning to parallel machines or HPC. Recently, the IBM Road-

runner supercomputer at Los Alamos National Lab and the Cray XT-5 Jaguar at Oak Ridge

National Laboratory were amongst the machines that broke the Petaflop barrier in Linpack per-

formance [1]. To take maximum advantage of HPC machines, applications need to be rewritten

for parallel execution, which is more difficult than writing a sequential program. Parallel pro-

gramming is the biggest challenge facing the industry today.

1.2 Fault Tolerance

A Fault is defined in computing as an event in which the computer deviates from the normal

behaviour of the application. A fault is an underlying inconsistency in the hardware or the

software which can cause an error and thus cause the program to fail. The faults can be

classified into software faults and hardware faults. Software faults constitute erronous program

code unable to handle a specific set of input data. Such kind of faults can be solved by

programmers on rewriting the application. Hardware faults, on the other hand, are faults

generated due to defects or limitations of the underlying hardware. Such faults could include

failure of input/output (IO) operations by the IO bus, ECC failure on a faulty RAM due to

solar burst or other reasons, block corruption on hard disks while reading data etc. In our work,

we mainly concentrate on the hardware faults of the cluster. Faults can be classified into [2]

1. Crash/fail-stop faults – the component either occasionally stops operating or never returns

to a valid state;

2. Omission faults – the component completely fails to perform its service;

3. Timing faults – the component does not complete its service on time;

4. Byzantine faults – these are faults of an arbitrary nature.

In our work, we mainly concentrate on the crash faults.

With the development in the supercomputer field, the number of core in high-performance

computing has scaled upto thousands of processor cores. Large scientific applications with

highly parallel execution patterns are exploited fully on these machines. Even with the amount

of processor power available, applications may still take upto days to execute on such high-end

machines. Such applications include climate modeling, protein folding, 3D modeling etc. With

the increase in use of off-the-shelf components to create parallel machines as well as the increase

2



in the sheer number of processing cores on a single machine, the Mean Time Between Failure

(MTBF) has also decreased significantly[Citation needed]. This indicates the increasing chance

of hardware failure while a process is executing. For large processes like the ones mentioned

above, this would mean restarting the process from scratch and performing all the work again

thus wasting precious processing time. Along with delay in results, this would also mean

excessive use of power for doing duplicate computation.

Fault Tolerance can be defined as the ability of the machine to perform its designated

function correctly in presence of internal faults. Fault tolerance involves detecting the error,

stopping the erronous processes and correcting the error. An efficient fault tolerance policy can

save a significant amount of computing power as well as execution time.

1.3 Checkpoint Restart

There have been many approaches to support fault tolerance in HPC. One of the approaches is

checkpoint/restart (C/R). This approach involves saving the state of the application at regular

intervals. The act of saving the state of the application is known as checkpointing. Hence this

approach involves checkpointing the application on each node at regular intervals of time to

non-local storage. Upon failure, the computation is simply shifted to a spare node and the

application is restarted from the last checkpoint instead of starting the application from the

scratch.

For example, consider a parallel application running on 10 nodes with one spare node.

This application is being checkpointed every hour. Now consider that one of the nodes fails

after 5.5 hours. Without checkpointing, this would require an entire application restart, thus

wasting the time already spent executing the process. With checkpointing, we just transfer the

last checkpoint to the spare node and start the application from the last checkpoint, i.e., the

checkpoint taken at the 5th hour mark. See Figure 1.1 :

Checkpointing involves saving the state of the process at a point in time and then using the

same data at the time of restart. There have been various frameworks for application as well

as system-level C/R. There has been a study on various type of checkpointing mechanisms [14]

1.4 Berkeley Labs Checkpoint Restart(BLCR)

Berkeley Labs Checkpoint Restart (BLCR) is a hybrid kernel/user implementation of check-

point/restart developed by Future Technologies Group researchers at Lawrence Berkeley Na-

tional Laboratory. It is a robust, production quality implementation that checkpoints a wide

range of applications without requiring changes to application code. This work focuses into

checkpointing parallel applications that communicate through MPI. BLCR support has been

3
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Figure 1.1: Application running with and without checkpointing

integrated on various MPI implementations namely, LAM/MPI, MVAPICH, OpenMPI etc.

Researchers at North Carolina State University have been working on various extensions for

BLCR [18][19][20].

1.5 Extensions to BLCR

The benefits of checkpointing are also accompanied by a certain amount of processing overhead

and a significant amount of disk usage. Taking a checkpoint and restarting an application

from a checkpoint incurs a certain amount of overhead. This overhead depends on various

factors. Some of the important factors are size of application, disk I/O speed, bandwidth of

the connecting medium in case the checkpoint file is being written to a remote destination.

Similarly, disk usage is also an important consideration for checkpointing. It depends mainly

on the size of the application and the frequency of checkpointing. Applications with higher

checkpointing frequency tend to use up large amount of disk space.

To counter the above effects of checkpointing, several extensions to BLCR for optimization

were designed by the systems research group at NCSU. The first extension is a rollback feature in

BLCR which saves overhead by reusing existing resources at restart time. The second extension

is incremental checkpointing. This extension aims to minimize checkpointing overhead as well

as disk usage by checkpointing only the modified areas of application. We shall look at both

the extensions in later sections.

