
ABSTRACT

THAKKAR, VIVEK. Dynamic Page Migration on ccNUMA Platforms Guided by Hard-
ware Tracing. (Under the direction of Associate Professor Dr. Frank Mueller).

Non-uniform memory architectures with cache coherence (ccNUMA) are becoming

increasingly common, not just for large-scale high performance platforms but also in the

context of multi-cores architectures. Under ccNUMA, data placement may influence over-

all application performance significantly as references resolved locally to a processor/core

impose lower latencies than remote ones.

This work develops a novel hardware-assisted dynamic page migration scheme

based on automated tracing of the memory references made by application threads. The

developed framework leverages the performance monitoring capabilities of contemporary

x86 microprocessors to efficiently extract an approximate trace of memory accesses. This

information along with multi-level hop latencies are used to decide page affinity, i.e., the

node to which a page is bound. After determining affinities, page migration is initiated

using Linux kernel mechanisms. All this automation is done in user space and transparent

to the main application.

Experiments show that this method, although based on lossy tracing and system

configuration limitation on trace hardware, can efficiently and effectively improve local data

availability at run time, leading to an average wall-clock execution time saving of over 14%

on AMD Opterons with a 1.3x/1.6x access penalty to non-local memory with a very minimal

page migration overhead due to the advances in modern memory interconnect technologies.

To the best of our knowledge, this is a first experimental study on a popular platform, a

combination of x86 processors and Linux operating system.
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Chapter 1

Introduction

1.1 Background

In the world of computer architecture and system software, the focus is on getting

maximum performance from the available resources. On the hardware side, traditionally,

this was achieved by developing faster cores and better memory technologies. In the field of

computer architecture, the focus was to design the processors to exploit as much parallelism

as possible from the applications. However, the trend has changed recently. We are reaching

a limit on the number of transistors that can be packed on cores, and varieties of architec-

tural improvements have already been tried. Now, the trend is to have multiple cores to

provide more hardware contexts for parallel applications. In the field of high-performance

computing, parallel machines have been omnipresent for quite some time. MPP (Massively

parallel processors) are cluster-based system where each node has an associated private

memory and works only on part of the data. These systems scale well but the programs

need to be explicitly modified to share data amongst processors by using the send/receive

communication paradigm. In addition, we have SMP (Symmetric Multi-Processors) where

multiple processors share a common memory over a shared bus (e.g., Intel’s Front Side

Bus). In these systems, the bus connecting the processor to the memory controller (called

front-side bus in Intel’s implementation of the x86 architecture) and the memory become

a major bottleneck as they only allow very few memory accesses at the same time. To

ameliorate this effect, computer design industry has primarily invested on improving the

bus technology by increasing bus segments, increasing bus bandwidth and making caches

bigger to reduce traffic on the bus. But in spite of the best efforts, SMP scales only to 8 or
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10 processors.

An alternative approach is based on NUMA (Non-Uniform memory access) tech-

nology which gives programs a shared linear address space but keeps private memory with

each node. Shared linear address space implies that each processor is able to access any

memory module using linear addresses but each node has a local physical memory shared

by some processors (2-4). The data can be cached by any node and the cache coher-

ence is implemented by the point-to-point memory interconnect technology (e.g., AMD’s

hypertransport). These kinds of systems are popularly called cache coherent Non Uniform

Memory Access (ccNUMA) systems. Some large-scale ccNUMA systems are the Stanford

DASH , the SGI ORIGIN and the SGI Altix whereas AMD’s Opterons and Intel’s upcoming

Nehalem and Tukwila processors are medium-scale ccNUMA systems.

The shared linear address space provided by these architectures can be efficiently

used for data sharing by the applications written with a shared memory programming

model. Designing new shared memory paradigms is an active area of research in itself,

but two models are mostly used: Pthreads and OpenMP. Pthreads is a POSIX standard

thread library that includes calls to create and destroy threads, to synchronize threads

using mutexes and to facilitate thread communication via condition variables. OpenMP is

a higher-level thread library that also performs the same tasks but further includes work-

sharing constructs to auto-distribute work amongst threads. Another major difference is

that it is directive-based, meaning that even if programs are written serially, OpenMP

provides some useful constructs that can be easily used to parallelize them without much

effort.

1.2 Motivation

On a non-uniform latency model like NUMA, the data should be as close as possi-

ble to the thread that accesses it more often than the others. To maintain this association,

research has primarily focused on policy-driven thread allocations (to processors) and data

allocations and also on dynamic techniques like thread migration and page (data) migra-

tion. Operating systems implement “CPU affinities”, a mechanism where threads can run

only on a subset of CPUs defined by the “affinity masks”. On the data side, library im-

plementations like “numactl” allow the applications to define policies like “first touch” and

“interleaved/round-robin” allocation. First touch allocation means that a physical page



3

frame is allocated on the first write to the virtual page containing the data. Interleaved

allocation, in contrast, allocates page frames in a round robin manner across the available

memory modules to achieve a better memory balance and to avoid memory pressure on few

nodes. In the area of thread migration, threads are moved closer to their data by getting

some feedback of memory access patterns. But thread migration has its own associated

problem: it removes the cache associations of the migrating thread and thus incurs a signif-

icant overhead. Finally, in the field of page migration, the focus is to move data as close as

possible to the affine threads. In an environment where threads also migrate, data migration

may become futile if the affine thread itself migrates after some time. This may require some

modifications to the operating system scheduler to provide information of thread migration

to either a user-level or kernel-level page migration engine. In any case, the source of page

affinity (to threads) needs to be reliably determined to affect data migration. Past research

has focused on various hardware and software techniques to determine this information.

On the hardware side, some implementations introduce “hardware monitors” as per page

counters for local and remote accesses. These can then be used to determine page affinity.

On the software side, approximate memory references are determined by instrumenting the

software TLB handler of the OS to count TLB misses. These approaches either have high

overhead or require costly hardware implementations.

1.3 Thesis Statement

The objective of this thesis is to develop a user-level dynamic page migration

engine for HPC applications on medium scale ccNUMA platforms. In the address space of

contemporary x86 architectures and server-based Linux kernel operating environments, we

investigate the following issues in this thesis.

• Can modern hardware be assisted by the operating system to provide feedback infor-

mation to improve page placement on ccNUMA architectures?

• Can we use Linux kernel system calls to realize dynamic page migration in user space

in an efficient manner?

We assess the above hypothesis in Chapter 6, which concludes the thesis.
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1.4 Contributions

The thesis makes the following contributions:

• The work exploits the PEBS PMU in Intel’s P4, Xeon and Core microarchitectures

to get feedback information on the memory access profile of applications.

• The Perfmon2 interface [10] in the Linux kernel is leveraged through a user-level

library (libpfm) to program the PMU for L1 and L2 cache miss events.

• The thesis also evaluates the performance of the two system calls for page migration

in the Linux kernel.

• The work introduces novel algorithms to determine affinity of a page to a ccNUMA

node based on feedback hints from the the PEBS hardware.

• The work compares the hardware-guided page placement and page migration schemes

with policy-based page allocation schemes in Linux. Experiments indicate an average

improvement of 8-15% in wall-clock time. We believe that limitations of the trace

hardware and software and improvements in memory interconnect technologies cur-

rently constrain the experiments and that the approach has even more potential once

these limitations are overcome in the future.

1.5 Thesis Layout

This thesis is organized as follows. Chapter 2 details the PEBS support in Intel’s

Netburst and Core microarchitectures, the Linux kernel support for the same and our base

design framework. This is initially used to develop a page placement scheme where the

hardware traces collected in a short truncated run are used in the subsequent trace-driven

run of the program. Chapter 3 builds on the base framework to develop a user-level page

migration engine. Chapter 4 presents some experimental and other evaluation results.

Finally, Chapter 5 details the related work and Chapter 6 concludes this thesis.
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Chapter 2

Page Placement Exploiting PEBS

Traces

2.1 Overview

In the prior work [20], the developed approach was evaluated using Itanium2-

specific hardware traces for automated page placement. The work carries forward a similar

approach using a completely different hardware tracing mechanism and NUMA platform.

The basic idea of exploiting processor-centric hardware support for user-level page placement

is shown to be portable and widely applicable across multiple platforms (irrespective of

interconnect topologies).

Instead of the Itanium architecture, the widely used x86 is used as the target plat-

form. The objective of this work is to perform page placement on a ccNUMA multiprocessor

Opteron system available from AMD [16]. In this system, each processor directly accesses

(using an on-chip memory controller) a fixed amount of local physical memory. Com-

munication with other processors and their attached physical memories is achieved over

the point-to-point HyperTransport connection network [16]. Systems exploit a bus-based

MOESI coherence protocol instead of the directory-based coherence present in SGI’s NU-

MALINK fabric. Processors can access their local memories faster than memories attached

to other processors, and the access penalty increases with the number of hops to reach

the remote memory (due to point-to-point interconnect). The experiments will assess the

benefits of intelligent page placement on this system. Though the results were obtained on
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the AMD Opteron, the developed scheme should equally work on future ccNUMA systems

from Intel that use the CSI (Common System Interconnect)/QuickPath architecture.

The premise of the developed technique is the ability to obtain hardware-generated

traces that efficiently drive the page placement policy. Since current AMD Opterons, prior

to the quad-core Barcelona chip, have no published hardware trace capability, the perfor-

mance monitoring unit built into Intel Pentium4/Xeon/Core2 systems is exploited for this

purpose. This hardware is called “Precise Event-Based Sampling” (PEBS). PEBS captures

the register state when a specific event, e.g., an L1 cache miss, is detected. By decoding

the instruction format and using this register state, the memory address that was accessed

can be reconstructed. The following sections describe the PEBS mechanism in two different

microarchitectures, Intel NetBurst microarchitecture and Intel Core microarchitecture. We

then discuss about the Perfmon2 interface in the Linux kernel 2.6. The interface allows

the configuration of the hardware Performance Monitoring Unit(PMU) and handles PMU

interrupts. It also provides a user library, libpfm, to support easy configuration from user

space. We then talk about the design and implementation of our framework to support

PEBS.

