
ABSTRACT

VARMA, JYOTHISH S. Scalable, Fault-Tolerant Membership for Group Communication

on HPC Systems. (Under the direction of Associate Professor Dr. Frank Mueller).

Reliability is increasingly becoming a challenge for high-performance computing

(HPC) systems with thousands of nodes, such as IBM’s Blue Gene/L. A shorter mean-time-

to-failure can be addressed by adding fault tolerance to reconfigure working nodes to ensure

that communication and computation can progress. However, existing approaches fall short

in providing scalability and small reconfiguration overhead within the fault-tolerant layer.

This thesis presents a scalable approach to reconfigure the communication in-

frastructure after node failures. We propose a decentralized (peer-to-peer) protocol that

maintains a consistent view of active nodes in the presence of faults. Our protocol shows

response time in the order of hundreds of microseconds and single-digit milliseconds for

reconfiguration using MPI over BlueGene/L and TCP over Gigabit, respectively. The pro-

tocol can be adapted to match the network topology to further increase performance. We

also verify experimental results against a performance model, which demonstrates the scal-

ability of the approach. Hence, the membership service is suitable for deployment in the

communication layer of MPI runtime systems.

Scalable, Fault-Tolerant Membership for Group Communication on HPC
Systems

by

Jyothish S. Varma

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science in

Computer Science

Raleigh

2006

Approved By:

Dr. Tao Xie Dr. Vincent Freeh

Dr. Frank Mueller
Chair of Advisory Committee

ii

Biography

Jyothish Varma was born on the 3rd of January 1983, in Kerala, India. He received

his Bachelor of Technology in Computer Science from Model Engineering College, Cochin,

India, in 2004. He opted to continue with his higher studies and joined North Carolina

State University in Fall 2004. With the defense of this thesis, he is receiving the degree

Master of Science in Computer Science from NCSU, in May 2006.

iii

Acknowledgements

I would like to express my gratitude to the following people for their support and

assistance in completing this thesis. To:

My advisor Dr. Frank Mueller. Without his guidance and support, I would not have been

able to complete this project successfully. His willingness to clear any doubts, his insightful

remarks, insistence on weekly reports, coding patterns and use of emacs were immensely

helpful for the project to acquire its present form.

Dr. Vincent Freeh and Dr. Tao Xie for being on my advisory committee.

My friend and roommate Jaydeep Marathe. He was there with me always to provide help

on any issues, for sharing ideas and providing me with an excellent work environment.

Last but not the least, all my lab mates of 324-A(MRC) and 3226(EB2) whose company I

enjoyed during the completion of this project.

iv

Contents

List of Figures vi

1 Introduction 1
1.1 Fault Tolerance - An Overview . 1

1.1.1 General Approach To Fault Tolerance 3
1.1.2 Fault Tolerance in Large Systems . 3

1.2 Approach to Fault Tolerance . 4
1.3 Outline . 5

2 Assumptions and Fault Handling 6
2.1 Assumptions and Safety Properties . 6

2.1.1 Fault Detection in the Execution Environment 7
2.1.2 Processor Failure and Recovery . 7

3 Group Membership Algorithm 9
3.1 Radix Tree Representation . 9

3.1.1 Initialization . 10
3.1.2 Fault Handling . 11
3.1.3 Single Node Failure . 11
3.1.4 Multiple Node Failures . 12
3.1.5 Root Failure . 14
3.1.6 Node Join . 15

4 Performance Modeling 16

5 Experimental Framework 18
5.1 Bluegene/L . 18
5.2 OS Cluster at NCSU . 19
5.3 XTORC at Oak Ridge National Laboratory 19

6 Results and Performance Evaluation 20
6.1 Performance Evaluation . 20

6.1.1 Experiments on BlueGene/L . 21
6.1.2 Experiments on OS Cluster . 23

v

6.1.3 Experiments on XTORC . 26

7 Related Work 33

8 Conclusion 36

Bibliography 37

vi

List of Figures

1.1 Blue Gene Architecture Overview . 2

3.1 Stabilized Tree Structure . 10
3.2 Tree Structure after node elimination . 12
3.3 Pseudocode of the Membership Algorithm 13

6.1 Ts over MPI for a=2 on BG/L . 21
6.2 Ts over MPI for a=4 on BG/L . 23
6.3 Stabilization Time (Ts), a=2 over TCP on OS Cluster 24
6.4 Stabilization Time (Ts), a=4 over TCP on OS Cluster 25
6.5 Contention-based Latency over TCP on OS Cluster 26
6.6 Stabilization Time (Ts), a=2 over MPI on OS Cluster 27
6.7 Stabilization Time (Ts), a=4 over MPI on OS Cluster 28
6.8 Contention-based Latency over MPI on OS Cluster 29
6.9 Ts over TCP for a=2 on XTORC . 30
6.10 Contention-based Latency over TCP on XTORC 31
6.11 Ts over TCP for a=4 on XTORC . 32

1

Chapter 1

Introduction

As contemporary high-performance computing (HPC) systems are increasing in

size to thousands of processors, such as IBM’s BlueGene/L (BG/L), high availability is

becoming a challenge [2]. While the reliability of a single node is often remarkably high, a

job’s chance to complete execution prior to any failures decreases as the number of nodes

to parallelize the job increases. For the BG/L at Livermore with 130k processors, a dual-

processor compute card is currently failing every other day forcing a 1024-processor mid-

plane to be temporarily shut down to replace the card [24]. In such large-scale environments,

high-performance applications commonly employ a checkpoint-and-restart methodology to

tolerate failures. When a node fails, the current job is generally relinquished in favor of a

new job whose nodes restart from the last checkpoint saved on stable storage [39, 8, 9, 1].

Such application-side fault tolerance imposes the burden on the programmer to explicitly

and non-portably address the robustness of the code for large HPC systems.

In this scenario, a scalable approach to reconfigure the communication infrastruc-

ture after node failures will have a significant impact on time that takes to re-start the

application successfully. This thesis discusses the design, implementation and performance

evaluation of a scalable, fault-tolerant membership algorithm for group communication on

high performance computing systems.

1.1 Fault Tolerance - An Overview

A system can be said to be fault tolerant if it can continue its operations in the

presence of failures of some of its components. This property is important in the case

2

of life-critical or high-availability systems. In a well designed system, component failure

should only ideally lead to performance degradation. However, a poorly designed system

can cause a total failure of the system even if a small component in the system fails. In the

context of high performance computing, a system is a large cluster of nodes/processors1,

and components are the individual computing nodes. The lost availability of a system

implies lost machine cycles. This makes the computation more expensive. As the scale of

high performance computing systems increases, the failure rate also increases dramatically.

The mean time between failures on such HPC systems is approximately 1-50 hours based

on the extrapolation of existing machines [34]. This implies that more than 60% of the

cycles (and investment) on the flagship supercomputers will be lost due to the overhead of

dealing with reliability issues.

Figure 1.1: Blue Gene Architecture Overview

Figure 1.1 depicts the Blue Gene Architecture Overview [21] - one machine subject

to frequent faults due to its size. Such systems with large numbers of processors pose new

challenges such as hardware failure management, programming efficiency and scalability.
1The term nodes and processors are used inter-changeably. A node can be a single processor system or

a multi-processor system.