In this thesis, we propose two different approaches for implementing incremental checkpoint-
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ing. We propose an approach which makes use of internal Linux data structures to detect page

modifications. We apply an additional patch [17] to enable access to underlying kernel data

structure. We also propose a novel alternative approach that uses various in built mechanisms

in the Linux kernel to implement incremental checkpointing obliviating the need to patch the

kernel. We also propose a modular approach for the implementation of the two approaches that

would allow the user to switch easily between the two different approaches. Last, we claim that

it is possible to have save time during checkpointing by comparing the two different approaches

in terms of their performances on various benchmarks.

5



Chapter 2

Motivation, Hypothesis and

Contribution

In this chapter we present the motivation, Hypothesis, Contribution and Summary of our work.

2.1 Motivation

We have worked on several extension on the Berkeley Labs Checkpoint Restart (BLCR).

The first extension that we have worked on is process rollback. On any failure, BLCR by

default kills all processes including the faulty process, then shifts the faulty nodes checkpoint

image to a spare node and restarts the entire process. Doing this has several drawbacks. Firstly,

we are killing of all the healthy processes in addition to the faulty process. Second, restarting the

entire application causes it to be resubmitted to the job queue and get rescheduled again, which

is a waste of time since other jobs in front of out resubmitted job in the scheduler queue will

be executed first in case of a batch scheduler. Hence we implemented a rollback functionality

in BLCR based on previous work by Chao Wang et al.[18]. This approach uses the current

existing process containers and resources to just roll the applications on the healthy node to

their previous checkpointed states and without ever killing them.

The checkpoint/restart process involves saving state of a process at a point in time. This

includes registers, virtual address space, open files, debug registers etc. In case of a failure

at any point in future, the process is recreated from the checkpointed data and the execution

resumes from the last checkpoint rather than starting from the beginning. The na¨ve approach

to checkpointing, however, checkpoints the entire process state at every checkpoint. However

most applications spend their time between two checkpoints in a tight loop or some subsection of

the process. Incremental checkpointing involves checkpointing only the data of a process which

has been modified since the last checkpoint and ignoring the rest. This helps save disk space and

6



optimizes I/O bandwidth. The modification detection in this mechanism is currently performed

at page level. This is done since the linux kernel itself maintains the modification information

at page level granularity. The checkpointing process involves taking a full checkpoint at various

intervals followed by a set of incremental checkpoints. We will discuss the implementation in

the next section. We implement two separate approaches namely dirty-bit (DB) approach and

write-bit (WB) approach. We finally conclude with future work and conclusion of analysis of

both the approaches.

The third and last extension is the live migration feature. This extension detects the fault

in the node and starts to checkpoint data to a socket to a spare node. A spare node can thus

restore a checkpoint on-the-fly.

2.2 Hypothesis

We hypothesize that performance savings can be realized by utilizing the approach of “dirty

bit” tracking for incremental checkpointing, which we suspect to be lower cost than alternative

approaches, such as “write bit” tracking.

2.3 Contribution

The contributions of this work are twofold. First, it presents the design and implementation of

two memory management schemes that enable incremental checkpointing. We describe unique

approaches to incremental checkpointing that do not require kernel patching in one case and

only require minimal kernel extensions in the other case. The work is carried out within the

latest Berkeley Labs Checkpoint Restart (BLCR) as part of an upcoming release. Second, we

evaluate the two schemes in terms of their system overhead for single-node microbenchmarks

and multi-node cluster workloads. In short, this work is the final showdown between page write

protection and dirty page tracking as a hardware means to support incremental checkpointing.

7



Chapter 3

Design & Implementation

This section describes the design of incremental checkpointing in BLCR. The main aim of

the incremental checkpointing facility is to integrate it seamlessly with BLCR with minimal

modifications to the original source code. The enhanced code should also have a minimal

overhead while taking incremental checkpoints. When incremental checkpointing is disabled,

it should allow BLCR to checkpoint without any additional complexity. For this purpose, we

have divided the checkpoints into three categories:

1. Default Checkpointing - BLCR checkpointing sans incremental code;

2. Full Checkpointing - Fully checkpointing the entire process despite of any modifications;

3. Incremental Checkpointing - Checkpointing only the modified data pages of a process.

In the above list, Default and Full checkpointing would be identical in their output but

different in their initialization of various data structures which is essential and shall be discussed

later.

The main criteria of the design of incremental checkpointing code is to provide a modular

approach. The most critical task in incremental checkpointing is to detect the modification of

data pages in order to determine whether it should be checkpointed (saved) or not. Currently,

we support two approaches. Based on previous work done at NCSU, the first approach is called

the Dirty bit tracking approach or DB approach. The details of this approach are discussed

below. This approach would require users to patch their kernels and recompile it. Another

approach we designed avoids the patching of the kernel. It instead uses the currently existing

mechanisms in the kernel to detect modifications to pages.

In addition to the above approaches, other solutions may be designed in the future depend-

ing on the features provided by the Linux kernel and the underlying hardware. To efficiently

support different algorithms with minimal code modifications, we designed an interface object

8



for incremental checkpointing that unifies several of the essential incremental methods. Al-

gorithms simply plug in their methods, which are subsequently called at appropriate places.

Hence, BLCR remains agnostic to the underlying incremental checkpointing implementation.

This interface needs to encompass all methods required for incremental checkpointing.

3.1 Incremental Interface

The incremental interface uses BLCR to call the incremental checkpointing mechanism in a

manner agnostic to the underlying implementation. This enables various incremental check-

pointing algorithms to be implemented without major code changes in the main BLCR module.