2.2 PEBS support in NetBurst microarchitecture

Processors based on NetBurst microarchitecture (Intel Pentium 4, Intel Xeon) do

not support architectural performance monitoring, i.e., the performance monitoring events

and capabilities may change across different processor families. These PMUs have cer-

tain model-specific registers (MSR) for performance counting, counter configuration control

(CCCR), i.e., to set up an associated performance counter for a specific method of counting,

event select configuration MSR (ESCR) for selecting events to monitor and other control

MSRs. The following type of events can be counted with these facilities:

• Non Retirement Events: These events are not bound to instruction retirement,

e.g., events related to Branch Predictor Unit (which happen at the fetch stage of the

pipeline).

• At Retirement Events: These events are counted at the retirement stage of instruc-

tion execution. Modern x86 processors support out-of-order execution and specula-

tions like branch prediction, memory dependence predictions etc. These predictions
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can go wrong and, therefore, not all of the instructions that pass through the execution

stage may eventually retire. With at-retirement counting, µops that encounter per-

formance events during instruction execution are tagged. This allows the events that

result in committed architectural state to be distinguished from those that lie on an

execution path that eventually gets discarded, e.g., because of branch misprediction

or cancellation of some speculative state of execution.

Intel’s software manual [11] describes the following usage models for performance

monitoring.

• Event counting: This is very similar to polling at regular intervals. A performance

counter can be configured to count various types of events. The value of the counter

is read by the software (usually the operating system as most of the counters require

a privilege access) at selected intervals to determine the number of events that have

been counted between the intervals. Event counting supports both “Non Retirement“

and “At Retirement“ events.

• Non-precise event-based sampling: Like event counting, a performance counter

is configured to count one or more types of events. But instead of reading the counter

at regular intervals, the PMU is configured to generate an interrupt when it overflows.

The counter overflows after a specific number of events are counted, and this number

is defined by presetting the counter to a modulus value, which is the width of the

counter minus the sampling rate (in units of number of events). An interrupt service

routine handles this interrupt and then records the return instruction pointer (RIP),

resets the modulus, and restarts the counter. These RIPs can provide very useful

information about the execution profile of the program. This can be tracked by

various tools like Perfmon, PAPI, VTune etc. Non-precise counting also supports

both “Non Retirement“ and “At Retirement“ events.

• Precise event-based sampling (PEBS): This type of performance monitoring is

similar to non-precise event-based sampling, except that a software-designated mem-

ory buffer is used to save a record (called PEBS record) of the architectural state of

the processor whenever the counter overflows. The information in the buffer is directly

written by the processor without the software’s help, and an interrupt is generated af-

ter some configured numbers of records have been written. This considerably reduces
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the overhead of performance monitoring. Architectural state of the processor includes

the contents of general-purpose registers, instruction pointer, EFLAGS register etc.

These facilities can be used for various purposes, e.g., we use them to decode the

instructions for load miss data addresses. Precise event-base sampling can be used to

count only a subset of at-retirement events.

2.2.1 Debug Store (DS) Mechanism

BTS Buffer Base

BTS Index

BTS Absolute Maximum

BTS Interrupt Threshold

PEBS Buffer Base

PEBS Index

PEBS Absolute Maximum

PEBS Interrupt Threshold

PEBS Counter Reset

Reserved

Branch Record 0

Branch Record 1

…

Branch Record n

PEBS Record 0

PEBS Record 1

…

PEBS Record N

0H

4H/8H

8H/10H

10H/20H

0CH/18H

14H/28H

18H/30H

1CH/38H

20H/40H

24H/48H

30H/50H

Figure 2.1: DS Save Area

The Debug store (DS) is a non-swappable memory buffer that can be used for

storing various information for debugging and tuning programs. Currently, it is used to

collect two types of information: branch records and PEBS sampling records. Figure

2.1 shows how the DS save area is organized in memory. The DS save area is divided

into three parts: the Branch Trace Store (BTS) buffer, the PEBS buffer and the buffer
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management. Figure 2.1 shows the offset of each entry in the buffer management area for

both the NetBurst and Core microarchitectures. Buffers contain the actual information, and

the buffer management portion contains the related metadata. As can be seen in Figure

2.1, for the PEBS buffer, the buffer management contains following entries related to PEBS

recording:

• The PEBS base pointer: The linear address of the first PEBS record.

• The PEBS index: The linear address of the first byte of the next PEBS record.

• The PEBS interrupt threshold: The linear address (which must be a multiple of PEBS

record size), used to generate an interrupt when the counter overflows. It is used to

allow the PEBS hardware to safely write PEBS records in the buffer (without causing

a buffer overflow) at a time when the interrupt is handled by the software.

• The PEBS counter reset: A value that needs to be written to reset the counter after

the PEBS record is written.

As can be seen from Figure 2.2, the PEBS record contains the contents of general-

purpose registers, instruction pointer and flags register. For the IA-32, each entry in the

PEBS record is 32 bit, and all the register names are prefixed with ’E’ , i.e., the registers are

named as EFLAGS, EIP, EAX etc. The corresponding registers for the IA-32e architecture

are named as RFLAGS, RIP, RAX etc. and are 64 bit wide, which makes each entry of

PEBS record 64 bits. The IA-32e has eight additional general-purpose registers (R8..R15).

A PEBS record is written in the DS save area by the processor at the next occurence of a

PEBS event (after a preconfigured counter overflows).

PEBS uses the “interrupt on overflow” mechanism. The performance counter is

initialized with 2mcbits − SI, where mcbits is the bit-width of the processor. For IA-32, it

is 32 and for IA-32e and IA-64 it is 64. SI is the sampling interval. We may not decide

to sample each event as it is seen to be lossy and incurs a lot of interrupt overhead. As

interrupts can only be triggered on an overflow, the counter should be initialized with a large

enough value to enable an interrupt after the configured sampling interval. The operating

system kernel then handles this interrupt.
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EFLAGS / RFLAGS

Linear (Virtual) IP / RIP

EAX / RAX

EBX / RBX

ECX / RCX

EDX / RDX

ESI / RSI

EDI / RDI

EBP / RBP

ESP / RSP

R8

…

R15

Figure 2.2: PEBS Record Format on P4/Xeon (IA-32) and Core2 Duo (IA-32e)

2.2.2 Event Tagging And Replay

As mentioned before, the NetBurst microarchitecture supports at-retirement events.

The following terminology is widely used to describe such events:

• Tagging: Tagging is a mechanism of labelling a µop that triggers a particular per-

formance event so that it can be counted at retirement. Event counting by itself is

not an accurate method because a µop may trigger that event many times during its

course of execution, e.g., a speculative load miss is not a true indicator of a cache miss

event, only a retired load instruction should increment the “cache miss” counter.

• Replay: To fully utilize the various pipeline resources, the Intel NetBurst microarchi-

tecture aggressively schedules µops for execution before all the conditions for correct

execution are guaranteed to be satisfied. For example, it may perform load value pre-

diction, which might be used by dependent instructions. Now, if that load misses the

cache and its returned value is found to be different from the predicted value, all the

prior work must be undone. In other words, µops must be reissued. The mechanism

that the Pentium 4 and Intel Xeon processors use for this reissuing of µops is called

replay.

The following kinds of tagging mechanisms are described in the Intel’s manual [11]:

1. Front-End Tagging: This mechanism is used to tag µops that encounter front-

end events, i.e., those events that occur during the fetch and decode stages in the
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instruction pipeline, e.g., trace-cache and instruction-cache related events.

2. Execution Tagging: This mechanism is used to tag µops that encounter execution

events (e.g., counting of retirement of special types of instructions).

3. Replay Tagging: This mechanism pertains to tagging of µops whose retirement is

replayed (e.g., a load µop that causes a cache miss). Events like branch mispredictions

are also tagged with this mechanism. We use this tagging mechanism in our scheme

to tag µops for ’L2/L1’ load cache miss events.

4. No Tags: This mechanism does not use tags as the events to be counted are directly

related to retirement. Instr retired and µops retired events can be used with this

method.

Associated with the replay tagging mechanism is an event called replay event.

To set up the replay event count, certain metrics are defined. Among them, we need the

following two metrics for our work:

a) 1stL Cache load miss retired: First level cache misses; and

b) 2ndL Cache load miss retired: L2 cache misses.

On our test systems, we have only two cache levels, L1 and L2. Hence, L2 cache

miss events enable us to track loads that miss cache and hit memory. An L1 cache miss is

tracked to determine the difference in performance as the L1 cache miss would not neces-

sarily guarantee that address references were memory hits as some data could be cached in

L2. Intuitively, L2 cache misses should be a better indicator for tracking page references in

the memory, and our results reaffirm this.

2.3 PEBS support in the Core Microarchitecture

Processors based on the Intel Core microarchitecture also support the PEBS mech-

anism using a DS buffer area. Compared to PEBS support in the NetBurst microarchitec-

ture, the difference is mainly in the way PEBS is setup. The details are depicted in Table

18.16 in Intel’s software manual [11]. The other major difference is that the precise state

returned by core microarchitecture is the state of execution of the next instruction for the

instruction that generates the event. This has some minor implications in the design of

PEBS framework. The description is mentioned in the design section on PEBS.
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The following events in processors based on the Core microarchitecture are useful

for us:

1. MEM LOAD RETIRED:L1D MISS; and

2. MEM LOAD RETIRED:L2 MISS.

PEBS is extensively detailed in Chapter 18 of Intel’s software manual - Volume 3b

[11] . The reader is strongly encouraged to refer to that for further details.

2.4 Perfmon2: Linux Kernel support

The Performance Monitoring Unit (PMU) is integrated in the processor cores. A

PMU has control and data registers, which are read or written by the software. This requires

access at the most privilege level of software, i.e., the operating system kernel. Hence, it

is not possible to develop only a user-level library, some kernel support is also required.

However, a lot of diversity exists in PMU space. On the hardware side, PMUs can be very

different, e.g., some PMUs may be very simple and provide only basic counters whereas

others may be very sophisticated and may capture addresses, latencies and branches. On

the software side, we have various tools with different requirements and different designs. A

tool meant to exploit one PMU may be very difficult to port on a different PMU, not only

because architecturally the PMU is different but also because the software design may have

limitations. Similarly, some tools may support per-thread monitoring while others support

system-wide (all running threads on one processor) monitoring or even monitoring across

all processors. Due to this diversity in space, a standard kernel interface is highly desirable.