3

Also, for these systems, the mean time between failures will be low. A study by Los Alamos

National Laboratory extrapolates the mean time between failures on a petascale system to

1.25 hours based on current system performance [34]. If an application takes 100 hours

without any fault for completion, it would take approximately 251 hours with faults due to

checkpoint-restart overhead.

1.1.1 General Approach To Fault Tolerance

Different approaches to provide programmers with support for fault tolerance have

been studied in the context of high-performance systems, ranging from application-level [18]

over communication-level [38, 37, 16, 7] to network-level [4]. While application-side tech-

niques require significant modifications to programs, they potentially reduce the amount of

state that needs to be saved. These algorithms are highly applicable, but no concrete algo-

rithm description has been proposed. New applications, methodologies and algorithms may

be developed for improving performance and tolerating faults for future high performance

machines at the application layer. An implementation at the communication layer provides

a compromise in that modifications to the application are minimal and application state

can be captured adequately. For example, the LAM/MPI Checkpoint/Restart Framework

is transparent to the application and allows the system to be used for cluster maintenance

and fault tolerance. Though the performance degradation caused by introducing this addi-

tional checkpoint/restart functionality in the MPI layer is negligible, the time to checkpoint

increases linearly with the number of processes. Techniques at the network layer provide

reliability within the message layer, but need to be complemented by additional techniques

at higher abstraction levels.

1.1.2 Fault Tolerance in Large Systems

Efforts in group communication have focused on providing services to a dynam-

ically growing and shrinking set of members (or nodes) [19, 3, 26, 30, 5]. These services

are often Internet services using high-level communication abstractions. Implementations

range from client-server approaches to the peer-to-peer paradigm with hybrids of both in

the middle. These approaches generally utilize an all-to-all communication paradigm, which

is inherently unscalable. More recent work on group membership proposes fully decentral-

ized or hybrid approaches, but the resulting restructuring overhead is still in the order of

4

seconds [29, 42].

In this thesis, we contribute a scalable approach to reconfigure the communication

infrastructure after node failures within the runtime system of the communication layer.

In many of the current systems, the number of processors extends well beyond thousands.

Current statistics [34] indicate that failures can be as frequent as one every two days on

a HPC system. This imposes a high amount of reconfiguration and checkpoint/restart

overhead and underlines the need for scalability in the algorithmic approaches that deal

with fault tolerance.

1.2 Approach to Fault Tolerance

We propose a decentralized (peer-to-peer) protocol that maintains membership

of MPI tasks in the presence of faults. This protocol is primarily tailored to local area

networks, specifically dedicated clusters, instead of wide area networks or Grid frameworks.

However, while existing approaches provide either scalability or small reconfigura-

tion overhead, our protocol combines these features. Instead of seconds for reconfiguration,

our protocol shows overheads in the order of hundreds of microseconds and single-digit mil-

liseconds over MPI on BG/L and TCP on Gigabit Ether, respectively. Our protocol can

be configured to match the network topology to increase communication throughput. We

utilize radix trees to implicitly encode routing information into node IDs and additionally

represent the tree structure as an array (dynamically resized upon node joins/failures) to

provide access to the data structure of individual nodes in constant time. We also verify our

experimental results against a performance model to assess the scalability of the approach

and allow extrapolation a for larger number of nodes.

Overall, our membership service for MPI tasks combines the best of both worlds,

the scalability of a decentralized membership protocol and the performance of existing fault-

tolerant mechanisms within high-performance runtime systems. This approach is more

general and can be applied for any membership service or in other frameworks that require

scalable group communication, such as efficient multicast services, e.g., in MRNet [35].

5

1.3 Outline

The thesis is structured as follows. Chapter 2 presents an introduction to the

membership problem, the assumptions of this work and discusses the detection of faults.

Chapter 3 details the protocol actions in the presence of single and multiple faults. Chapter

4 describes a base performance model. Chapter 5 presents the experimental framework.

Chapter 6 discusses functionality tests, experimental results and refines the performance

models. Chapter 7 contrasts our work with related work. Chapter 8 summarizes the work.

6

Chapter 2

Assumptions and Fault Handling

To tolerate faults for an MPI job, the set of individual MPI tasks represents a group

within which tasks may communicate and coordinate execution and termination. Within

the runtime system, MPI tasks have a consistent view about who is a member in such an

abstract communication domain [20, 6, 10]. Fault tolerance requires a dynamic domain

in which members can join and leave. The latter may be due to faults while the former

may occur upon recovery from faults or when additional compute resources are required.

Group communication, such as multicasting, can be based on membership properties within

a domain.

Membership within a domain is implemented within a runtime-level membership

service layer and used by an application layer that relies on this service. The view of

the system is the set of currently active and connected (unpartitioned) processes. The

application layer interacts with the membership service for communication and view change

actions. The membership service maintains a consistent view of the system. It ensures that

communication takes place only between processes that share the same view. In our model,

every process starts with a default view. This view is internally represented as a tree. In

the absence of faults, each node has a children, where a is constrained to be a power of two

for reasons given below.

2.1 Assumptions and Safety Properties

We make the following assumptions about the overall framework:

7

Execution Integrity: We assume that no event occurs at a process between its crash

and recovery. After a crash, the process is assumed to remember its unique ID (e.g., de-

rived from the IP address or the host name), but not necessarily the view since a view may

change any time. The new view is obtained from the current root on recovery.

Message uniqueness: Each message contains a message type, the sender and the receiver

information. The underlying communication stack guarantees reliable messaging, i.e., nei-

ther will there be any duplications nor losses of messages. Given message uniqueness, our

protocol ensures that any message be sent exactly once to a given destination.

The protocol should meet the following safety properties of communication and multicast

services (see [10, 14]):

Self Inclusion: The membership algorithm satisfies the self inclusion property, i.e., if a

process p establishes a view V, then p is a member of V. For every receive, there is a pre-

ceding send.

No duplication: At any process, two receive events can neither originate from the same

send event, nor can they have identical message content.

Same view delivery: If two processes p and q receive message m, they receive it in the

same view. The membership algorithm relies on the detection of faults by another layer of

the software architecture. We specifically react to processor failures (crashes) and recoveries.

2.1.1 Fault Detection in the Execution Environment

Faults are detected by an external detection mechanism. Faults can be identified

by hardware health monitoring, such as IPMI [22], detection of link failures or any other

mechanism. The details are beyond the scope of this thesis.

For the experiments in section 6.1, we employ a fault detector based on a timeout

mechanism. Excessive delay in response from any process to a message request leads to the

assumption that the process has failed. Such a process is removed from the set of views in

the view change event triggered by the above timeout. Link failures are handled similarly

to node failures in this scenario, i.e., different causes of failure need not be distinguished.

2.1.2 Processor Failure and Recovery

Within our execution environment, a fault-injecting application inquires the state

of every other process randomly. This application is a micro-benchmark resembling the com-

8

munication portion of real applications communicating via MPI over a runtime-supported

membership service. A failure should not cause the application to fail. Instead, each re-

maining node will update its membership view to obtain a new, consistent view in response

to a message triggered within the tree structure excluding failed nodes.

9

Chapter 3

Group Membership Algorithm

In the following, the operational details of the membership algorithm, based on

a radix tree, are detailed. The objective of the algorithm is to provide a new, consistent

view of active nodes (members) in a scalable manner at very low overhead. The process of

establishing a new view is called tree stabilization in the following.