The interface object is defined as :

int (*init)(cr_task_t *, void *);
int (*destroy)(cr_task_t *, void *);
int (*register_handlers)(cr_task_t *cr_task, struct vm_area_struct *map);
int (*page_modified)(struct mm_struct *mm, unsigned long addr, struct vm_area_struct *map);
int (*shvma_modified)(struct vm_area_struct *vma);
int (*clear_vma)(struct vm_area_struct *vma);
int (*clear_bits) (struct mm_struct *mm, unsigned long addr);

Figure 3.1: BLCR incremental object interface

With this object, existing BLCR code is converted to function calls. If they are not defined,

BLCR will behave as it would without any incremental checkpointing. At the first checkpoint,

this object would be created per process and associated with a process request. The high-level

design is depicted in Figure 3.2.

The initialization function allows a specific incremental approach can use to set up the

data structures (if any), initialize pointers etc. Similarly, the destroy function lets the specific

module free up used memory and/or unregister certain handlers. The detection of modified

data pages might utilize existing kernel handlers or hooks which need to be registered. The

register handlers function is used for registering specific callbacks. This function is utilized

here to register callbacks for memory mapping and shared writes. The mmap callbacks keep

track of mapping and unmapping of the memory pages to ensure that the newly mapped pages

are not skipped as described in one of the cases.The page modified function is the heart of this

interface object. It returns a boolean value indicating whether the page has been modified or

not. Similarly, shvma modified returns a boolean for whether a shared page has been modified

or not. After each incremental checkpoint clear vma and clear bits can be used to reset the

9
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Figure 3.2: BLCR incremental design

bits for the next checkpoint.

3.2 Write bit design

The write bit approach is inspired by work by John Mehnert-Spahn et al. [13] . and tracks the

modified data pages. However, they implemented their mechanism on Kerrighad Linux/SSI

through source code modifications. One of the main criteria behind the design of this approach

was to ensure that no modification of the kernel code was required. Therefore, in addition to

the write bit, a number of other mechanisms were used for incremental checkpointing.

In this approach, the write bit is cleared at each checkpoint, and at the next checkpoint we

check whether it is set or not. If the page whose write bit is cleared is written to, the Linux

kernel generates a page fault. Since the segment permission for writing would be granted, the

kernel will simply set the write bit of the associated pte and return. The write bit serves as an

indicator that, if set, implies that the page was modified between checkpoints. If it is not set,

the page was not modified between the checkpoints. However, this approach does not work for

a number of corner cases.We shall look at those cases and discuss how this approach handles

them in the following sections.

3.2.1 VM area changes

One of the major issues with the above write bit approach is its requirement to track changes

in the virtual memory area. Many memory regions might be mapped or unmapped between

two successive checkpoints. Some memory regions may get resized. We need to cover all such

cases in order to ensure correctness.We have assigned a data structure for each page that tracks

the status of the page. The structure and design of this tracking approach will be discussed

shortly. Map tracking includes:

10



• A page getting unmapped:

If a page is unmapped between two successive checkpoints, then the corresponding track-

ing structure for that page needs to be invalidated or removed. To this end, we need to

be alerted when a page was unmapped while the process runs. We used the close entry

provided in the vm area structure, which is a callback initiated when a virtual memory

area is being ’closed’ or unmapped. With that hook, we associate required steps when a

memory area is unmapped.

• New regions getting mapped:

This case describes the instance in which new memory regions are added between two

checkpoints. For example, consider an incremental checkpoint 1 written to disk. Before

incremental checkpoint 2 is taken, page A is mapped into the process address space. At

the next checkpoint, if page A was not modified it will not be checkpointed since the write

bit would not be set. However, this would be incorrect. To handle this case, we do not

allocate the tracking structure for newly mapped regions. Hence, at the next checkpoint

on detecting the missing tracking structure, page A will be checkpointed regardless of the

status of the write bit in its page table entry.

3.2.2 Corner Cases

One of the more serious cases is posed by the system call mprotect. For a vm area protected

against writes, the kernel relies on the cleared write bit to raise page faults and then checks

the VM permissions. This case can also give erroneous output. For example, assume page A

was modified by the user thus setting the write bit. Before the next incremental checkpoint,

the user protects the page allowing only reads, effectively clearing the write bit. When the

next checkpoint occurs, the checkpoint mechanism fails to identify the modification on the data

page and, hence, discounts it as an unmodified page. We have handled this case by using the

dirty bit in this case. The mprotect function, while setting permission bits, masks the dirty

bit. Hence, if the page is modified then we can detect it through the dirty bit.

The other corner case is that of shared memory. In BLCR, only one of the processes will

capture shared memory. However, we may miss the modification if the process capturing the

shared memory has not modified the data page. To handle this, we reverse map the processes

through the cr task structures and check for modifications in each process tracking structure

for the page. If at least one of them is modified, then the shared page is dirty and should be

checkpointed.
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3.2.3 Tracking Structure

In the WB approach that we have described, we have implemented an approach that does

not require patching and recompiling the kernel. Instead it uses the existing resources. The

corner cases clearly show that in cases like un-mapping and re-mapping pages or detecting

modifications on a shared page, our mechanism, by itself, fails.There is a need for BLCR to

maintain the information regarding the data pages of the process. This means that while

traversing through the vma, BLCR needs to check certain parameters of the specific page,

which will help BLCR to properly handle corner cases with those pages.