The Linux kernel, up until now, has had multiple tools and kernel interfaces for

various architectures (like the IA-32, x86-64/IA-32e, IA-64, Power-PC etc). Some popular

tools and kernel interfaces are:

a) The VTUNE [6] performance analyzer with its own proprietary kernel interface,

which is implemented by an open-source device driver;

b) The OProfile [9] interface used by tools such as Prospect [27];

c) The Perfctr [25] interface used by the tools based on the PAPI [28] toolkit.

Having multiple interfaces for one PMU creates issues with code maintenance and

coordination between various interfaces, especially when they need shared access to the

PMU at the same time. To solve this issue, a standardized Perfmon2 interface has been
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developed in the kernel. Its goal is to solve the challenge described in the official Perfmon2

manual [10]:

“how to design a generic performance monitoring interface that would provide

access to all existing and future PMU implementations and that would also support a variety

of monitoring tools? “

The interface provides access to PMU resources but leaves the task of programming

it to the users. It also exploits certain key features across all PMU models. These guidelines

help Perfmon2 to be a generic kernel interface for a variety of PMUs that is easily portable

across various profiling tools.

The following salient features of this interface design are useful for this thesis:

1. Logical PMU: The implementation exposes a logical view of the PMU to the moni-

toring tool (like our framework). Any PMU model would have certain control registers

and data registers. Control registers describe what is to be measured and can direct

commands to start/stop/mask monitoring. Data registers are used to store the results.

These registers are called Performance Monitoring Control (PMC) and Performance

Monitoring Data (PMD) registers, respectively. PMC and PMD are logical registers

that are mapped to the actual PMU by each implementation. Each register is identi-

fied by a simple (index, value) pair. This scheme works across any PMU architecture

because any register can be uniquely named with this scheme.

2. System Call Model: The interface is intended to be a part of the mainstream Linux

kernel in the near future (starting from 2.6.25). But for the Linux kernels used for our

research (2.6.17 and 2.6.23), the compiler support was enabled at the time of kernel

compilation. In any case, the interface follows the system call model instead of the

device driver model. The device driver model is not applicable because the interface

supports per-thread monitoring, which requires hooks to the context switching code

of the kernel to save and restore the PMU states on thread context switches. For

system security reasons, access to kernel context switching code is not given to the

device drivers. Therefore, applications make system calls (instead of ioctls used with

device driver modules) to access the services provided by the Perfmon2 interface.

3. Sampling Support: There are two types of sampling possible with the Perfmon2 in-

terface: time-based and event-based sampling. The sampling period is defined by
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a timeout in time-based sampling whereas it is defined as the number of occur-

rences of a PMU event with event-based sampling. Using the Perfmon2 interface,

AMD’s Barcelona [2] processors can be programmed for time-based sampling and

Intel’s PEBS-based PMU can be programmed for event-based sampling.

The interface can be programmed to send a message-based overflow notification on

occurrence of a specific event. However, for efficiency reasons, samples are automat-

ically stored into a kernel buffer and notification is only sent to the monitoring tool

once the kernel buffer fills up. For PEBS, we use event-based sampling to record

architectural state after a configured number of L1/L2 misses (events).

The Perfmon2 interface is described in detail in [10]. The interface is also supported

by a user level library (libpfm), which can be used by monitoring tools/applications to

program the PMU. We use libpfm-3.2 to configure PEBS support in Xeon and Core2 duo

PMUs. This is detailed in the next section on the design and implementation.

2.5 Design and Implementation of the Page Placement Frame-

work by Exploiting PEBS

Quite often, multi-threaded shared memory programs are not tuned for ccNUMA

architectures where locality of access is paramount to achieve good performance from the

applications. In most modern operating systems (like Linux), a policy of first touch page

placement is used where the physical frame is allocated on the node where the page is first

touched by a local processor. This often leads to a suboptimal allocation with OpenMP

programs since a lot of communication happens through shared variables and more often

than not, some threads access the variables more regularly than others. Thus, one could

either tune the application for page placement or make some changes in the run time system

or operating system to achieve better page placement. Our approach also attempts to obtain

better locality but without modifying any of these subsystems. We leverage the hardware

performance monitoring unit of the processors to derive “memory reference hints” by each

thread of the application during a truncated run of the program. These hints are then

used to derive better affinities of virtual memory pages to the processors. The existing

first-touch policy of Linux is used to touch the hinted pages before the second execution

of the main program. During this second execution, better locality is achieved and many
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remote references are avoided.

Section 2.5.1 gives an overview of the design of our page placement framework.

Previous work on Itanium processors [20] proved that the “load cache miss” is a better

indicator than “DTLB misses” to filter out memory accesses representative of an appli-

cation’s memory profile. For the x86 architecture, the PMU supports PEBS (as described

above) in Intel’s Netburst and Core microarchitectures. In Appendix B, we detail the PEBS

configuration to generate information for L1/L2 cache miss events. The PEBS stores the

architectural state of the processor on occurrence of the configured event(s). Appendix C

details the design of a parser that decodes the effective linear addresses from the instruction

pointers and the contents of the general-purpose registers. To transfer this information into

user space, library support from Perfmon2 (libpfm) is also needed. In particular, we use the

asynchronous notification mechanism of signals to obtain information from the kernel. The

generated SIGIO signal triggers a signal handler, which is elaborated in Section 2.5.2.

2.5.1 Design Overview of the Framework

The following section gives a complete overview of our framework which operates

in multiple phases. An environment variable “NUMA PHASE” determines the phase in

which the program is being run. The following types of program executions are possible:

• Trace Run: To get hardware traces (NUMA PHASE = 1).

• Unmodified Run: Not to use our framework (NUMA PHASE = 0).

• Profile Guided Run: Uses hardware traces (NUMA PHASE = 2).

We now summarize the overall design. Reader is strongly encouraged to refer to

previous work [20] [19] for further details.

1. Collecting PEBS Hardware Traces

Configure PEBS-based PMU for L1/L2 misses using libpfm: This is described

in detail in Sections 6 and 6 . If traces are obtained on a Core2 machine, a special

handling for a skid of 1 instruction also needs to be done. This is explained in Section

2.5.3 .

Instrument the benchmarks to start and stop Perfmon2 monitoring: The OpenMP

NAS benchmarks and selected SPEC benchmarks have “hot regions” where threads
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make a lot of memory references, especially reads, in a recurring manner. For exam-

ple, in time-stepped programs, after initialization, one or two time-steps are usually

sufficient to snapshot each thread’s memory access pattern. These can be termed as

the stable phase of execution. Thus, we manually instrument the “hot regions” of

the benchmarks to start and stop tracing. This tracing continues up to 5 iterations

to get stable traces. Afterwards, the process is prematurely terminated. This is the

truncated run of the program.

Get effective addresses and dump IP, Effective Address: During tracing, the

PEBS-based PMU writes the architectural records in a kernel buffer. This buffer

is exported to user space using ’mmap()’ system call. We configure Perfmon to send

an asynchronous notification when a certain fraction of the buffer gets filled. Our

framework handles this notification. This is explained in Section 2.5.2. A parser

module (see Appendix C) decodes the instructions to return effective addresses. In-

struction pointers and effective addresses are then dumped in a per-thread trace dump

file.

Trace Dynamic Allocation: Calls to malloc, calloc and free are intercepted and

logged by the framework. The following information is logged by the threads that

make dynamic allocation calls:

• Timestamp: The x86-64 architecture has high-precision timestamp counter, which

is used to return time elapsed from a base time.

• Tid: An OpenMP thread identifier for the thread making dynamic allocation

calls.

• Seq id: A global sequence counter for dynamic allocation calls.

• Size: The size of the region requested

• File: The program file from which a call to malloc was made.

• Line: The line number in the program file.

• Address: The address returned by malloc/calloc.
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2. Affinity Decision

After obtaining per-thread memory traces, the per-node page affinity is determined,

i.e., it is decided on which node a physical memory page should reside for a particular

virtual memory page.

Based on the approximate memory access trace and the dynamic memory alloca-

tion information, the affinity decision module currently supports two metrics, one for

uniform remote latencies and one for hop-sensitive remote latencies.

The uniform latency policy allocates a page on the node that issues the maximum

number of accesses to that page.

pi → nj ⇔ rwi,j = maxk(rwi,k) (2.1)

This allocation rule requires that page pi is allocated (→) in the local memory of node

nj iff the number of read/write references rwi,j within page pi issued from node nj

is maximal within the read/write references issued by any node for this page, where

m is the total number of nodes. Intuitively, the average latency of an access can be

reduced when a page is allocated closer to the processor that issues the largest amount

of requests.

The page affinity decision process consists of a number of steps. Initially, accesses

are grouped by page address, and the total accesses from all threads to each page are

calculated. Here, accesses are grouped by processor to calculate the per-node access

count for each page.

In practice, remote access penalties are not uniform but rather vary with the distance

(number of hops over the interconnect) to the target node. The hop-sensitive latency

policy allocates a page on the node that has the lowest aggregate access cost for

references to this page issued from any node.

pi → nj ⇔
∑

l=1..m

rwi,l × wj,l = mink(
∑

l=1..m

rwi,l × wk,l) (2.2)

This allocation rule requires that page pi resides on node nj iff the aggregate number

of read/write references rwi,l for this page issued from all nodes, weighted by the

hop-sensitive cost wj,l relative to local allocation on this node, is minimal within all

aggregate weighted costs of any node allocations of this page. Intuitively, the average
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latency of an access can be reduced when a page is allocated close to all processors

that issue large amounts of requests, i.e., this metric takes references from multiple

nodes into account instead of using the winner-takes-all paradigm.

The page affinity decision process consists of grouping accesses by page address and by

thread (node). Yet, the page cost for an allocation is then calculated for a hypothetical

allocation to each node. This cost is the additive weighted number of accesses issued

for any node for this mapping. The weight wi,l denotes the latency (cost) of resolving

a reference from node nl that is locally mapped onto node ni. Such pair-wise latencies

can be experimentally obtained once and for all for a given architecture using the bplat

microbenchmark [8] (see Section 4.1.1 for details).

The affinity decisions are generated differently for statically defined and dynamically

allocated regions of memory. Statically defined memory (i.e., the bss segment) con-

tains space for uninitialized global variables. The starting address and extent of the

static region is determined at link time. The affinity decision module simply generates

a per-node list of page address offsets that have affinity to that node. The first logi-

cal processor in a node is responsible for using these page offsets to issue the actual

“first-touch” page placements during the final trace-guided program run.