3.1 Radix Tree Representation

Nodes participating in the membership service are internally represented in two

data structures: a radix tree and a linear array of nodes. The former provides an effi-

cient representation for collective communication while the latter supports point-to-point

communication.

The radix tree provides a hierarchical representation that implicitly encodes rout-

ing information in the node ID, which reduces the overhead of algorithms that exploit the

membership service. The radix encoding of a node ID can be used to determine the routing

path of messages from the root to this node or to determine its position in the tree struc-

ture. To allow an efficient decoding of routing information, the number of children in the

radix tree has to be a power of two. Hence, for a binary tree, the routing decision from one

node to the next lower level is determined by a single bit indicating that one should follow

the left (0) or right (1) child. In a tree with four children, such as in Figure 3.1, two bits

indicate which link to follow to determine the location of a child in the tree.

In addition to the radix tree, an array of nodes provides access to arbitrary nodes

at constant time, which can be utilized for point-to-point messages in a message-passing

10

framework. This array is dynamically resized upon node joins and failures to accurately

reflect view changes in a consistent manner.

3.1.1 Initialization

At the initialization phase, every node in the system is assumed to have knowledge

of the number of children and the total number of nodes. Each node has a unique ID. These

assumptions are consistent with MPI runtime environments. Communication between nodes

is not required during the initialization phase, since the knowledge of the number of children

and the total number of nodes is sufficient for nodes to locally form a hierarchical structure.

The hierarchical structure, i.e., the radix tree, is organized such that the node

with lowest ID is the root. Each node has a fixed number of children. The ID of each child

of a node is determined as a function of the height of the node in the tree and the maximum

number of children, as depicted in Figure 3.1. This is a constant-time operation due to the

routing information encoded into the radix tree.

6 10 18 8 12 16 20 7 11 15 19 9 13 17 2114

2 4

1

3 5

Figure 3.1: Stabilized Tree Structure

The radix tree is duplicated on each node and kept up-to-date with respect to a

global view in a decentralized manner (consistent with other nodes). At startup, all nodes

have the same initial view upon initialization. Afterwards, any two nodes in the application

layer may communicate at any time. This approach still allows for node failures during

start-up, as discussed later. Overall, the system is scalable due to the fully decentralized

initialization since no message exchange is required to form the hierarchy. The tree structure

with a configurable number of children furthermore ensures that the system can be adapted

to reflect a given network topology.

11

3.1.2 Fault Handling

A node is considered to have failed if indicated by the failure detector. For the

experiments in section 6.1, we detect a failure when a node does not respond within a

timeout window to a query/message from another node. A node failure can be one of the

following: Single node failure, multiple node failure, root failure and link failure. Upon

detecting a failure, the root is informed of the failed node and initiates a view change (see

Figure 3.3(a)).

A link failure is handled implicitly as if a node (and its subtree consisting of

immediate children and their children etc.) is unreachable. Notice that partitions (subtrees)

reorganize to form a new view (succinct from the view with the prior root). Applications

may elect to continue or abort upon network partitioning, e.g., depending on their ability

to communicate with I/O nodes (such as in the BG/L model [2]).

3.1.3 Single Node Failure

This failure is the easiest to handle and requires very low communication band-

width during the tree stabilization phase. The tree is assumed to be stabilized once the root

receives an acknowledgment from all of its children affirming a stabilized tree in the lower

layers, as depicted in Figure 3.3(a) and described below. Every failure detection message

to the root will be acknowledged by a FAILURE DET ACK message. When multiple

nodes simultaneously detect the same failure, the root acknowledges each failure detection

message but disregards all but the first failure detection messages.

For simulation purposes, our application scenario lets nodes inquire the state

of other nodes in the system at random intervals. Assume that node 11 has sent a

HOW ARE Y OU message to a failed node 4 in Figure 3.1. On failure detection, it sends

a NODE FAILURE message to the root (assuming the failed node is not the root and all

the nodes have a consistent view). The root recalculates its tree structure by eliminating the

failed node from its list of nodes and updates corresponding links to its children in the tree,

as depicted in Figure 3.2. The root node initiates the next step of the algorithm by sending

a FAILED NODE message to its children. Each child propagates the message down the

tree after recalculating its local view (tree). The flag variable in the node failure algorithm

can have 0 or 1 as its value and it indicates node failure and root failure respectively.

The local tree recalculation procedure is as follows. Let D be the failed node,

12

6 10 18 8 12 16 20 7 11 15 19 9 13 17 2114

2

1

3 5

Figure 3.2: Tree Structure after node elimination

P(D) be its parent and C(D) the set of its children. Then, the new view is calculated by

(1) assigning the parent of C(D) as P(D), (2) removing D from the list of children of P(D),

(3) merging the list of children of D with the list of children of P(D) and (4) removing the

list of children from D.

The tree structure will be consistent after each node has acknowledged to its

parent a stable structure for the respective subtree. Once a FAILED NODE message

reaches a leaf node, the stabilization phase starts. Leaves respond with a FAILURE ACK

message to parents. Higher nodes acknowledge with a FAILURE ACK to their parent

once they have received the acknowledgments from their children. Failure to receive a

FAILURE ACK message will invoke another instance of the failure detector, as discussed

in section 3.1.4. The tree becomes stable once the root receives a FAILURE ACK from

all children.

3.1.4 Multiple Node Failures

This case is handled similarly to a single node failure. If multiple nodes fail simul-

taneously, the root receives a NODE FAILURE(X) message from the detector process

while the first phase of tree stabilization is in progress. The root acknowledges each failure

detection message, and, if multiple nodes detect a failure of the same node, all but the first

message are disregarded (although acknowledged). For multiple, distinct failed nodes, the

root sends a list of dead nodes after recalculating the tree locally. To facilitate the presen-

tation, the list is omitted in Figure 3.3(a); it simply extends the failed node parameter

to a set. Example: Assume failures for nodes 4 and 5, and 11 has detected the failure of

4. The root sends FAILED NODE(X) to its children and waits for an acknowledgment

during the first tree stabilization phase. Since it does not receive an acknowledgment from

13

(a)Handling a node failure

On failure of a node (ID)
if (ID == root)

new root = find next highest (ID);
send ROOT FAILURE (ID, self) message
to new root;

else
send NODE FAILURE (ID, self) to root;

On receiving NODE FAILURE(failed node, detector)
by root

send FAILURE DET ACK to detector;
Regroup (failed node, flag);

Regroup(failed node,flag)
recalc tree structure(failed node);
locate my children;
send FAILED NODE(failed node) message to children;

On receiving FAILED NODE(failed node) Message
in a child

if(self 6= leafnode)
Regroup(failed node, flag);
locate my children;
send FAILED NODE(failed node) message
to children;

else
Regroup(failed node, flag);

(b)Handling a root failure

On receiving ROOT FAILURE(ID, detector)
by new root

send FAILURE DET ACK to detector;
Regroup(ID, flag);

Regroup(failed node, flag)
recalc tree structure(failed node);
locate my children;
send ROOT DEAD message to children;

(c)Handling a node join

On receiving NEW NODE(ID) by root
Regroup(new node, flag);
send NEW NODE JOIN DET ACK to new node;