To design the page tracking structure, we decided to look at the paging system inside Linux.

We have seen before that the memory address space of a process is divided into pages, each of

which is of a fixed size. The pages are then accessed on an on-demand basis. Let us take the 32-

bit x86 architecture as an example. Normally, the entire process address space is fragmented

with very few processes using up the entire address space. If the entire metadata or page

information were stored as a single table, it would take up 4 MB of main memory space. To

avoid allocation of entire page table at once, the page table structure is divided into multiple

levels. In a 32 bit x86 system, the paging mechanism works as shown in Figure 3.3
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Figure 3.3: Page table structure in Linux

In x86 systems, the cr3 register holds the value of the start of the page directory table

(PGDT) for a particular process. When an address is accessed, the bits from bit 22-31 in the

address value represent the offset into the PGDT. The value obtained at the specified offset is

the start address of the corresponding page table. The bit values from bit 12-21 in the accessed

address represent the offset into the particular page table. The value obtained at this level is

the Page Table Entry(PTE), which contains the frame number for the main memory and some

meta information about the page(access rights, modification information etc).
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After the introduction of 64 bit systems, two more levels of paging were introduced in the

linux paging system to accommodate the larger memory address space. For 32 bit x86 systems

the middle two levels are just ignored.

The page tracking structure in BLCR is modeled after the page table. Each requested object

by a process inside BLCR will contain a cr cr3 variable, which, like its counterpart, will hold

the beginning address of the pseudo page tables for the process in BLCR. The page table levels

are designed similar to the Linux paging system. Initially, the design was to replicate the entire

page table structure in BLCR to maintain the state of each page. However, the difference here

is in the last level of the page hierarchy. In the Linux page table structure, the last level holds

the PTE for each page. The PTE is a variable of type long and it holds the information about

the frame number in the main memory and other information about the page such as access

rights. For the tracking structure in BLCR, we only need to maintain information regarding (a)

whether the page was un-mapped since last checkpoint; and (b) whether the page was written

by another process (in case of shared memory). Since a page tracking structure will have to be

created for each process,using a long type variable would waste a significant amount of memory.

We have optimized the “PTE” in the tracking structure to use only 4 bits per page, i.e., the

final level in page table hierarchy will use only 4 bits to maintain the information about the

page. One bit will be used to keep track of the mapping of the page (whether it is mapped on

unmapped). The second bit is set whenever any process in a process group writes to a specific

page. Two more bits are reserved for future use. So the total “PTE” size for each page is

compressed to 4 bits.This results in an almost 8 times reduction in memory usage compared to

maintaining a properly mirrored page table.

The tracking structure for incremental checkpointing is a virtual page table maintained by

the BLCR module. This is done for two purposes: 1) to maintain track of vm area changes like

un-mapping, re-mapping, new mapping etc; and 2) to detect writes to shared memory. Let us

have a look at how the page tracking structure solves our corner case problems.

Case (a): The page is modified, un-mapped and re-mapped between two checkpoints. Since

the page is un-mapped and re-mapped, there is a possibility that we can lose the modification

bit since the re-mapped page will have its write bit cleared. This is where our tracking structure

helps us. In the first checkpoint, knowing that the page is mapped, the MAPPED bit of the

tracking structure will be set. Then when the page is un-mapped, the close callback of the vm -

area struct is called in which we clear the MAPPED bit for that page in the BLCR tracking

structure. Before the next checkpoint, a page may be mapped in to the same address. At the

next checkpoint, while detecting the modification on the page, we will also check the MAPPED

bit. Since the MAPPED bit was cleared when the previous page was un-mapped, BLCR takes

this page as a new page without any incremental considerations and checkpoints it.

Case (b): A shared page is modified by one of the processes in the group. In BLCR, only the

13



first process in the process group will dump the shared memory in order to remove redundancy

of the data. If process A modified the page and process B tries to dump it, it can miss the

modification from process A and reject the page as unmodified. With our tracking structure,

when process A modifies a shared page, the callback shared mkwrite is called and BLCR sets

the SHARED bit in the tracking structure for that page. When process B is dumping the

shared pages, it will check the SHARED bit for that page in the tracking structure of each

process in the process group. This is done by using the reverse mapping technique. In this

case, process B will come across the set bit in process A’s tracking structure for the page and

store it because of the modification.

3.3 Dirty Bit Approach

The second approach taken by previous work uses the dirty bit for detecting page modifications.

It uses an existing Linux kernel patch [17] to copy the PTE dirty bit into user level. The

problem with using the dirty bit is that the kernel uses the dirty bit for its own purposes.

This introduced an inconsistency if BLCR and the kernel were both using it simultaneously.

The patch introduces redundant bits by using free bits in the PTE and maintaining a correct

status of the dirty bit for a given page. This approach requires the kernel to be patched. More

significantly, this approach prevents page faults from being raised at every write as in the write

bit approach.
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Figure 3.4: Dirty bit approach

As shown in Figure 3.4, Linux uses the dirty bit inside the PTE to maintain the modification

status of the page. We observe that a two of bits in the PTE remain unused. The patch uses

this bits to replicate and maintain the dirty bit consistently. The two bits are name PAGE -
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BIT KDB (to maintain the kernel state of dirty bit) and PAGE BIT SDB (to maintain user

state of the dirty bit). KDB maintains the consistency of the dirty bit to the kernel and returns

the value of dirty bit with respect to the last access by the kernel. SDB bit maintains the dirty

bit between two different function calls. The function call cr db page status returns the value

of the dirty bit relative to the last call to the function. The dirty bit is reset at each function

call.