A more sophisticated scheme is required for dynamically allocated regions. Here, the

starting address of the allocated region can and does change over multiple runs of

the same program. For the benchmarks evaluated, two distinct dynamic memory

allocation patterns were observed. Many programs had a small number of calls, each

of which allocated a large chunk of contiguous memory. For such cases, we adjust the

affinity page offsets relative to the starting address of the region. The affinity offsets

will be used to “touch” the pages on the appropriate nodes during the trace-guided

run just after the region is allocated.

A second dynamic allocation pattern was observed for programs issuing a large num-

ber of calls clustered in time, each allocating a small region of memory (e.g., NAS-2.3

MG). The resulting heap regions are mostly allocated contiguously in space. However,

due to the lossiness of memory access traces, many small allocated regions (“silent

regions”) are not represented by even a single access record in the trace. By inspect-

ing trace records for other small regions allocated close by, these silent regions are

allocated in their vicinity (on the same page) since physical memory is allocated on
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page granularity.

3. Trace-guided Page Placement

The affinity decisions in the previous phase are used in trace-guided page placement

runs. Linux uses the “first touch” page placement policy by default, i.e., the page is

allocated on the node running the thread which writes first on the page. This policy

is leveraged in our schemes for static and dynamic allocations. For static allocations,

each thread touches the set of its “affine pages”, which are read from its static affinity

file. All the threads synchronize at a barrier after the touching phase to ensure that

no processor accesses a statically defined page before the affinity hint for the page has

been applied. This scheme has a minimum overhead because the initialization is only

done at startup.

For heap (dynamic) allocations, the fact that no thread in a legal program accesses

any part of allocated address before malloc is done, is utilized to affect first touch

based page placement. The scheme works as follows.

During NUMA PHASE 1, a wrapper only intercepts dynamic allocation calls like

malloc(), calloc() and free() and logs some bookkeeping information as described in

Section 1. However, in NUMA PHASE 2, dynamic affinity hints generated by the

offline analysis (see Section 2) are utilized to direct correct page placement. The

dynamic affinity hints provide information about which parts of dynamically allocated

regions should be allocated on which processor. The hints are given in the form of

processor identifiers and the address offsets (from the start of an allocated region).

The wrapper first performs the actual allocation and then applies these hints on a fresh

allocation (Different virtual address may be returned in different runs of the program).

Here, the difference from static allocation is that some pages in the dynamically

allocated region may be more affine to another processor, i.e., processor on which

this thread is not running. Recall that each thread was bound to a processor using

sched setaffinity calls. Again, the CPU set implementation of the above call is used

to move threads to the affine processor. Afterwards, that page is “touched“ by the

thread. For every allocation request for which there are affinity hints for n processors,

there are n+1 context switches (one switch to every target processor and a final switch

back to the original processor). The experimental Section 4.1.2 shows that there is

a very high overhead of page placement with benchmarks like MG. The approach
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for page placement employed for dynamically allocated regions is still subject to one

caveat. While the benchmarks of the experimental sections always allocate memory

only at the start of the program and do not free it until the end of execution, such

behavior is not guaranteed. Some programs may repeatedly allocate and free memory

in the stable execution phase. In those cases, the effectiveness of the “first-touch”

scheme would be reduced. This occurs because portions of the virtual address space

may be “reused” by the library allocation function after they were initially freed,

and it is possible that the “reused” virtual page may change its affinity. With our

current scheme, the physical memory will only be allocated once on the node where

the page of virtual memory is first touched. This could potentially give suboptimal

allocations because the first touch scheme tends to pin the page only once. Dynamic

page migration supported by the kernel can solve this issue if a change in affinity

pattern is detected.

2.5.2 SIGIO Handler

Recall from Sections 6 and 6 that only one thread at a time is profiled for L1/L2

miss events on PEBS-based PMUs. Through standard fcntl file control mechanism, an

asynchronous notification is configured and the thread to be profiled takes the ownership

of the Perfmon file descriptor. SIGIO is masked by all the threads except for the thread

being profiled. A kernel level sampling buffer is configured that sends a message notification

after the configured fraction of the buffer (90%) overflows. Since our framework requests an

asynchronous notification on any I/O event for the Perfmon file descriptor, a SIGIO signal

is sent to the user space, which is handled by the profiled thread.

A standard read library call is used to read the Perfmon message. We then

determine the message type returned by the Perfmon implementation. The expected

message is the overflow message (PFM MSG OVFL). If the message type is unknown or

’PFM MSG END’, an error is printed out on standard error and the message is discarded.

If the message is an overflow message, the generated samples are processed and the ’over-

flows received’ counter is incremented for that thread.

Processing Samples: The function process smpl buf(thread rec t *) is used to pro-

cess the generated samples. The DS management area stores the current PEBS index and

the PEBS base. These are useful for determining the number of PEBS records written after
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the last read of the records. A loop goes over each PEBS record which is nothing but the

architectural content of the registers. For each record, the parser module (see Appendix C)

is called to determine the effective address. Finally, the instruction pointer and the effective

address are written out in a trace file identified by the thread id.

2.5.3 Handling skid of 1 instruction on Core2 machine

PEBS-based Core PMUs indicate the register contents for the next instruction as

there is always a skid of one instruction due to some microarchitectural implementation.

However, it is non-trivial to find the previous instruction pointer (given the IP of next

instruction) and its architectural state as the x86 architecture is a CISC architecture with

variable length instructions. Fortunately, we are concerned only with instructions causing

load miss. We assume that any instruction that would cause a load miss would not change

the contents of the registers except for the register that saves the data from the memory.

But that register is not used in the calculation of the effective address. So, this is a safe

assumption for the calculation of the effective addresses.

But finding the previous IP address requires some special handling. The master

thread takes the assembly dump of the process using the objdump tool. From the program,

the system() library call is used to run objdump as follows:

“ objdump –prefix-addresses -d <executable name> > <executable.asm> ”

00000000004e3ef8 <free_slotinfo+0x2f8> add $0x10,%rcx

00000000004e3efc <free_slotinfo+0x2fc> test %rax,%rax

00000000004e3eff <free_slotinfo+0x2ff> jne 00000000004e3f67

<free_slotinfo+0x367>

00000000004e3f01 <free_slotinfo+0x301> add $0x1,%rdx

00000000004e3f05 <free_slotinfo+0x305> cmp %rsi,%rdx

00000000004e3f08 <free_slotinfo+0x308> jne 00000000004e3ef4

<free_slotinfo+0x2f4>

00000000004e3f0a <free_slotinfo+0x30a> callq 00000000004a8fb0

<__cfree>

00000000004e3f0f <free_slotinfo+0x30f> movq $0x0,(%r14)

00000000004e3f16 <free_slotinfo+0x316> mov 0x0(%rbp),%rdi

00000000004e3f1a <free_slotinfo+0x31a> mov (%rdi),%rsi
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00000000004e3f1d <free_slotinfo+0x31d> test %rsi,%rsi

00000000004e3f20 <free_slotinfo+0x320> je 00000000004e3f46

<free_slotinfo+0x346>

00000000004e3f22 <free_slotinfo+0x322> xor %edx,%edx

As can be seen from the above dump, different instructions are of different length,

e.g., instruction at IP 0x 00000000004e3f01 is 4 bytes in length, whereas the instruction at

IP 0x 00000000004e3f05 is only 3 bytes. We need to get the IP for each instruction when

we calculate the effective load miss address. A “hash map” is the chosen data structure for

keeping a map of IP and its previous address. The disassembled instructions are read and

for each IP, the previous IP is stored in a hash map. This hash map is referenced to obtain

the previous IP.

L1:  ld + jmp

BB1

L2: ld

BB2

-
BB3

PEBS  IP L3:  -

Figure 2.3: A hypothetical control-flow graph

The above mechanism identifies the previous IP from static information whereas

load misses are a result of dynamic instruction execution. Theoretically, it could be possible

that a load miss instruction may precede the instruction in dynamic execution stream but

not in static program layout. For example, consider a hypothetical control-flow graph shown

in Figure 2.3. Assume that PEBS tracked the first instruction (L3) in BB3. The previous

instruction according to the static layout of the program (L2) is the last instruction of

BB2. Also, assume that the last instruction (which includes both load and jump µops) of

BB1 (L1) caused a load miss from data memory. In this case, our implementation would

wrongly identify L2 as a “load miss” instruction. However, L2 would be discarded if it does

not include a load µop. Fortunately, x86 ISA does not have a jump instruction that also

references data memory, i.e., L1 is not a valid instruction type. Hence, this problem does

not occur in practice.
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Chapter 3

Page Migration using PMU Traces

3.1 Overview

On ccNUMA platforms, accesses to local physical memory (on the same node as

the requesting processor) result in lower latencies than accesses to remote memory (on a

different node). In our previous work (see Chapter 2), we have shown that the hardware

performance monitoring unit can be leveraged to generate traces, which can be used as a

guide for automatic page placement. The scheme was static as traces were analyzed offline

to generate affinity hints for the virtual memory pages, i.e., for each page a better target

“NUMA node” was determined. In the next (full) run, the affinity hints were used to derive

a better page placement.

We now extend this scheme and make it dynamic, i.e., the affinity decisions are

generated at run time, possibly after we get a “confident” estimate of the memory access

patterns by each thread. These decisions are then used to steer the migrating pages to

suitable nodes. The scheme is based on page migration support provided by the Linux

kernel 2.6.18 and above. Linux, even though a NUMA-aware operating system, does not

make application-specific policy decisions while allocating pages. However, it does provide

the users with mechanisms to enforce their own policies. There are currently two different

mechanisms by which page migration can be triggered from user space:

• The mbind system call and

• the move pages system call.

We introduce both these approaches in Sections 3.2 and 3.3. These are experi-
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mentally evaluated in Section 4.1.3. In the course of this work, some optimizations were

needed with the mbind system call. These are described in Section 3.2. Page migration

incurs some overhead both at the hardware level and at the software level. This is discussed

in Section 4.1.3. To lessen the impact of overhead, a heuristic is used to reduce the number

of page migrations. This is also described in Section 3.3. For distributed shared memory

architectures, locality of processor to referenced memory is essential for performance. Data

page migration is certainly not the only means to improve locality. Other approaches like

thread/process migration and optimal page placement have also been tried in the past.