Regroup(new node, flag)
recalc tree structure(new node);
locate my children;
send NEW NODE JOIN message to children;

On receiving NODE ALIVE(ID) by root
Regroup(alive node, flag);
send ALIV E NODE JOIN DET ACK to alive node;

Regroup(alive node, flag)
recalc tree structure(alive node);
locate my children;
send ALIV E NODE JOIN message to children;

Figure 3.3: Pseudocode of the Membership Algorithm

14

node 5, it times out assuming that node 5 is dead. If this happens at lower layers of the

tree, the node that fails to get an acknowledgment from the dead node informs the root

through a NODE FAILURE(Y) message. Then, the root propagates a list of failed nodes

to its children. If a node failure has occurred at each level of the tree, it will take H − 1

initial tree stabilization phases for the tree to stabilize, where H is the tree height. A lower

height can be achieved by choosing a larger number of children per node to speed up tree

stabilization during multiple node failures. However, extremely low height (e.g., a “flat”

tree with just two levels) reduces performance as upper nodes become bottlenecks when

propagating messages. Depending on the number of children (any power of two is legal),

the height needs to be chosen accordingly, i.e., by modeling stabilization time for different

configurations.

3.1.5 Root Failure

Should the root fail, the detecting node sends a ROOT FAILURE message to

the next live node in the linear list (see Figure 3.3(b)), i.e., a sequential scan suffices to

designate a new root assuming the new root is alive. The algorithm proceeds in accordance

with the single node failure recovery procedure explained above with following additions:

• The new root sends a ROOT DEAD message to its children who transitively send it

to their children.

• During the tree recalculation phase, each node also has to update its root to the new

root.

The tree becomes stable after the new root has received acknowledgments from all of its chil-

dren. Consider the case where a root failure coincides with multiple node failures. To distin-

guish this case for a single root failure, a different message, ROOT AND NODE FAILURE,

will be propagated down the tree indicating the new root and the set of failed nodes, fol-

lowed by acknowledgments upwards. This new message allows children of the failed nodes

that may be engaged in recalculations due to a prior failure to identify its proper parent

and acquire a consistent overall view. Due to the similarity to handling FAILED NODE

messages, this detail is omitted in Figure 3.3.

15

3.1.6 Node Join

A new node may join a domain (the set of MPI tasks) by sending a NEW NODE(ID)

message to the root (see Figure 3.3(c)). The root adds it as a leaf to the bottom of the

tree. This message then propagates in the same way as for a node failure. The root issues a

NEW NODE JOIN(ID) message to its children, which is propagated further down the

tree by its children. The tree assumes a stabilized structure once each node in the hierarchy

has received NEW NODE JOIN ACK(ID) from all of its children. The leaves will even-

tually send an acknowledgment to their respective parent, and this message is propagated

upwards to the root. The flag variable in the node join algorithm can have 2 or 3 as its

value and it indicates process recovering and new node join respectively.

An implicit node join may occur when a node recovers from a failure. Recovered

nodes may re-join with their original ID by maintaining an association between host name

and ID of failed nodes. This mapping is maintained by all the nodes in the system. The

recovered process issues a NODE ALIV E(ID) message to the root, and the stabilization

routine follows the same procedure as for a join of a new node.

Once the tree is stabilized, the root sends JOIN DET ACK message to the recov-

ered process or the new node welcoming it to the system. A failure to get a JOIN DET ACK

from the root triggers the new node or a recovered process to send a NEW NODE(ID) or

NODE ALIV E(ID) message, respectively, to the next node in its sequential list of nodes.

The time to join the system might increase if a considerable number of processes have failed

in the top of the hierarchy and a node with a lower ID has assumed the status of the root.

16

Chapter 4

Performance Modeling

In addition to the protocol design and implementation efforts, we attempted to

model the performance of our protocol with a theoretical model. Initial efforts to measure

the overall time for stabilization, Ts, in the presence of a single node failure within network

simulators, such as the network simulator 2 (Ns-2) [31], were considered inappropriate since

such simulators generally do not allow computational overhead to be reflected in their

models. We also observed practical challenges on clusters, as explained in the following,

that cannot be accurately represented by simulation.

We derived a rudimentary performance model based on communication overhead

(Ocm) and computation overhead (Ocp). Ocp captures the time for updating the tree struc-

ture on a local node and can simply be measured in wall-clock time on a target architecture.

Ocm is based on the latency L of point-to-point connections of adjacent nodes in the tree.
Our base model assumes a single-hop connection between adjacent nodes with uni-

form latency measured as half the round-trip time in a ping-pong experiment. To measure
Ocm for the entire tree, two times the latency is being considered between each node level,
one per message, i.e., to propagate a node failure down and another to receive a response.
Let H be the height of the tree. Then, there are H − 1 levels for communication between
parents and children. Thus,

Ocm = 2× L× (H − 1) (4.1)

The total tree stabilization overhead, Ts, is based on the overall communication
overhead and the delay due to computational overhead within each level of the tree structure.
Hence,

Ts = Ocm + Ocp ∗H (4.2)

17

We next turn to experimental results to assess the performance of our protocol.

The model is used as a reference to allow projections into larger number of processors if it

fits the observed results. While found to be valid in principle, several refinements of the

model were necessary due to machine-specific impacts on the latency, as discussed in the

following. These refinements go beyond other models, such as LogP or its extensions [13].

18

Chapter 5

Experimental Framework

To assess the performance of our protocol, various tests were conducted on a

number of test beds. We report the results for three of them in the following: a BlueGene/L

(BG/L) machine, the OS cluster at North Carolina State University, and the eXtreme TORC

(XTORC) cluster at Oak Ridge National Laboratory(ORNL). In the following, we discuss

the interconnect in each test environment and the memory availability of each system.

5.1 Bluegene/L

On BG/L,all executables run on the compute nodes atop a light, UNIX-like propri-

etary kernel, the compute node kernel (CNK) [23]. There are two midplanes (each with 512

nodes or 1024 embedded PowerPC processors), and each midplane has a three-dimensional

(3D) torus interconnect for point-to-point messages besides other interconnects for selected

collective communication. When the partition is smaller than a midplane, the interconnect

is a 3D mesh, hence, we ensured that an entire midplane was allocated to our jobs.

The memory requirement of the scheme is small and increases linearly with the

number of nodes in the tree structure since each node keeps a copy of the tree. For Blue-

Gene/L, each compute node has slightly less than 512MB of physical memory available for

user programs. A tree structure that has 1024 nodes (using both midplanes of BlueGene/L)

uses less than one MB of memory leaving ample memory space for the running applications.

On BlueGene/L, MPI Send and MPI Irecv primitives implement the communication of the

protocol. The reason for using non-blocking receive calls was to eliminate threading since

(a) threading is not supported on BG/L and (b) threading was shown to result in high

19

overhead and variance in performance on Linux.

5.2 OS Cluster at NCSU

The OS Cluster runs Red Hat 7.3 Linux (kernel version 2.4.18) on a 16 node

dual-processor AMD Athlon XP 1800+ machines connected by two switches, a full-duplex

FastEther switch utilized through TCP/IP and a Myrinet switch using MPICH (v. 1.2.4)

over Myrinet GM (v. 1.6.3). The OS cluster has 512 MB of physical memory per node of

which only a negligible amount is used by the running program. A single threaded program

model was used for the performance evaluation.