3.4 Restoring Incremental Checkpoints

Restarting is the latter half process of the C/R process. It involves restarting the process from

the context file written during the checkpoint process. BLCR stores all the system information

about the process and “recreates” the entire process at restart time. When a checkpoint is

taken, the entire information is stored in a specific file format that can be retrieved at the time

of restart. Examples of such information include the pages from the process address space,

registers, stack pointers, pending signals, register dumps of various threads etc. Let us see the

checkpoint file format in detail. Figure 3.5 shows the file format of the checkpoint context file:

When restarting, the cr restart process forks off a child. It then reads the information

from the context file in parts and tweaks the characteristics of the child process to match the

checkpointed process and will eventually restart the checkpointed process.

While this mechanism works for normal restarts, restarting a process for incremental check-

points is not so simple. The problem is that not all context files from various incremental

checkpoints will have all the information about the process. Starting from a specific incremen-

tal checkpoint is difficult since there will be “holes” in the incremental context files where the

data was not modified in the interval between the previous checkpoint and the current one.

Restarting a process from a single, incomplete context file would yield erronous results. The

incremental checkpoints are characterized by their completeness and interval. The incremental

checkpointing mechanism will involve a full checkpoint taken at several intervals and incremen-

tal checkpoints taken in between. This is called the incremental checkpoint ratio. For example,

if the ratio is 1:5, then one full checkpoint will be taken after every 5 incremental checkpoints.

It is also clear that to restart an application from any of the incremental checkpoints would be

difficult since they would have memory “holes” in them. The correct way would be “stack” the

checkpoints from the last full checkpoint up to the current incremental checkpoint and start

restoring everything from the full checkpoint, overwriting the parts from subsequent incremental

context files as they are processed.

The process of restarting from an incremental checkpoint is more complex than starting

from a normal checkpoint. The above described process would involve a change in the context

file format so that multiple context files can be overlaid without any inconsistencies. This
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Figure 3.5: Context file format for BLCR
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approach is being implemented and is expected to be integrated soon with BLCR.

3.5 Interface to Use Incremental Checkpointing

Along with the implementation of the incremental checkpoint, we needed to design a command

line interface to control the incremental checkpointing by the user. The normal BLCR interface

provides no such option for checkpointing. Running a cr checkpoint call on a process just

checkpoints the entire process. Similarly, for restart, there are no options to specify what kind

of context file (full or incremental) is being restarted. We designed the interface with following

options:

a) cr checkpoint -i -pid [pid]

Any checkpoints with the flag -i are considered as incremental and will be checkpointed

incrementally. Without the -i flag, a full checkpoint will be taken.

b) cr checkpoint -p period -pid pid

Here the -p flag indicates the period or the interval of incremental checkpointing. The

’period’ argument will be passed to indicate the number of incremental checkpoints to take

between two full checkpoints. This is probably not a preferred approach. BLCR doesnt care

what is the optimal frequency of incremental checkpointing is. BLCR will only be told whether

the current checkpointing is full or incremental.

c) cr checkpoint –full-incr [method] -pid pid

This is probably the best way to implement the flags. Here we pass the method type [write

bit/ dirty bit] along with full incr flag at the start of a set of checkpoints(This also means we

can switch methods between two successive sets of checkpoints, even in the same process run.)

3.6 Rollback Functionality

The rollback functionality [18] is designed to cut the overhead in the BLCR checkpoint/restart

process. To understand this, let us consider an example. We have a parallel processes running

on 10 nodes. Assume that one of the node fails. With our fault tolerance policy, the latest

checkpoint taken by BLCR will be transferred to the spare node. BLCR will then kill all the

processes, including the healthy ones, and then restart the entire process on all nodes from

the last checkpoint. The rollback functionality cuts the overhead of killing the process and

resubmitting the job to the job queue. The implementation was done by Wang et al. in

the older version of BLCR(ver 0.4.2). We implemented the rollback functionality in the new

BLCR(version 0.8.0). The rollback functionality is now a part of the BLCR cvs head and can

be accessed by passing the ’-r’ switch with the cr restart command.
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Chapter 4

Experiments

4.1 Framework

We conducted our performance evaluations on a local cluster that we control. This cluster has

18 compute nodes running Fedora Core 12 Linux x86 64 (Linux kernel- 2.6.31.9-174.fc12.x86 -

64) connected by two Gigabit Ethernet switches. Each node in the cluster is equipped with four

1.76GHz processing cores (2-way SMP with dual-core AMD Opteron 265 processors) and 2 GB

memory. A large RAID5 array provides shared file service through NFS over one Gigabit switch.

Apart from the modifications for incremental checkpointing in BLCR, we also instrumented the

code for the BLCR library to measure the time across checkpoints. OpenMPI was used as the

MPI platform since BLCR is tightly integrated in its fault tolerance module.

4.2 Experiments

We designed a set of experiments designed to assess the overhead and analyze the behaviour

of two different approaches of incremental checkpointing, namely (i) the WB approach and (ii)

the DB approach. The experiments are aimed at analyzing the performance of various test

benchmarks for these two approaches in isolation and measuring their impact on NAS parallel

benchmarks in terms of performance of application benchmarks.