Linux, by default, uses first-touch page placement, i.e., the physical page is allocated closer

to the processor which touches it first. If sufficient memory is available, it is placed on the

same node. This first-touch policy can be overwritten using the “interleaved” policy, which

can be triggered using the numactl tool in Linux.

The experiments in Section 4.1.3 compare the “interleaved” allocation with our

hardware trace-driven approach using hop-sensitive and uniform-latency policies. Also,

the filter heuristic over uniform-latency policy is compared with the non-heuristic based

approaches.

3.2 Design of Dynamic Page Migration on the SGI Altix

platform

The SGI Altix is a high-performance computing architecture that uses industry

standard Itanium2 processors and runs a commodity Linux kernel. It has a high bandwidth,

low latency interconnect called NUMALINK based on the “fat tree” model [26]. Itanium 2

processors also export their PMU details to the users and are supported by the Perfmon2

implementation of the kernel.

Dynamic page migration on this platform uses affinity hints derived from the PMU-

generated cache load miss traces. This work of programming the PMU using libpfm was

already done and is described in detail in [19].

While processing trace records, effective addresses causing long latency loads (i.e.,

cache misses) are identified by their page addresses and recorded along with the reference

count in a per-thread map data structure . Later, at the end of stable phase of execution

(which is usually the second iteration of the outermost loop), the master thread aggregates
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the per-node reference count for all the pages. Other threads synchronize on a barrier.

The master thread also performs a hop-sensitive analysis as given by Equation 2.2 (Section

2.5.1) to determine the best node for page migration. Also, the minimum cost of migration

is recorded for each page. We also calculate the average of all the costs by assuming page

allocation on each of the available nodes. The cost difference is stored for each page, which

is used as criteria to restrict the number of page migrations.

Finally, the master thread directs page migration using the mbind system call. Its

interface is defined as follows:

int mbind(void *start, unsigned long len, int policy, unsigned long *nodemask,

unsigned long maxnode, unsigned flags).

mbind() sets the NUMA memory policy for the memory range starting with start

and continuing for “len” bytes. The memory of a NUMA machine is divided into multiple

nodes. The memory policy defines in which nodes memory is allocated. mbind() only has

an effect for new allocations. If the pages inside the range have been already touched before

setting the policy, the policy has no effect.

MPOL PREFERRED can be used as a policy to set the preferred node for allo-

cation.

The latest additions to the flags are the following two flags that support page

migration:

- If MPOL MF MOVE is passed in flags, then an attempt will be made to move

all the pages in the mapping so that they follow the policy. Pages that are shared with

other processes are not moved.

- If MPOL MF MOVE ALL is passed in flags, then all pages in the mapping will

be moved, even if other processes use the pages. The calling process must be privileged

(CAP SYS NICE) to use this flag.

We use MPOL MF MOVE as our pages are application pages, and our process is

not a privileged process.

In our experiments, we also measure the overhead of migration including the over-

head of making system calls. To amortize the impact of system call overhead, we provide

“chains” of contiguous pages to be moved (so that we can use a length greater than 1),

thereby reducing the number of system calls. Also, only the pages with high cost differ-

ence are moved since they are more likely to have a greater impact on the overall wallclock

execution time.
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In contrast to the page placement framework design as described in Chapter 2,

this framework does not require any special handling for heap allocated regions as the pages

are migrated at run time.

However, in our experiments, a major limitation of the platform was observed:

PMU traces on this machine are not stable. This was observed by comparing the sizes of

the trace files generated by page placement framework across five runs. The trace file sizes

varied a lot. Only one Altix machine gave stable hardware traces but it had an old kernel

version which did not support the page migration interface. The unstable traces might

be attributed to some Perfmon2 implementation shortcoming in the kernel. In absence of

accurate hardware traces, we had to abandon our work on this platform.

3.3 Design of Dynamic Page Migration on the x86 Opteron

Platform

We also ported our page migration framework to a contemporary x86-64 Opteron, a

platform that is cache coherent and uses a hypertransport interconnect. It runs a newer Linux

kernel version 2.6.18 with support for the second page migration interface: move pages().

However, this platform unlike the Altix platform does not have a published performance

monitoring support in processors. Thus, we had to take the PEBS traces from a single

socket Core2 Duo machine. This setup poses inherent limitations since multiple threads

run on one core and L2 caches are shared by both the cores. Due to this limitation, there

is a great chance of cache thrashing caused by concurrent access to the same cache lines

by multiple threads, which potentially pollutes our traces. Currently, we obtain traces and

then filter out all the cold misses. Figure 3.1 shows the conceptual design of the dynamic

page migration framework.

The trace collection and PEBS configuration is exactly the same as with the PEBS

based page placement framework (see Chapter 2). Function map2page converts memory

addresses to page addresses. After the end of traced loop, the page migration module is

activated if a proper environment variable is set (NUMA PHASE = 3).

The master thread reads the page files for threads each of which store tuples of

the form < page address, # of references >. A page distributor module (see Figure 3.1

) creates two pagemaps, one for static allocations and the other for dynamic allocations.
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Figure 3.1: Block Diagram of Page Migration Framework

A pagemap is nothing but a hash structure keyed on the basis of page addresses, and it

records the number of accesses by each thread. For dynamic allocations, a logger tracks

the memory allocation calls and stores (in memory) the newly heap allocated addresses,

sequence identifiers, allocation sizes etc. for each calling thread.

Then, the master thread reads the file containing a list of allocation calls. Using

the dynamic page map (created by the page distributor), it derives the hints for the regions.

A region is defined as the set of page offsets from the start of the allocated address. A region

map is created for each thread using heap allocations. A region map is a hash map with

sequence id of the allocation calls as a hash key. It returns a region vector, which consists

of offsets and associated access counters for each thread.

The derived information from the region map is correlated with the current dy-

namic allocation information as shown in Figure 3.1. As a result, a new dynamic page

map is created, which is merged with the static page map created by the page distributor.

The combined pagemap is used to decide affinity based on hop-sensitive or uniform-latency

policies as shown in Section 2. At the end, a page is deemed more affine to a node. As
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an optimization over uniform-latency policy, we filter out some of the pages for migration

since it may happen that the selected node is not “sufficiently good”, e.g., if processors on

one node make one or two references (due to cold miss or cache thrashing), the page is

not really fit to be moved to that node. To avoid that, we use a simple heuristic that the

number of page references for the winner node must be at least two more than the number

of references by each node. For statistical measurement, a modified variance is calculated

over the maximum references. The decision criteria is

variance >= 4 ∗ (n− 1)/n (3.1)

i.e., the variance for the winner should be greater than 22 *(n-1)/n , where ’n’ is

the number of numa nodes in the system.

It is worth noting that the special handling for heap allocations is only required

because the hardware traces are generated on a different machine and then used for analysis

on the ccNUMA Opteron. This changes the addressing for heap memory management.

Thus, previously used addresses can not be used for tracing. Had the Opteron architecture

supported hardware tracing, the page distributor module would have become redundant.

In fact, on Itanium architecture (SGI Altix), we did not need this complex analysis.

Finally, page migration is started using move pages1 interface shown below:

long move pages(pid t pid, unsigned long nr pages, const void **address, const int

*nodes, int *status, int flags);

It has a user friendly interface to move the pages in the address space of a running

process to a different NUMA node. Only the physical mappings to the corresponding virtual

addresses change, and the data is copied over to the other node. The call can also be used

to determine the nodes to which the pages are currently mapped (if argument nodes is

NULL). We use this property to filter out the pages that are present on their target node.

Argument address is an array of addresses of pages subject to being moved. Argument nodes

is an array of numbers of nodes to move the corresponding pages to. The flags argument

describes the type of pages that will be moved. The library supports the following flags for

page migration:

- MPOL MF MOVE: Only pages mapped by the process identified by the ’pid’

will be moved;
1Appendix A briefs about the kernel implementation of move pages.
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- MPOL MF MOVE ALL: Pages potentially mapped by multiple processes will

be moved (mode needs to have sufficient permissions).

Since our framework runs with normal user privileges, we use the former flag for

page migration.

Please note that while the master thread does this analysis, other threads synchro-

nize on a barrier and wait for page migration to take affect. Even if other threads do not

synchronize, the kernel tends to suspend all the threads while pages are being migrated.
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Chapter 4

Experiments And Results

4.1 Overview

The capabilities of PEBS are evaluated with a microbenchmark to assess the degree

of lossiness. The microbenchmark strides over a large array with a 12KB stride in order to

defeat the hardware stride prefetcher of the Pentium architecture. The Perfmon2 framework

is utilized to access the hardware counters and to collect the PEBS-generated trace [10].

Based on the data size, access pattern and cache parameters, the program is es-

timated to contain approximately 6 million L1 and L2 load misses. On a different x86

machine, hardware counters reported 6.71 L1 and 6.72 million L2 load misses.
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Figure 4.1: Evaluation of load miss tracing by PEBS: Intel Xeon

Figure 4.1 and 4.1 show the number of samples collected for L1 and L2 load

misses with increasing sampling intervals on two different microarchitectures, both with
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Figure 4.2: Evaluation of load miss tracing by PEBS: Intel Core2 Duo

PEBS support. The numbers are averaged over 10 runs with a standard deviation of less

than 1%. The following observations were made:

• Both L1 and L2 traces are quite lossy. At the smallest sampling interval (1), less than

10% of the expected L1 or L2 misses are collected for the Xeon and less than 15% on

the Core2 Duo platforms.

• The L1 and L2 curves are very close. This is expected because each L1 miss is almost

always an L2 miss in the microbenchmark.

• The number of samples does not decrease in linear proportion to the increase in the

sampling interval. This is in contrast to an expected decrease in the number of samples

depicted by the “Projected Reciprocal” curve.

• The PEBS PMU on the Core2 machine provides a slightly better representation of

memory profile of the microbenchmark. However, the curves are pretty similar for

both machines and a significant amount of trace lossiness is observed.

4.1.1 Hop-Sensitive Page Placement

Instead of the uniform latency page placement policy evaluated so far, this section

focuses on the implementation of the hop-sensitive page placement policy (Eq. 2.2, Section

2.5.1). As briefly mentioned, remote access penalties are not uniform but vary with the

distance to the target node. To measure the load access latency, the bplat microbenchmark

[8] is utilized with threads and memory bound to different nodes. Two sets of measurements
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were performed, one on a four-socket Opteron system with one processor core per node and

the other on an eight-socket Opteron system with two cores per node.