5.3 XTORC at Oak Ridge National Laboratory

XTORC has 64 2Ghz Pentium 4 compute nodes connected by 1Gb/s Ethernet

running RedHat 9.0 (Linux kernel-2.4.20-8). Of the 64 nodes, only 47 nodes were available

for testing. The entire test environment was written in C in a single-threaded manner since

we observed high variations for threading in prior implementations.

XTORC provides 768MB of physical memory per node, and the memory require-

ment of our protocol was only a few kilobytes for less than 64 nodes. The implementation

on XTORC relies on TCP sockets.

In all the above cases, a suggested improvement to limit the memory requirement

to a constant size is to keep localized views of the overall tree structure. It will support

scaling into tens of thousands of nodes and beyond and is subject to future work.

20

Chapter 6

Results and Performance

Evaluation

The implementation of the protocol was subjected to extensive functionality tests

with single node failures, multiple simultaneous failures, single root and chained, simulta-

neous root and top node failures, the last of which requires linear selection of the next root

node. Failures were injected to the testing environment and resemble non-responsiveness of

nodes as commonly detected by timeouts during communication.1 The protocol proved to

be robust to allow functioning nodes to survive failures of other nodes while still retaining

the capability to communicate and track the set of operational nodes.

6.1 Performance Evaluation

We assessed the performance of our protocol in terms of the time for stabilization,

Ts, after a single node failure, which is the most common type of failure since, as will

be shown, Ts is in the order of hundreds of microseconds or single-digit milliseconds and,

thus, orders of magnitude smaller than the mean-time-to-failure (MTTF) in even the largest

systems. In the following discussion, a is the maximum number of children a parent node

can have at each level of the tree structure.
1When a node times out but has not failed, it will still be treated as if it has failed since progress is

hindered by this node. By excluding this node from further communication, other nodes can proceed in a
timely manner, e.g., by electing a replacement node within the MPI runtime system. Any messages from
the excluded nodes pertaining to the old job are henceforth ignored by other nodes. If the node is fully
responsive again, it may join the set of running nodes and can be assigned any work at that time, same as
or different from the original work.

21

6.1.1 Experiments on BlueGene/L

Figure 6.1 depicts the experimental results for assessing the stabilization time, Ts,

on BlueGene/L over MPI for increasing numbers of nodes. A binary tree configuration was

chosen with two children (a=2). Notice that the x-axis is on a log scale, which shows that

our protocol scales logarithmically with increasing number of nodes. Furthermore, Ts is

in the order of microseconds up to 1024 nodes. If we interpolate these results, this trend

is likely to continue into the tens of thousands of processors on BG/L. The results were

obtained from five samples with a confidence interval of ±3µs to ±16µs for smaller and

larger node numbers, respectively, at a 99% confidence level.

�� �
� � �� � �
� � �� � �
� � �� � �
� � �

� �� 	
 � � � � � � � � � � � � � � � � � � �
��� �� � !"#$�
%�& #"� �' (��)
�*�) + , - . / 0 1 2 / 34 5 6 / 7 8 9 / : ; - 3 < / . = 3 ; .> 8 . ; - : ? / 0 1 2 / 3

Figure 6.1: Ts over MPI for a=2 on BG/L

We also assessed the validity of our base model for a single hop, point-to-point
latency of L = 4.6µs and a computational overhead of Ocp = 2µs on BG/L. The result-
ing base model diverges significantly from the experimentally obtained results. This can
be attributed to the point-to-point communication topology of BG/L. We conducted our
experiments on two midplanes with each midplane consisting of 512 processors, which have
a 8x8x8 3D torus interconnect. When MPI tasks are mapped to nodes, adjacent nodes in

22

the tree may have to communicate over varying number of hop counts (distances) within
the torus. Each hop thereby imposes the cost of the base latency L. To consider this
overhead, we refined our base model to account for the communication overhead, Ocm,
using a distance-aware latency to derive a distance model. Here, the overall number of hops
contributing to the latency is the sum over all levels in the tree of the maximum distance
in hops at each level. Thus,

Ocm = 2× [
∑

levels

max(hops b/w nodes at level)]× L× (H − 1) (6.1)

This model considers the maximum latency between adjacent nodes (all parent/child pairs)

at each level (in both directions) and aggregates the respective maximum for all levels in

the tree. The hop count is determined as the sum of differences between each pair of x,

y and z coordinates of nodes in the 3D-torus that are adjacent in the tree structure. As

the results in Figure 6.1 show, this distance model closely matches the observed results.

This underlines the benefits of simplicity and scalability of our protocol while delivering

performance.

Figure 6.2 shows the stabilization time for a tree configuration with four children

per parent (a=4). Again, the experimental results show that the protocol scales logarith-

mically with the number of nodes. The absolute overhead for Ts is slightly smaller than

for the binary tree configuration (a=2), which can be attributed to the reduction of height

in the tree. But the impact of hop counts reduces this benefit to some extent. The results

were obtained from five samples with a confidence interval of ±0.5µs to ±12µs for smaller

and larger node numbers, respectively, at a 99% confidence level.

The base model shows an interesting behavior in that it alternates between slight

increases and no changes (flat line) in performance. A flat line occurs when the number of

nodes is increased but the height of the tree remains unchanged, i.e., the height of the tree

changes only for powers of four. Once we consider the distance model that includes the

hop counts for point-to-point communication in the tree, the model closely approximates

the observed performance for each measurement point that is a power of four (or exceeds

the height of the previous tree). In between, however, performance is underestimated. This

artifact remains not fully explained, but we have eliminated system activity as a source.

We will discuss network contention as a potential source in subsequent results. Nonetheless,

the overall trends demonstrate the scalability of the protocol with a matching model for

powers of four.

Notice that the protocol could alternatively have been implemented over the hard-

23

�� �
� � �� � �
� � �� � �
� � �� � �

� �� 	
 � � � � � � � � � � � � � � � � � � �
��� �� � !"#$
�%�& #"� �' (��)
 �*�)* +
, - . / 0 1 2 / 3 4 5 6 7 / 8 9 6 4 8: 1 8 4 5 3 ; / < = > / 6? 5 8 / < = > / 6

Figure 6.2: Ts over MPI for a=4 on BG/L

ware tree interconnect utilized by some collective communications on BG/L, which would

have resulted in shorter response times. However, the objective of this work was to assess

the scalability of the protocol for large numbers of nodes assuming commodity interconnect

topologies without special one-to-all support in hardware.

6.1.2 Experiments on OS Cluster

The experiments on OS cluster are evaluated against the base model described in

the Section 4 and a contention model is introduced in the following.

Using TCP over Ethernet

The stabilization time observed in the experiments on OS Cluster for a = 2 and a

= 4 using TCP implementation of the protocol are shown in the Figures 6.3 and 6.4, respec-

tively. The experimental results are evaluated against the base model and the contention

model. The base model results are derived from Equation 4.2 using the point-to-point la-

24

�� � �
� � �� � �
� � �� � �
� � �� � �
� � �

� � � � � � 	 � � � � � � � � � � � �
 � � � � � � � � � � �
��� �� �� ���
�� �! ��� �" #��
$� �%�$ & ' () * + , - * ./ 0 1 * 2 3 4 * 5 6 (. 7 *) 8 . 6)9 , 5 6 * 5 6 3 , 5 + , - * .