Various NPB benchmarks [7] as well as microbenchmarks have been used to evaluate the

performance of the above approaches. From NPB benchmark we chose SP, CG, LU as their

runtimes are long enough for checkpoints. We have performed those experiments on Class C

of each benchmark as the memory footprint for Class C inputs is suitable for our experiments.

In addition, we have designed a microbenchmark which varies memory consumption in order

to evaluate the performance of the incremental approaches with scaling memory. We also have

a designated set micro benchmarks that evaluate the effect of special cases like mprotect and
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memory swapping with dirty bit usage among others. The benchmarks are tested for various

parameters like varying memory, modified memory, ratio of incremental checkpoints etc.

4.2.1 Instrumentation Techniques

For getting precise measurement of time, the method of instrumentation is quite important.

The BLCR framework has been modified to record timings at two levels. The figure shown

below (XXX fig to be done) shows the block diagram of an MPI program since we are going to

use the NPB benchmarks. As we see, we can issue an ompi-checkpoint command so that the

OpenMPI framework performs a coordinated checkpoint. One option is to measure the time

across the ompi-checkpointing call. However, this required modification to the Openmpi code

and it will also include the timing for coordination of various MPI processes, which will effect

our results. We decided, in this case, to modify the BLCR library instead. We measure the

timing across the do checkpoint call in each of the processes. The processes then output their

timing to a common file on the NFS where you can see each node’s time performance regarding

checkpoints is recorded. This design is shown in the figure below (XXX fig to be done)
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Figure 4.1: BLCR library timer design

There is one small caveat with the above approach. Our initial tests showed very low

variation between the two incremental approaches we were comparing. After studying timings

for various phases, it was found that most of the checkpoint time was dominated by writes to

the context file on the file system. This would cover up any other time like the time taken to

detect page modifications. So our approach was to find a way to eradicate the write time from
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the total time and measure only the time to detect modifications on the pages. For this, we had

to change the BLCR kernel module to measure only the modification commands. The design is

shown in Figure 2. We accrue the timing measurements for modification detection across each

page chunk. As a post processing step, we calculate the maximum, minimum and average of

all checkpoint timings.

����������	

��������	�

���������	


����

�
�
�
�

��������	
������
�
�
�
� �����

���

��������	
�
�����
����

�����������	�������
���������������������������

�������������	�	��
�������������	��������
�

�� �


���������	�

�����������
����������������

��������

Figure 4.2: BLCR kernel module timer design

Automated checkpoint scripts and use of crut frameworks enables the regular checkpointing

of various MPI and non-MPI processes.

4.2.2 Memory Test

We have split the test suite into two parts. The first part, the memory test, is to actually

measure the difference between two checkpointing approaches on a single machine. The second

part of experiments measures the impact of performance on multi-node MPI benchmarks as

the number of nodes and the memory consumption scales.

We will be discussing the first set of experiments in this section. We have written a mi-

crobenchmark for measuring the performance difference between the two approaches namely

WB and DB. This benchmark allocates a specified number of memory pages and, depending

on the configuration specified, it will alter a certain number of pages per checkpoint. This will

help us in comparing the performance with scaling memory.

The test is conducted on a large data set. In this test, we map out 200k memory pages in

our process. We will keep the number of checkpoints at 20 and the ratio of incremental to full
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at 4:1. We will vary the modified pages but here we shall vary them by large increments. The

data points for this graph are at 500, 5k, 25k, 50k, and 100k pages modified. The results are

presented in Figure 4.3.
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Figure 4.3: Micro benchmark Test

We make an interesting observation. We see that in initial cases when the set of modified

pages is low, the difference between the performance of dirty bit and write bit is low. As the

number of pages modified keeps increasing, the difference also keeps increasing. When the

modified data set is 100k pages, the difference is almost twice that of WB. We can conclude

from this experiment that using the dirty bit approach will improve performance.

To understand this result, let us understand the mechanism first. BLCR iterates through

every page and tries to check for modified pages. For each page, the WB and DB approach

will use their own mechanisms for checking modified pages. In the WB approach, BLCR has

to check its own data structure for mappings of the page (mapped or not). It then fetches the

PTE from the address passed to it. After detecting whether page has been modified or not,

the clear bit function clears the write bit in the PTE for the next round. For this, the WB

approach has to map the PTE again to access it. In DB, on the other hand, the testing for

modification and clearing the bit on the PTE happens in a single step within the test-and-clear

function. In addition to it, the DB approach does not have to manipulate any internal data

structures to keep track of mappings. These factors make DB a much faster approach then WB

in the above experiment.

The third case gives us some insight into the comparison of incremental with a default full

checkpoint. In this case, we decided to modify alternate pages from the process address space

and observe the performance. We have a data set of 100k pages here. With every alternate
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page, 50k pages will be modified between each checkpoint. On collecting the checkpoint tim-

ings we observe another surprise. The incremental checkpoint takes longer than a full default

checkpoint. While it seems counter intuitive that saving a set of smaller incremental data takes

more time than saving the full checkpoint data, the answer to it lies in the way BLCR saves the

memory space. The BLCR iterates through each vma trying to find contiguous chunks of pages

before it issues the write to the file and hence to the disk. When the full checkpoint happens,

the entire mapped space is committed as one chunk and hence in one write to disk. When we

modify alternate pages, we will encounter an unmodified page after each modified page, which

will be discarded by BLCR since its unmodified. Since the chunk breaks after each page, BLCR

will issue a write to disk for each single modified page. Therefore we observe a significantly

more writes in incremental checkpointing than in full checkpointing. As far as the comparison

between the approaches is considered, we see the familiar savings in the DB approach compared

to the WB approach.