Table 4.1: Ac-
cess Latencies
4-Node Opterons
[nanosecs]

CPU Memory on Node
on

Node 0 1 2 3
0 102 138 172 140
1 143 107 141 172
2 179 141 102 141
3 141 175 142 108

Table 4.2: Access Latencies 8-Node
Opteron system [nanosecs]

CPU Memory on Node
on

Node 0 1 2 3 4 5 6 7
0 126 123 128 178 148 146 148 185
1 125 122 180 126 147 141 128 151
2 130 142 93 143 116 112 148 150
3 146 125 143 92 117 113 148 147
4 148 147 116 117 96 148 130 147
5 151 145 118 115 146 92 145 127
6 150 131 145 146 130 180 125 126
7 182 150 147 146 173 127 126 126

Table 4.3: % Pages Changed: Hop-Sensitive vs. Uniform Policies
Benchmark Trace: Trace:

L1 Misses L2 Misses
BT 3.22 0.70
CG 0.26 0.00
FT 0.31 3.64
IS 1.57 2.37
LU 1.83 7.76
MG 0.10 0.17
SP 1.12 0.88

equake 0.03 0.20

Tables 4.1 and 4.2 show the reported latencies. The values are the average of 10

runs, and the standard deviation was less than 5%. As can be expected, access to node-

local memory is always cheaper. But notice that accesses to non-local nodes take differing

amounts of time. E.g., consider the access latencies for the CPU on node 1. Normalizing

to local node access on the 4-node system, it takes about 30% more time to access memory

on nodes 0 and 2, but it takes 60% longer to access memory on node 3. For the 8-node

system, additional latencies of up to 100% were observed. This occurs because of multi-hop

latencies to remote memory of other nodes over the HyperTransport interconnect with an

average of 30-39 nanoseconds per hop depending on the system. For the 4-node system, the
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HyperTransport interconnect is laid out in a ring (4-node square) topology for a maximum

of two hops. For the 8-node system, the layout is a more complex set of multiple partial

squares plus two diagonals in one partial square for a maximum of three hops.

In the hop-sensitive page placement policy, the latencies shown in Tables 4.1 and

4.2 provide the weights wi,j for placement on node ni and a reference from node nj (see

Eq. 2.2). To implement the cost-based selection of page placement, a histogram of ac-

cesses from every node is again constructed for each page by considering each node as

the candidate affinity node. The values in the latency table and the histogram values are

used to compute the weighted score that represents the cost of allocating the page on that

node. The candidate node with the lowest cost wins, and the page is assigned to that node.

This approach is portable because it is observation-based, i.e., it uses only the measured

latencies between different nodes without requiring knowledge of the exact architecture and

interconnect topology.

4.1.2 Evaluation of Hardware Trace-Driven Page Placement
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Figure 4.3: Time Savings over Original Program and Arithmetic Mean (hardware traces on
Intel Xeon)

We explored the PEBS capabilities on two different architectures, a 32 bit Intel

Xeon and a 64 bit Intel Core2 Duo. The corresponding target machines for these two

architectures were 4 node and 8 node AMD Opteron machines, respectively.

Benchmarks: Nine OpenMP benchmarks were experimentally evaluated. This
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includes seven out of the eight NAS-2.3 benchmarks (excluding EP). The NAS benchmarks

are C versions of the original NAS-2.3 serial benchmarks [3] provided by the Omni Compiler

group [1]. EP is not evaluated since it does not have significant sharing of data [21]. In ad-

dition, the 320.equake and 332.ammp benchmarks from the SPEC OMPM2001 benchmark

set were assessed in the results. These benchmarks have significant dynamic memory allo-

cation, thereby putting the dynamic touching mechanism to the test. All programs except

SP were compiled with gcc at the -O2 optimization level. SP seemed to take a long time

to execute when compiled with gcc. This was due to implementation issues with OpenMP

run time support inherent to gcc. It was therefore compiled with icc ( -O2 optimization

level) and linked to its OpenMP library. Due to memory resource limitations on the Xeon,

all benchmarks except IS and LU use the smaller Class B data sets while the SPEC bench-

marks use the reference data set. However on the Core2 machine, larger Class C data sets

are used except for FT and BT which use the Class B data set. All the benchmarks on

the Xeon/4 node Opteron run with 4 threads, whereas on Core2/8 node Opteron, they run

with 16 threads.

OpenMP thread scheduling was set to static. The Core2 trace hardware platform

uses Intel Core 2 processors running at 2.66GHz, with 4 MB shared unified L2 cache, and

a 32 KB L1D cache. The target eight node Opteron has Dual Core AMD 8220 processors,

each with 1 MB unified non-shared L2 cache and a 128 KB L1D cache.

For each program, markers were inserted to delineate the start and end of the time

step. For 332.ammp, the pre-existing round-robin allocation of the “atom” element was

disabled for the trace-related runs. However, the benefit metrics (wall clock time, number

of remote accesses) are still compared against the original program. For the IS benchmark,

a one-time dynamic allocation for the prv buff1 array is issued since the program failed

to execute with the default stack allocation for this variable. Out of the 9 benchmarks,

4 benchmarks (MG, 332.ammp, 320.equake, IS) utilize dynamic memory allocation. The

remaining benchmarks operate with statically declared global arrays.

Each thread was bound to a different core using the sched setaffinity() primitive

in Linux. PEBS-based L1 and L2 load misses were obtained for each benchmark for a

truncated program run on Xeon and Core2 machines with a sampling interval of ten (For

these experiments, the truncated programs ran longer than the Itanium2-based experiments

of previous work [19] to allow collection of more trace data). For the first set of experiments,

the traces were processed as described earlier and affinity hints were generated using the
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hop-sensitive affinity decision mechanism. For recent experiments, both the hop-sensitive

and uniform latency policies were used.

Performance Analysis (Experiment Set 1)

For each program, the wall clock time was measured with trace-guided page place-

ment and compared to the original program’s runtime on the 4-node Opteron system. The

system was shared but only lightly loaded. Furthermore, a round-robin interleaving of the

memory pages across the nodes was evaluated, which was obtained through the numactl

library interface [17].

Figure 4.3 shows the improvement in wall clock time compared to the original

program. The values are an average of 8 runs, and the positive and negative error bars

represent one standard deviation each. “L1” and “L2” represent trace-guided page place-

ment with L1 and L2 cache miss traces, respectively. The following observations can be

made. The developed trace-guided schemes perform well for 5 benchmarks (SP, FT, MG,

CG, BT). Wall clock improvements for the L2 miss trace range from -7% to 30% with an

average improvement of 12.2%. Wall clock improvements for the L1 miss trace range are

similar, except for LU where a performance loss of 21% is observed. Intuitively, the L2 miss

trace filters out loads that hit in L2. Therefore, L2 misses are a better indicator of the true

distribution of load requests to a page in memory compared to the L1 miss trace.

The performance improvements obtained with memory interleaving (depicted in

Figure 4.3) indicated that simple round-robin interleaving works almost as well as trace-

guided page placement on the small-scale ccNUMA system subject to experimentation, but

this depends in large on the algorithmic properties of the target applications. With MG,

the program runtime is very short (< 30 seconds for original program). Apparently, the

developed trace-guided scheme is unable to recoup the overhead of forcing page placement

within this short time so that interleaving happens to provide a larger relative improve-

ment. Yet, interleaving performs badly for equake while the trace-guided scheme shows no

net impact. Here, the benefits of page placement seem to be as high as the overhead of the

page touching mechanism. Overall, long latency misses (L2 in this case) provided a uni-

formly reliable indicator for page placement decisions while interleaved memory allocation

occasionally resulted in a significant performance penalty.

Performance Analysis (Experiment Set 2)

These experiments were conducted on an 8 node dual core Opteron machine. Here,

all NAS benchmarks except for FT and BT used the larger input set Class C benchmarks.
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Figure 4.4: Time Savings over Original Program and Arithmetic Mean(traces collected on
Core2)

Two of the SPEC benchmarks, equake and ammp, were also evaluated with their reference

data set.

Figure 4.4 shows the improvement in wall clock time compared to the original

program. The values are an average of 4 runs. The standard deviation observed was very

low. Both the uniform latency and hop-sensitive policies were evaluated. The rest of the

setup remains the same. The trace-guided scheme (with one variant or the other) performs

well for 7 out of 9 benchmarks. The performance improvements for L2 miss traces are in

the range of -27% to 41.8% with an average of 12.2% with hop-sensitive and 13.1% with

uniform-latency policies, whereas for L1 miss traces, they range from -11% to 42% with an

average of 10% for hop-sensitive and 15% for uniform latency policies.

The results in Figure 4.3 show that L2 misses are a better indicator to track long-

latency loads that hit the memory. However, the results in Figure 4.4 contradict this result.

A counter argument for this could be that since L2 cache is shared on the trace platform

(Core2 machine), there is interference by parallel executing threads. This could lead to

cache thrashing if multiple threads access the same cache lines. As a result, some loads that

hit in cache actually cause a miss, and thus, pollute the trace-profile. This is magnified by

running 16 threads (Figure 4.4) as compared to 4 (Figure 4.3) as the probability of them

accessing the shared cache lines increases significantly. The results shown in Figure 4.4

exclude the overhead due to explicit touching of virtual memory pages, thereby allocating

a physical page on the same node as the requester thread. Touch overheads for L1 miss

and L2 miss are indicated in Tables 4.4 and 4.5. The touch overhead is usually less than
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Table 4.4: % Touch Overhead in L1 miss
Runs

Benchmark Trace: Trace:
Hop-
Sensitive

Uniform-
Latency

IS 0.11 0.12
SP 0.08 0.08
FT 2.25 2.19
MG 9.99 8.45
CG 0.03 0.12
BT 0.56 0.60
LU 0.11 0.12

EQUAKE 1.17 1.10
AMMP 0.25 0.14

AVERAGE 1.62 1.44

Table 4.5: % Touch Overhead in L2 miss
Runs

Benchmark Trace: Trace:
Hop Sensi-
tive

Uniform
Latency

IS 1.12 1.14
SP 0.08 0.07
FT 2.26 2.29
MG 9.99 8.45
CG 0.03 0.12
BT 0.54 0.57
LU 0.09 0.09

EQUAKE 1.12 1.08
AMMP 0.25 0.14

AVERAGE 1.72 1.55

1% for most of the benchmarks (except for FT which has a touch overhead of 2.25% and

2.19% for L1 miss and 2.26% and 2.29% for L2 misses and MG for which the corresponding

numbers are 9.99% and 8.45% for both L1 and L2 misses). These benchmarks cause many

load misses and MG’s address space is composed of a large number of pages from heap,

which, as mentioned before, has a considerable overhead with our scheme.