Figure 6.3: Stabilization Time (Ts), a=2 over TCP on OS Cluster

tency (TCP latency L = 94µs and computation overhead Ocm = 2.3µs) observed in the

Figure 6.5. The experimental results in the Fig. 6.3 show a step-curve of increasing sta-

bilization time. Also, Ts tends to increase linearly between any power-of-two node counts.

The base model does not accurately reflect these experimental results as discussed in the

following.

This linear increase in Ts can be attributed to packet serialization within the

switch. The contention latency in the Figure 6.5 presents the latency under contention for

a parent with two children (binary) and a parent with four children (4-ary) communicating

with one another. The latency shows a steep climb till the number of nodes reaches 5 for

a 4-ary tree and 3 for a binary tree. The latency values then shows a small increase with

increasing number of nodes. These latency values are used in Equation 4.2 to obtain the

contention model depicted in Figures 6.4 and 6.3. The results obtained from the contention-

based model tends to resemble the experimental results observed for a fully-formed tree (i.e,

at 3,7,15 nodes for a = 2 and 5,21 for a = 4). This indicates that substituting contention

25

�� � �
� � �� � �
� � �� � �
� � �� � �

� � � � � � 	 � � � � � � � � � � � �
 � � � � � �
 � � � �
��� �� �� ���
���� ��� �! "�
� #� �$�# %
& ' () * + ,) -. / 0) 1 2 3) 4 5 ' - 6) (7 - 5 (8 + 4 5) 4 5 2 + 4 * + ,) -

Figure 6.4: Stabilization Time (Ts), a=4 over TCP on OS Cluster

latency in the base model does not reflect the results obtained for a horizontal increase in

the number of nodes within a level of the tree structure.

Using MPI over Myrinet

Figures 6.6 and 6.7 show the total time for tree stabilization as the number of

nodes in the system is increased on the OS cluster using MPI. The latency for Myrinet was

measured as 13.6 µsec. The results obtained for MPI over Myrinet are similar to the results

discussed in Section 6.1.2. Equation 4.2 is used to compute the base model results. In the

base model, depicted in the figures 6.6 and 6.7, as the height of the tree increases by one,

the time for tree stabilization shows a significant rise and flattens out till the next level of

the tree structure.

As the interconnection is a single full-duplex switch that allows direct communi-

cation between any pair of nodes, we do not consider hop counts as a factor for contention.

The contention-based latency calculated for a fully-formed tree over MPI depicted in Fig-

26

� � �� � � �
� � � �� � � �
� � � �� � � � �
� � � � �� � � � �
� � � � �

� � � � � � � � � � � �� � 	
 � � � � � � �
� ���� � ���� ��
���� �
 ! " # $ % $! % ! " # $& " # ' () $ (* *+ % ' () $ (* *

Figure 6.5: Contention-based Latency over TCP on OS Cluster

ure 6.8 remains a constant as the number of nodes increases. But the latency increases

significantly when the number of children increases from two to four. This latency is used

in Equation 4.2 to obtain the contention model of Figures 6.6 and 6.7. We observe that

the experimental results matches the contention model for a fully formed tree structure.

Here, the model does not match a horizontal increase in the number of nodes. We intend

to investigate the causes of the linear increase in the stabilization time as the number of

nodes increases in the same level of tree structure in future work.

6.1.3 Experiments on XTORC

Figure 6.9 depicts the stabilization time observed in experiments on a dedicated

Linux cluster (no background activity) with a single Gigabit switch using a TCP imple-

mentation of our protocol for a binary tree (a=2). Notice that the x-axis is on a linear

scale. The experimental results show a step-curve of increasing stabilization time. Upon

closer analysis, we observe that the protocol is scalable for TCP as well, i.e., that its time

27

�� �
� �� �
� �� � �
� � �� � �

� � � � � � 	 � � � � � � � � � � � �
 � � � � � � � � � � �
��� �� �� ���
�� �! ��� �" #�
� $� �%�$ &
' () * + , - * ./ 0 1 * 2 3 4 * 5 6 (. 7 *) 8 . 6)9 , 5 6 * 5 6 3 , 5 + , - * .

Figure 6.6: Stabilization Time (Ts), a=2 over MPI on OS Cluster

complexity increases logarithmically with the number of nodes.2 The results were obtained

from five samples with a confidence interval of ±4µs to ±86µs for smaller and larger node

numbers, respectively, at a 99% confidence level.

We also observe that Ts increases linearly between any power-of-two node counts.

This behavior is consistent with the experimental results in Figure 6.2. We further observe

that the base model (with a TCP latency of L = 118µs and a computation overhead of

Ocm = 2µs) does not resemble the experimental results. The hop count is not a factor as

a single full-duplex switch allows direct communication between any pair of nodes without

contention at the network fabric. The switch itself, however, may serialize packet processing.

The hypothesis of packet serialization within the switch was confirmed in a se-

ries of experiments where an increasing number of neighboring nodes communicated along

a localized structure. Figure 6.10 presents the experimentally determined latency under

contention for these configurations of (a) pairs of nodes, (b) a parent with two children
2A plot on a logarithmic x-axis for results of 2n−1 nodes illustrates this behavior. The linear x-axis here

is intentionally used to motivate the following analysis.

28

�� �
� �� �
� �� � �
� � �� � �

� � � � � � 	 � � � � � � � � � � � �
 � � � � � �
 � � � �
��� �� �� ���
���� ��� �! "�
� #� �$�# %

& ' () * + ,) -. / 0) 1 2 3) 4 5 ' - 6) (7 - 5 (8 + 4 5) 4 5 2 + 4 * + ,) -
Figure 6.7: Stabilization Time (Ts), a=4 over MPI on OS Cluster

and (c) a parent with four children communicating with one another, as depicted in order

of increasing latency. We observe that point-to-point communication of pairs of nodes is

handled well by the switch up to twelve nodes, after which the latency linearly rises with

the number of nodes added. More significantly, a more complex internal structure, such

as a binary tree, inflicts higher switch contention for the same number of nodes due to

serialized communication with multiple nodes at the parent. The latency increases even

more significantly for a tree with four children.3

The results obtained as contention latency in Figure 6.10 were subsequently used

to substitute the base latency in Equation 4.1 with the contention latency in the figure

corresponding to the respective number of nodes. The resulting contention-based model

in Figure 6.9 resembles the the experimental results very closely. Moreover, we argue that

contention latencies can be extrapolated for larger node numbers, due to the near-linear
3Notice that these results could not be accurately be modeled by other models, such as LogP [12] with

its account of send/receive overhead and the gap, since a linear increase with increasing number of nodes of
any of the base parameters is not considered.

29

��
� �� �
� �� �
� �� �

� � � � � � � � � �� 	
 � � � � � � � � �
� ���� � ��
�� �� ����

! " # $ % & % " & ! " # $ %' # $ () * %) + +� & () * %) + +
Figure 6.8: Contention-based Latency over MPI on OS Cluster

behavior in single switches. When switches are hierarchically combined, contention latencies

of each single switch can be aggregated in a manner reflecting the switch topology. This is

subject of future investigation.

Figure 6.11 depicts the results for TCP over a tree with four children per parent.

The overall results indicate scalability of our protocol in terms of its logarithmic complexity.