In this section, we will discuss the effect of multi-node MPI benchmarks on the performance

of the write bit and the dirty bit approaches. We have selected the MPI version of the NPB

benchmark. Our selection of the benchmarks from the NPB set depends on the running time

of the benchmark since we want the benchmark to run long enough to take a suitable number

of checkpoints.

We found that for smaller input sizes (lower classes) of benchmarks, on increasing the

number of processors, we are also decreasing its runtime, which renders them unusable for our

experiments. On the other hand, using very large input sizes (like Class D) for NAS benchmarks

on smaller number of processors (1 or 4) is not very practical for taking checkpoints because of

its long running time. So we decide to vary our input class according to the number of processes

that we run it on.

After running all benchmarks and observing their runtimes, we found three suitable bench-

marks that can be used for our tests. They are SP, CG and LU. We present the following

experiments and results for the same.

We ran the benchmark on 4, 9, 16, and 36 (since SP requires number of processors to be a

perfect square) processors for SP. The benchmark tests were performed on Class C inputs for

the SP benchmark with a checkpoint interval of 60 seconds on varying number of nodes. We

observe that the DB approach incurs less overhead in the kernel than the WB approach in all

of the cases. We see a downwards slope and a decrease in the difference between DB and WB

from 4 processors to 9 processors to 16 processors. The reason for the decrease in time spent

in the kernel is that as we increase resources the application is more distributed among nodes.

This translates into less amount of data for a single node to checkpoint and, hence, less amount

of time spent for checkpointing in the kernel. In the case of 36 processors, we see a sudden

spike in the time spent. This is an abberation since according to the pattern we should have a
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Figure 4.4: SP benchmark

decrease in time spent. This can be attributed to the fact that although we are running the SP

benchmark for 36 nodes, we only have 16 physical nodes. Thus, multiple processes are vying

for resources on the same node. The processes are contending for cache, networking or other

resources.
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Figure 4.5: SP benchmark (Application time)

Figure 4.5 shows the overall application time for the SP benchmark for different numbers of

nodes. We see that the dirty bit approach outperforms the WB approach in all cases for the SP

benchmark and incurs less overhead. As the number of processes (and simultaneously proces-

sors) increases from 4 to 9 to 16, we see a decrease in total application time. As the number of
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processors increases, the work gets distributed between various nodes and the application time

reduces. This happens in both the cases (WB & DB). For 32 processes, the application time

goes up instead of down. Again, we are running the 32 processes on 16 physical nodes. This

causes contention for memory, networking and other resources.
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Figure 4.6: LU benchmark
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Figure 4.7: LU benchmark (Application time)

The Figure 4.6 and Figure 4.7 shows kernel timings and total application time for the LU

benchmark. The benchmark tests were conducted for Class C inputs of the LU benchmark with

a checkpoint interval of 45 seconds on varying number of nodes. As on the previous experiments,

we see significant savings in time spent in kernel. The total time goes on decreasing as we
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increase the nodes up to 16 nodes. With 32 nodes, we have the same behavior as for SP

benchmark. The total time taken for 32 nodes goes up. This is due contention for memory,

networking and other resources cause due to running 32 processes on 16 physical nodes.
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Figure 4.8: CG benchmark
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Figure 4.9: CG benchmark (Application time)

Figure 4.8 shows the time spent in kernel for the CG benchmark. The benchmark tests were

conducted for Class C inputs of the CG benchmark with a checkpoint interval of 10 seconds on

varying number of nodes. For 4 processors, we see significant savings of the DB approach over
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the WB approach. We also observe that this graph has an anomaly for 16 processes (on 16

nodes). For the 16 processes run, we see that the difference between the WB and DB approach

is quite high. This leads us to an interesting discovery. The total running time of CG is low.

Hence, the checkpoints were taken at an interval of 10 seconds. Since the savings in the dirty

bit approach were more than ten seconds, the benchmark run with the DB approach had to

take fewer checkpoints, which further increases the amount of time saved. When the time

saved on the total application time increases beyond the checkpoint interval, then we gain more

savings from the fact that fewer checkpoints will be taken for the given process. This fact is

also highlighted in Figure 4.9, which shows the total application time for CG, where we see

considerably more savings in the case of the 16 node/16 process run.
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Chapter 5

Related Work

5.1 Related work

C/R techniques for MPI jobs frequently deployed in HPC environments can be divided into

two categories: coordinated (LAM/MPI+BLCR [15, 8], CoCheck [16], etc.) and uncoordinated

(MPICH-V [5, 6]). Coordinated techniques commonly rely on a combination of OS support to

checkpoint a process image (e.g., via the BLCR Linux module [8]) or user-level runtime library

support. Collective communication among MPI tasks is used for the coordinated checkpoint

negotiation [15]. Uncoordinated C/R techniques generally rely on logging messages and possibly

their temporal ordering for asynchronous non-coordinated checkpointing, e.g., MPICH-V [5, 6]

that uses pessimistic message logging. The framework of OpenMPI [4, 12] is designed to allow

both coordinated and uncoordinated types of protocols. However, conventional C/R techniques

checkpoint the entire process image leading to high checkpoint overhead, heavy I/O bandwidth

requirements and considerable hard drive pressure, even though only a subset of the process

image of all MPI tasks changes between checkpoints. With our incremental C/R mechanism,

we mitigate the situation by checkpointing only the modified pages.