Interleaving also performs well with these benchmarks. But the performance of

interleaving is tightly coupled with the algorithmic design of the programs. If pages are

frequently read by large number of threads, a balanced distribution can improve locality of

accesses. We find that interleaving shows an 11% improvement on average. Yet, some bench-

marks like IS,BT, LU, EQUAKE and ammp show less significant improvements. Overall,

the trace-driven approach shows better performance in most cases despite being disadvan-

taged by the lossiness of PEBS PMU and suffering a lot of potential cache thrashing effects

due to heavily shared caches on the input processor where traces are collected.

Uniform vs. Hop-Sensitive Page Placement: In Section 1, the hop-sensitive

page affinity policy was introduced as a refinement to the uniform latency policy. Table 4.3

shows the percentage of pages that result in different affinity decisions between these two

policies. As can be seen, in most cases, both policies made the same decision for both L1

and L2 miss traces as trace inputs. As a consequence, no substantial wall clock differences

were observed between the two page placement options.
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4.1.3 Evaluation of Dynamic Page Migration using PEBS Traces

Section 3.1 lists two methods of page migration in the Linux kernel. We evaluate

both of them for wall clock performance using the same PRBS traces as before.

Evaluation of mbind: The master thread in a microbenchmark allocates pages

according to the default (i.e., first touch) policy and the interleaved policy. Interleaved allo-

cation is performed using the numactl tool in Linux. To model the wall clock experiments,

a similar configuration with 16 OpenMP threads is used where each thread is bound to a

different core. The master thread allocates pages by touching elements of a static array.

After that, either the master thread or some other thread issues the mbind() call with the

MPOL MF MOVE flag to migrate pages on a random node. The time to migrate pages is

then measured using the gettimeofday() call in Linux. Due to the limitation of the mbind

interface, policy-based migration can not be affected on more than one node at a time.

Figure 4.5 shows the page migration time on varying the number of pages to migrate when

a different thread issues migration call. As can be seen, the migration time seems to be a

linear function of the number of pages for both allocation schemes. However, as the number

of pages increases, interleaved allocations incur more overhead for page migration. This

difference is more pronounced if the page migration requests originate from the same node

on which the initial memory is allocated with the default allocation scheme. For default al-

location, memory was allocated on node 0 and node 7 was chosen as the target node. Table

4.2 shows that the NUMA distance between node 0 and node 7 is the maximum amongst

any pair of nodes. This suggests that default allocation should have been a more expensive

scheme as migrations have to go through up to 3 hops. However, the “requests to migrate”

may underutilize the bandwidth of the NUMA interconnect. This cost is mitigated if the

requests are issued to the local memory controller. With interleaved allocation, these re-

quests are distributed over the entire HyperTransport interconnect and they travel through

links of different latencies. Overall, it is clear that interleaved initial allocation incurs more

page migration overhead.

Evaluation of move pages: move pages() gives the flexibility of moving a page

to a specified node. Mbind(), in contrast, only allows to migrate a ”set of pages” on a

node. The same microbenchmark is used, but this time the page migration mechanism is

changed to move pages(). Also, now the target migrations can be done in an interleaved

manner. Notice that page migration is started from the second page, i.e., the first page
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Figure 4.5: Page migration with mbind
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Figure 4.6: Page migration with move pages
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is skipped because the physical page may be shared with data from linked libraries. For

initial interleaved allocation, this means that each page is moved to the adjacent node.

All the migration requests originate from node 5, an intermediate node in the eight node

Opteron system. For default allocation on one node, distributed page migrations cost less

as compared to all the migrations on node 7, which, as mentioned above, is the node at

a maximum distance from node 0. Initial interleaved allocation on mbind incurs more

overhead for page migration (for the same reason). In this scheme, even distributed page

migrations cause more overhead because every page needs to be migrated whereas with

migration on one target node, some pages may not need to be migrated as interleaved

allocation ensures that at least some pages are on correct node. In sum, initial interleaved

allocation seems to be an upper bound on the cost of page migration.

Comparison of move pages and mbind for performance: The migration

time for the same number of pages is drastically different for the two schemes. For example,

mbind takes only 0.82 seconds to migrate 130K pages with interleaved allocation (for one

node migration), whereas move pages takes around 74 seconds to do the same. Clearly,

there is an order of magnitude of difference here. Migration time with move pages() grows

super-linearly in contrast to a linear growth for mbind(). We believe that mbind is the

better mechanism for migration. The analysis is described below:

Our experimental system, the SunFire 6400, has a HyperTransport memory in-

terconnect with a bidirectional bandwidth of 8GB/sec. To migrate 100K pages, i.e., 400

MB of data (each page is 4096 bytes on our system) to an adjacent node should take 100

msec + costs of migration requests (mgreq) + operating system overhead (os). Since, we

migrated from node 0 to node 7 at a distance of 3 hops, the total cost should theoretically

be 300+mgreq+os. Experiments show that mbind takes around 614 msec and move pages

around 37.5 seconds. Clearly, mbind seems to be a closer approximation of our theoretical

analysis. However, in the absence of superuser privileges on the NUMA system, the kernel

could not be debugged. Hence, the high overhead of move pages() is yet to be identified in

future work.

In our wall clock experiments, we use move pages() to migrate pages (because of its

amenable interface). However, from the final results, we subtract the cost of page migration

using move pages() and add the corresponding cost with the worst case of mbind(), i.e.,

assuming initial interleaved allocation.

Page Migration Overhead: Assuming mbind was representative of page mi-
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gration overhead, we conclude that page migration does not incur a high cost. The only

noticeable overhead is for the FT and MG benchmarks (an average overhead of 3.8% and

1.3% respectively). The main causes of overhead due to page migration are as follows:

• Hardware TLB invalidation: The TLB maintains maps of virtual pages to physical

frames, and is a part of the processor core. When data is moved, the original TLB

mappings in the home node need to be invalidated. This causes invalidation traffic

on the interconnect bus.

• Actual OS page migration overhead: This includes the time during which threads are

in frozen state and their rescheduling overhead by the operating system. Also included

is the overhead due to recreation of virtual-to-physical mappings in the kernel data

structures like page tables.

• Application overhead of serialization: After memory traces are captured by each

thread, we need to serialize the processing where only the master thread collects

information from other threads, determines affinities and initiate page migration.

Wall Clock Performance: The experimental setup for page migration is the

same as the setup for page placement (see Section 4.1.2). All the experiments were con-

ducted with the same NAS and SPEC benchmarks on an eight node Opteron system. For

FT, MG and BT, class B inputs are used. All other benchmarks run with class C input.

For MG, class B is chosen because MG incurs a lot of references to memory and thus results

in high overhead for move pages(). Figure 4.7 shows the percentage reduction in wall clock

time over the original program for the interleaved allocation and our hardware trace-driven

page migration approach. We use three variants in our approach:

1. Hop Sensitive Page placement: The latency costs of going through multiple hops is

also accounted for.

2. Uniform Latency Policy: This assumes that every remote access is equal in terms of la-

tency. The affinity algorithm is a simple competitive algorithm which gives preference

to the NUMA nodes with more read references.

3. Uniform Latency with Filtering: This is based on the assumption that not all page

migrations are useful. Since page migration incurs an overhead in terms of TLB

invalidation traffic and other internal operating system overheads, we filter out some
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infrequently accessed pages. A heuristic proposed by our scheme is given by the

Equation 3.1 in Section 3.3.
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Figure 4.7: Wall Clock Reduction with Dynamic Page Migration and Interleaved Allocation

As can be seen from Figure 4.7, hop-sensitive performs the best for five (SP,

FT, CG, BT, LU) of the nine benchmarks. Uniform placement with filtering improves

over simple uniform placement in five of the nine benchmarks. On an average, interleaved

allocation seems to perform slightly better than our optimizations with an average gain of

9.9% whereas the average improvement of the hop-sensitive scheme is close to 9.4%. The

statistics for interleaved allocation look better primarily because of two class B benchmarks,

FT and MG. Yet, hop-sensitive page migration performs better with more consistency. Also,

cache thrashing could be an artifact of running 16 threads over a shared L2 cache. Thus, it

is possible that our trace results are tainted. This is due to hardware limitation. We propose

to explore alternative methods of hardware tracing. Infact, as of writing this thesis, we have

integrated the IBS (Interrupt Based Sampling) PMU of Barcelona machine (by AMD) in

our framework. However, it seems that for IBS, the current support in Linux kernel is still

at its infancy. But once we get more accurate hardware traces, our results may improve.
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Chapter 5

Related Work

Nikolopoulous et al. evaluate various page placement policies for inclusion in

the OpenMP run time system and reach the conclusion that the OpenMP run time sys-

tem should not be changed as the latency difference between remote and local accesses is

decreasing in contemporary computer architectures, thus making simple page placements

redundant [7]. They also evaluate the performance of the kernel-level page migration engine

of IRIX on an SGI Origin 2000. The SGI Origin has set of 11 bit hardware counters for

each page and an interrupt mechanism that is triggered when the number of remote hits

to a page increases more than the local accesses by a predefined threshold. This interrupt

is handled by the Irix kernel, which than initiates page migration if it is enabled through

an environment variable. Their evaluation concludes that the kernel-level page migration

engine results in modest improvements, if any, in terms of performance. They go on to

build a user-level page migration engine [24] based on a combination of compiler support

(to identify hot memory regions) and feedback from the operating system (to relay schedul-

ing information to the run time system about thread migration) and dynamic monitoring of

memory reference patterns of the program. They propose two page migration algorithms:

a predictive algorithm for iterative parallel codes and an aging algorithm for non-iterative

codes with hot regions. Both algorithms are based on a competitive criterion and both allow

threads to migrate to another node [23]. We contrast our work in following ways: First, our

framework is based on medium scale contemporary x86 architectures with a maximum of

eight nodes as opposed to a large scale, custom-built Origin platform with migration sup-

port in the hardware itself. Second, we have developed our framework on the Linux platform

as against Irix OS used by them. Third, we pin our threads on processors (This can be
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extended easily to nodes with more than one processor per node using numactl interface of

Linux). This is a common practice in scientific computing. As a result, we do not need any

scheduling feedback from the operating system. Fourth, they rely on compiler support for

identifying hot memory regions, which are tracked through hardware reference counters for

local and remote accesses. We, in contrast, exploit the PEBS hardware performance moni-

toring unit (PMU) to derive information about the regions causing load misses. The PMU

has become an integral part of the hardware as a mechanism to identify performance bot-

tlenecks in hardware and in software. That makes our scheme more appealing to a wider

audience. Finally, we also use the information of the interconnect topology (inter-node

distances) seamlessly as an input to our page migration decisions.