The results were obtained from five samples with a confidence interval of ±12µs to ±98µs

for smaller and larger node numbers, respectively, at a 99% confidence level.

The base model shows the typical step curve with increases in stabilization time

when the number of nodes increases such that the tree height increases by one (above 5

and 21 nodes), but the base model does not resemble the actual measurements. When

considering the latencies of Figure 6.10, the contention model resembles the experimental

results just before the tree hight is increased. More significantly, the contention model more

accurately reflects the increased contention for larger number of nodes. The fact that the

contention model tends to overestimate the experimental results is not fully understood

30

� � �� � � � �
� � � � �� � � � �
� � � � � �� � � � � �
� � � � � �� � � � � �
� � � � � �� � � � � �

� �	
 � � � � � 	 � � �
��� �� �� ���
����� ��� � !��
"� �#�"# $
% & ' � (�) * + , - �
 , * �. �) *) * (�) / � � ,0 + � / � � ,

Figure 6.9: Ts over TCP for a=2 on XTORC

but we observed that larger overestimations also tend to coincide with larger confidence

intervals.

Overall, the experimental results confirm the scalability of our protocol and the

refined models show a close resemblance of experiments, which should qualify them for the

task of extrapolations for larger number of nodes.

31

� � � � �� � � � �
� � � � �� � � � �
� � � � �� � � � �
� � � � �

� � � � � � � � � � � � � � � � � � � �� 	
 � � � � � � � � �
� ���� � ����
�� �����
! " # $ % � � & # ' ! (�) � # $ % � � & # ' * (+ �) � % " % � " + �) � %

Figure 6.10: Contention-based Latency over TCP on XTORC

32

� � �� � � � �
� � � � �� � � � �
� � � � � �� � � � � �
� � � � � �� � � � � �
� � � � � �� � � � � �

� �	
 � � � � � 	 � � �
��� �� �� ���
����� ��� � !��
"� �#�"# $
% & ' � (�) * + , - �
 , * �. �) *) * (�) / � � ,0 + � / � � ,

Figure 6.11: Ts over TCP for a=4 on XTORC

33

Chapter 7

Related Work

Chockler et al. provide a set of rigorous specifications for the group membership

service and discuss various systems where different properties are satisfied [10]. Most of the

existing systems assign a view identifier for each new view installed in the system [19, 3, 27].

Our model does not require to maintain a list of different views (i.e., a view set with unique

IDs per view) since the system stabilizes once the root node receives all acknowledgments

from its children. Our approach of each process deciding its own view without exchange of

any message with any other node is also found in Transis [30] and Consul [32]. We do not

allow multiple disjoint views to exist concurrently. This property of primary component

membership is implemented elsewhere as well [6, 40, 11]. A solution to the view-oriented

partitionable membership problem is provided by R. Khazan [28, 29]. Their approach is a

hybrid of decentralized clients and more powerful servers with a leader at any given point in

time, i.e., it is not a fully decentralized (peer-to-peer only) model due to practical network

connectivity issues.

The Coyote system [5] provides a group membership service based on a token-

passing paradigm and uses 25 micro-protocols to implement each group membership prop-

erty. Our algorithm keeps the interaction among different nodes simple and stabilizes the

hierarchical structure after each node receives just one message from its immediate parent

node.

A topology-aware membership service for cluster-based Internet services is pro-

posed by Zhou, Chu and Yang [41, 42]. It uses Time-To-Live in the IP packet header

to form hierarchical groups that resemble the network topology. The reported time for

tree stabilization for this model does not account for network latency, gap and over heads

34

involved for sending and receiving data. In this protocol, the view convergence time is mea-

sured as the sum of failure detection time and the time to propagate the information along

the hierarchical tree. The paper does not provide the tree stabilization time. Hence, we

cannot make a fair comparison with our work. Other prior work includes support for fault

tolerance to the communication layer of MPI run time systems. Sankaran et al. [37] discuss

a LAM/MPI checkpoint/restart framework where MPI applications can be check-pointed

to disk and restarted later. They use the (Lawrence) Berkeley Labs Checkpoint/Restart

(BLCR) mechanism [16, 17] to implement a lightweight and modular component-based ar-

chitecture. It requires each MPI process to coordinate with other processes to reach a

consistent global state in which the MPI job can be check-pointed. Bosilca et al. propose

an uncoordinated checkpoint mechanism by saving the computation and communication

contexts independently [7]. Each node stores the execution contexts in remote checkpoint

servers and uses dedicated nodes (Channel Memory) to store in-transit messages.

Prior work on distributed locking explored the scalability of tree structures [15].

This prior work focused on mutual exclusion protocols and reader/writer locks in the con-

text of middleware such as CORBA. A fault-tolerant extension of such a locking protocol

is developed as a ring-based topology, which limits its scalability [33]. Our membership

algorithm, in contrast, provides consistent views among nodes in the presence of faults in

a scalable manner. Furthermore, the approach is reconfigurable for a variable number of

children (as a power of 2), natively encodes routing information due to its use of a radix

tree, and it provides constant time access to the data structure for individual nodes.

Chakravorty et al. [25] discuss a proactive fault tolerant mechanism for parallel

applications. This approach is based on the assumption that some failures are predictable

and specialized hardware mechanisms exist that help in early prediction of faults. They

proactively migrate execution from a processor in which failure is imminent. Optimized

efficiency is achieved by applying a load balancing scheme after migrating objects. They do

not discuss how these mechanism respond to mis prediction of faults or systems that does

not support early prediction of faults.

A leader-based group membership protocol is proposed by Chanchio et al. [36]. It

does not depend any fault detection scheme and demands minimal fault detection support.

The protocol responds by re-electing a new leader when the original leader process has

failed. A number of event-based algorithms are used to resolve membership inconsistencies

among asynchronous processes in a distributed environment. In this protocol, timing results

35

for recovering from a failure and regrouping a partition are extremely high and reach the

order of minutes as the number of nodes increases.

36

Chapter 8

Conclusion

This work presents a novel membership algorithm that combines scalability with

low recalculation overhead in the order of hundreds of micro-seconds and single-digit mil-

liseconds for MPI over BG/L and TCP over Linux, respectively. The protocol supports

reconfiguration in terms of the communication structure, i.e., the data structures can be

adapted to match the network topology to further increase performance. The protocol uti-

lizes a radix tree representation to implicitly encode routing information into node IDs and

additionally represent the tree structure as an array to provide access to the data structure

of individual nodes in constant time. The protocol builds on prior experience of designing

scalable communication frameworks by utilizing a fully decentralized protocol that main-

tains a coherent membership view of MPI tasks in the presence of faults. Experiments

demonstrate high performance and scalability of our protocol over TCP on Gigabit Ether

and over MPI on BG/L. Experimental results were also validated against a closely matching

performance model to allow extrapolations to larger number of nodes.

37

Bibliography

[1] The ASCI Purple Benchmarks. http://www.llnl.gov/asci/purple/benchmarks, 2002.

[2] N. Adiga and G. Almasi et al. An overview of the BlueGene/L supercomputer. In

Supercomputing, November 2002.

[3] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and P. Ciarfella. The

Totem single-ring ordering and membership protocol. ACM Transactions on Computer

Systems, 13(4):311–342, November 1995.