Incremental Checkpointing: Recent studies focus on incremental checkpointing [10, 11].

TICK (Transparent Incremental Checkpointer at Kernel Level) [10] is a system-level check-

pointer implemented as a kernel thread. It supports incremental and full checkpoints. How-

ever, it checkpoints only sequential applications running on a single process that do not use

inter-process communication or dynamically loaded shared libraries. In contrast, our solution

transparently supports incremental checkpoints for an entire MPI job with all its processes.

Pickpt [11] is a page-level incremental checkpointing facility. It provides space-efficient tech-

niques for automatically removing useless checkpoints aiming at minimizing the use of disk

space. This differs from our thread based garbage collection technique. Yi et al. [21] develop

an adaptive page-level incremental checkpointing facility based on the dirty page count as a
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threshold heuristic to determine whether to checkpoint now or later, a feature complementary

to our work that we could adopt within our scheduler component. However, Pickpt and Yis

adaptive scheme are constrained to C/R of a single process, just as TICK was, while we cover

an entire MPI job with all its processes and threads within processes. Agarwal et al. [3] provide

a different adaptive incremental checkpointing mechanism to reduce the checkpoint file size by

using a secure hash function to uniquely identify changed blocks in memory. Their solution

not only appears to be specific to IBMs compute node kernel on BG/L, it also requires hashes

for each memory page to be computed, which tends to be more costly than OS-level dirty-bit

support as caches are thrashed when each memory location of a page has to be read in their

approach. A prerequisite of incremental checkpointing is the availability of a mechanism to

track modified pages during each checkpoint. Two fundamentally different approaches may be

employed, namely a page protection mechanism or a page table dirty bit approach. Different

implementation variants build on these schemes. One is the bookkeeping and saving scheme

that, based on the dirty bit scheme, copies pages into a buffer. Another solution is to exploit

page write protection, such as in Pickpt, to save only modified pages as a new checkpoint. The

page protection scheme has certain draw-backs. Some address ranges, such as the stack, can

only be write protected if an alternate signal stack is employed, which adds calling overhead

and increases cache pressure.

We have presented two different approaches in this work. The first approach we present

exploits the write bit to detect modifications on a page level. This approach does not require the

kernel to be patched. This is different than the prior works since it uses innovative approaches

to handle corner cases for detecting modifications on pages. The second approach uses the dirty

bit for tracking writes on page. This approach shadows the dirty bit from the kernel within

the user level and captures the modification status of the page. Both our approaches work for

entire MPI jobs.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This work presents two different approaches for implementing incremental checkpointing. The

DB approach makes use of an existing patch to shadow the dirty bit within the user level.

We also present a novel, alternate WB approach that uses the existing mechanisms in the

kernel to implement incremental checkpointing without the need to patch the kernel. We

also compared the performance between the two approaches and showed the tradeoff between

time vs. convenience in choosing one of the two approaches. We have also shown the results of

running both the approaches on our microbenchmarks and NPB benchmarks and comparatively

analyzed the performance of both WB and DB approaches.

6.2 Future Work

There is, however, a lot of scope for future work related to this thesis. Some of the important

areas for the future work are discussed below:

6.2.1 Restart Algorithm for Incremental Checkpointing

We have described two approaches for incremental checkpointing. The restart algorithm for

restarting incremental checkpoints will be very different from the general restart algorithm

in BLCR. Since the data is dispersed in incremental checkpoint context files, the restarting

algorithm for incremental checkpoints will also involve making changes in the context file format.

The algorithm for restarting incremental checkpointing will need to be fast and efficient since

it will have more than one file to process. This algorithm is as of yet un-implemented and is

part of the future work.
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6.2.2 Integration with OpenMPI

The incremental checkpointing implementation is designed to work with multi-node and multi-

core processes. OpenMPI processes can be incrementally checkpointed using our current imple-

mentations in BLCR. However, as of now, incremental checkpointing has not been integrated

into OpenMPI. The user is required to run a background script to trigger checkpoints of MPI

processes and would be unable to pass parameters for incremental approaches implemented in

BLCR. A tight integration of the BLCR incremental interface with OpenMPI to enable param-

eter passing through the OpenMPI checkpoint utilities as well as the OpenMPI checkpointing

APIs would aid both OpenMPI and BLCR.

6.2.3 Live Migration

Another key feature in future work is the live migration feature. Live migration is a pro-active

fault tolerance technique. We utilize data inputs about a node’s health from the Intelligent

Platform Monitoring Interface (IPMI) to detect degrading health of a node. Once hardware

degradation is detected on any of the nodes, a degrading node starts to checkpoint its applica-

tion. Instead of writing out to a disk and then copying its data to a spare node, live migration

writes the checkpoint to an outgoing port, connected to a spare node, on-the-fly. The spare

node reads the incoming checkpoint data from the port and recreates the process on-the-fly.

The live migration technique intends to improve performance by saving the overhead of writing

to disk. The implementation of live migration is future work.

As a part of the future work, we would also like to test our current incremental checkpointing

approaches on bigger systems with a large number of nodes to study scalability.
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