[4] Rob T. Aulwes, David J. Daniel, Nehal N. Desai, Richard L. Graham, L. Dean Risinger,

Mark A. Taylor, Timothy S. Woodall, and Mitchel W. Sukalski. Architecture of LA-

MPI, a network-fault-tolerant MPI. In International Parallel and Distributed Process-

ing Symposium, 2004.

[5] Nina T. Bhatti, Matti A. Hiltunen, Richard D. Schlichting, and Wanda Chiu. Coyote:

a system for constructing fine-grain configurable communication services. ACM Trans.

Comput. Syst., 16(4):321–366, 1998.

[6] K. P. Birman and R. Van Renesse, editors. Reliable distributed computing using the

Isis Toolkit. IEEE Computer Society Press, 1994.

[7] G. Bosilca, A. Boutellier, and F. Cappello. MPICH-V: Toward a scalable fault tolerant

MPI for volatile nodes. In Supercomputing, November 2002.

[8] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill. Automated application-level

checkpointing of MPI programs. In Principles and Practice of Parallel Programming,

June 2003.

38

[9] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill. Collective operations in an

application-level fault tolerant MPI system. In International Conference on Supercom-

puting, June 2003.

[10] Gregory V. Chockler, Idit Keidar, and Roman Vitenberg. Group communication spec-

ifications: A comprehensive study, April 23 2001.

[11] Flaviu Cristian. Reaching agreement on processor group membership in synchronous

distributed systems, June 12 1991.

[12] D. Culler, R. Karp, D. Patterson, A. Sahay, E. Santos, K. Schauser, R. Subramonian,

and T. von Eicken. LogP: A practical model of parallel computation. Communications

of the ACM, 39(11):78–85, November 1996.

[13] David E. Culler, Richard M. Karp, David A. Patterson, Abhijit Sahay, Klaus E.

Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken. LogP:

Towards a realistic model of parallel computation. In Proc. 4th Symp. Principles and

Practice of Parallel Programming, pages 1–12. ACM, 1993.

[14] Xavier Defago, Andre Schiper, and Peter Urban. Total order broadcast and multicast

algorithms: Taxonomy and survey. ACM Computing Surveys, 36(4):372–421, 2004.

[15] N. Desai and F. Mueller. Scalable hierarchical locking for distributed systems. Journal

of Parallel Distributed Computing, 64(6):708–724, June 2004.

[16] J. Duell. The Design and Implementation of Berkeley Lab’s Linux Checkpoint/Restart.

Tr, Lawrence Berkeley National Laboratory, 2000.

[17] Jason Duell, Paul H. Hargrove, and Eric S. Roman. Requirements for linux check-

point/restart, May 20 2002.

[18] Graham E. Fagg and Jack J. Dongarra. FT-MPI: Fault Tolerant MPI, supporting

dynamic applications in a dynamic world. In Euro PVM/MPI User’s Group Meeting,

Lecture Notes in Computer Science, volume 1908, pages 346–353, 2000.

[19] Roy Friedman and Robbert van Renesse. Strong and weak virtual synchrony in ho-

rus. Technical Report TR95-1537, Cornell University, Computer Science Department,

August 24, 1995.

39

[20] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable im-

plementation of the MPI message passing interface standard. Parallel Computing,

22(6):789–828, September 1996.

[21] http://en.wikipedia.org/wiki/Image:LLNL BGL Diagram.png.

[22] http://www.intel.com/design/servers/ipmi/index.htm.

[23] http://www.redbooks.ibm.com/redbooks/pdfs/sg246686.pdf.

[24] IBM T.J. Watson. Personal communications. July 2005.

[25] K Chanchito, A Geist and M Chen. A Leader-based Group Membership Protocol for

Fault-Tolerant Distributed Computing.

[26] Idit Keidar. Group communication, June 12 2000.

[27] Idit Keidar, Jeremy B. Sussman, Keith Marzullo, and Danny Dolev. A client-server

oriented algorithm for virtually synchronous group membership in WANs. In Interna-

tional Conference on Distributed Computing Systems (ICDCS), 2000.

[28] Roger Khazan. Group membership: A novel approach and the first single-round algo-

rithm. In PODC: 23th ACM SIGACT-SIGOPS Symposium on Principles of Distributed

Computing, 2004.

[29] Roger Khazan and Sophia Yuditskaya. Using leader-based communication to improve

the scalability of single-round group membership algorithms. In International Parallel

and Distributed Processing Symposium, 2005.

[30] Dalia Malki, Danny Dolev, and Ray Strong. A framework for partitionable membership

service, August 19 1995.

[31] S. McCanne and S. Floyd. VINT Network Simulator - ns (version 2). http://www-

mash.CS.Berkeley.EDU/ns/, April 1999.

[32] S Mishra, L L Peterson, and R D Schlichting. Consul: a communication substrate

for fault-tolerant distributed programs. Distributed Systems Engineering, 1(2):87–103,

December 1993.

40

[33] F. Mueller. Fault tolerance for token-based synchronization protocols. In Workshop

on Fault-Tolerant Parallel and Distributed Systems, April 2001.

[34] Ian R. Philp. Software failures and the road to a petaflop machine. In 1st Workshop on

High Performance Computing Reliability Issues (HPCRI). Held in conjunction with the

11th International Symposium on High Performance Computer Architecture (HPCA-

11), February 12-16, 2005.

[35] Philip C. Roth, Dorian C. Arnold, and Barton P. Miller. Mrnet: A software-based

multicast/reduction network for scalable tools. In Supercomputing, pages 21–36, Wash-

ington, DC, USA, 2003. IEEE Computer Society.

[36] S Chakravorty, C L Mendes and L V Kale. Proactive Fault Tolerance in Large Systems.

[37] Sriram Sankaran, Jeffrey M. Squyres, Brian Barrett, Andrew Lumsdaine, Jason Du-

ell, Paul Hargrove, and Eric Roman. The LAM/MPI checkpoint/restart framework:

System-initiated checkpointing. In Proceedings, LACSI Symposium, Sante Fe, New

Mexico, USA, October 2003.

[38] Jeffrey M. Squyres and Andrew Lumsdaine. A Component Architecture for LAM/MPI.

In Proceedings, 10th European PVM/MPI Users’ Group Meeting, number 2840 in Lec-

ture Notes in Computer Science, pages 379–387, Venice, Italy, September / October

2003. Springer-Verlag.

[39] G. Stellner. CoCheck: checkpointing and process migration for MPI. In IEEE, edi-

tor, Proceedings of IPPS ’96. The 10th International Parallel Processing Symposium:

Honolulu, HI, USA, 15–19 April 1996, pages 526–531, 1109 Spring Street, Suite 300,

Silver Spring, MD 20910, USA, 1996. IEEE Computer Society Press.

[40] Sam Toueg and Tushar Deepak Chandra. Unreliable failure detectors for reliable dis-

tributed systems, June 18 1996.

[41] Tao Yang, Jingyu Zhou, and Lingkun Chu. An efficient topology-adaptive membership

protocol for large-scale network services. Technical report, University of California,

Santa Barbara, Computer Science, June 2004.

41

[42] Jingyu Zhou, Lingkun Chu, and Tao Yang. An efficient topology-adaptive membership

protocol for large-scale cluster-based services. In International Parallel and Distributed

Processing Symposium, 2005.