Corbalan et al. studied page migration on the SGI Origin and under Irix OS [15].

Their study focuses on a job control environment and correlates the job scheduling policies

of the system with page migration support. It concludes that memory migration is not

sufficient by itself to improve performance by reducing remote memory accesses but also

the scheduling policies and the system load have an impact on overall performance. While

we agree with their evaluation, we believe that it is specific to the job control environment

on which processor the scheduler may allocate tasks. Our focus of work is high-performance

computing where we assume that we can obtain the number of processors requested. We

should be able to schedule our threads on selected nodes to obtain better control over

application performance.

Tao et al. have developed an Adaptive RunTime System (ARS). A user-level

engine migrates pages on a simulated environment [14]. It is based on a shared memory

architecture built from commodity machines called SMILE (Shared Memory in a LAN

like environment) with a standard SCI (Scalable Coherent Interface) interconnect and the

HAMSTER programming paradigm. At the time of writing, their hardware monitors were

being developed. Hence, they have tested their framework on an SMT simulator. They

evaluate the following page migration algorithms: Out-U (a somewhat similar competitive

algorithm), Out-W, where the decision to migrate a page to remote node has to be made on

the basis of relative remote node references by also counting the weighted references (where

weight is based on distance from the page ’P’, the target of migration) for neighboring pages

on the same node, and In-W, where the decision is made to migrate remote page to the local

node. Since the work is based on a simulated environment, we can not directly compare

our work with theirs as we have developed our framework on a real hardware and software
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platform.

Tikir and Hollingsworth also detail the user-level dynamic page migration frame-

work based on memory access traces by sampling the Sun Fire 6800 Fireplane interconnect

[22]. They use the dynist library to instrument the application code to create additional

helper threads for profiling and migration. As a result, they do not require the legacy

applications to be recompiled. Their memory traces from Sun Fire Link hardware moni-

tors consist of the physical addresses that are converted to linear addresses through reverse

mapping by using meminfo system call of Solaris 9 operating system. Pages are migrated

using the madvise system call in Solaris. In contrast, we use the native hardware PMU

support by configuring it with L1/L2 cache miss events. Since our method is processor-

centric, it is simpler and more general in nature. We do not require any additional support

from network interconnects as opposed to them, since their approach is network-centric. In

their setup, the hardware counters are embedded in the network interconnect and do not

distinguish between different processes, i.e., only one application can use them at a time. In

contrast, there is no such restriction with our approach. Also, since their method is based

on polling the network interconnect, it incurs more overhead compared to our scheme, which

is interrupt driven, i.e., the PMU raises an interrupt after the configured sampling counter

overflows, and the memory buffer is populated with the instruction pointer and contents of

other registers. As mentioned before, they need to make a system call to map the physi-

cal address obtained through hardware monitors to virtual address, which is a significant

overhead in most architectures.

Chandra et al. evaluated various scheduling policies along with a page migration

policy on the CC-NUMA Stanford DASH machine [5]. They conclude that for sequential

applications, affinity scheduling shows good performance if combined with kernel-level page

migration based on TLB misses. For parallel applications, the performance improvements

shown were modest with affinity scheduling. We also think that affinity of processes to

processors are important. We bind our threads to processors to avoid a loss of memory

affinity of the threads. However, our scheme is a user-level policy which does not impose

any complexity on the kernel by introducing a new scheduling algorithm.

Subsequently, Verghese et al. presented an analytical study for page migration

[29]. Their study shows that if the pages are shared as read-only across multiple processes

(or threads), page replication is a better policy than page migration whereas page migration

is useful when the pages are exclusively accessed by one processor. This is primarily because
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page migration incurs significant overhead of TLB flushing and processor synchronization

if the sharing is high. This offsets the benefits of page migration itself. Their study is based

on a simulation environment. They describe a kernel-level implementation of dynamic page

migration. Our work differs as it is neither simulation nor kernel based and is implemented

on contemporary hardware within user space.

Bolosky and Scott propose various page placement policies on two NUMA archi-

tectures: one with a global shared memory along with local and remote memories and the

other with no global shared memory. Current NUMA processors are based on the latter

scheme. They collect traces on a real SMP hardware by single stepping through the proces-

sor and handling the trap fault handler. These traces are used offline to analyze different

page placement policies based on replication and dynamic programming. This method in-

curs a significant slow-down of over 200x [4]. These policies were subsequently compared

to contemporary kernel-based policies. Our framework, in contrast, is implemented in user

space and makes a comparative study between interleaved, first-touch (default policy) and

user-space dynamic page migration on the Linux operating system. In the Linux domain,

it has been decided that the kernel will not enforce any replication or page migration poli-

cies . However, it currently does provide with mechanism to migrate pages on a ccNUMA

platform.
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Chapter 6

Conclusion

Cache coherent NUMA architectures have been studied in detail in the literature.

They have come into prominence as SMP systems have hit a wall in performance due to

their common shared bus to memory. A greater number of cores exacerbates the situation

as there is more contention for shared memory. On top of it, the cache coherence traffic

also slows down the executions. NUMA architectures, in contrast, only share memory

with the processing cores on a single socket, thereby reducing bus contention and, at the

same time, keeping the software compatible by providing a shared virtual address space.

However, on these architectures, it is essential to have good page placement as remote

memory accesses are costlier by a factor of 1.3 to 2. Consequently, many approaches have

been proposed in literature to obtain better page placement, either through policy-based

page allocations or through dynamic page migrations. For the latter, studies have been

performed in the operating system domain as well as in the user space domain using feedback

from custom hardware techniques (e.g. per page hardware counters) or by instrumenting

privileged software. Some of these studies have been performed in simulated environments,

while others have used large-scale proprietary architectures and custom operating system

solutions. Yet, we have developed our dynamic page migration engine entirely in user

space using information from hardware performance monitoring units. To the best of our

knowledge, this thesis provides the first ever user-space dynamic page migration framework

for x86 ccNUMA platforms (AMD opterons) under the Linux operating system.

We measure our work against the hypothesis given in Section 1.3.

• We exploit the PEBS PMU of the Intel Xeon and Core microarchitectures to trace
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memory references by various threads of OpenMP programs. Since Intel has not yet

shipped any NUMA-based machines (though their upcoming Quad Core Nehalem is

based on NUMA technology), we use these traces on another popular x86 architecture

(AMD opterons), to analyze trace-driven page placement policies. We have also eval-

uated the Precise Event Based Sampling(PEBS) PMU support in Intel Xeon/Core2

micro-architectures. Our experiments show that the hardware traces are lossy at lower

sampling intervals. However, we do get precise instructions causing load misses. The

results have mostly been modest with an average wall-clock improvements of 10%-15%

for various schemes. Some benchmarks show as good a performance as 40% over de-

fault page placement, but at least one benchmark (equake) shows a slowdown of 30%.

However, this can be attributed to lossy traces and hardware constraints, i.e., parallel

threads potentially interfere with each other while sharing limited L2 cache. Also, our

setup has a limited number of node count (only 8). The wallclock improvements may

increase with a large node count.

• Our page migration framework uses the move pages() interface to dynamically steer

the pages on algorithmically determined NUMA node. The competitive page mi-

gration algorithm also takes the NUMA interconnect configuration into account by

associating weights to hops, i.e., we experimentally determine the distance between

any two pairs of nodes in terms of latency and use this information to derive better

page placements. We have also evaluated the Linux kernel support for page migration

and found that there could be some software issues with one of the interface imple-

mentations (move pages()) due to which it takes exponentially longer to migrate same

number of pages. A theoretical analysis, based on the memory interconnect bandwidth

of modern processors, supports the above assertion, which is also backed up by an-

other interface implementations (mbind()) in the Linux kernel. In our experimental

results, we have replaced the migration time by move pages() with an estimated time

by mbind() system call.

In sum, may we conclude that user-driven dynamic page migration using hardware

PMU traces has limited potential in current processors. But given a good kernel implemen-

tation, modern architectures have sufficient NUMA bandwidth and low latency to allow a

larger number of page migrations at a reasonable cost.
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Appendix A

Page Migration Implementation in

Linux Kernel 2.6.18+
This appendix discusses the implementation of move pages(), a kernel interface

for migrating pages to NUMA nodes. It is descibed in detail in [18] .

1. The list of pages to be migrated are taken off the Least Recently used (LRU) list. This

ensures that the swapper daemon can not unmap that page while the page migration

is in progress. This is implemented by increasing the reference count of the page.

2. Before migration starts, it is ensured that pending writebacks to the page are complete.

3. A new page is allocated on the target node and all the settings are copied from the

old page. The page is locked and its state is set as not ”up to date”. As a result, all

accesses to this page are blocked.

4. Page table references to the page are converted to migration entries or dropped. This

decreases the counter that maintains a map count of the page. A page is only migrated

if the number of references is zero.

5. Radix tree spinlocks are obtained which block all the processes trying to access this

page.

6. The radix tree now points to the new page.

7. A reference to the new page is created and the reference to the old page is dropped.
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8. The radix tree lock is removed which makes accesses(to the migrated physical page)

through virtual memory possible.

9. The actual content of the old page is copied to the new page.

10. The old page table flags are cleared.

11. The migration PTE is replaced with real PTE. This activates the other processes that

are not waiting for page lock.

12. The page locks are released.

13. The new page is moved to the LRU list and can be swapped out of memory if necessary.
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Appendix B

PEBS Configuration using libpfm

B.1 Configuring PEBS-based PMUs on the Intel Xeon Archi-

tecture using libpfm

The Intel Xeon and Pentium 4 have similar support for PEBS. In this work, we

got our hardware traces on a 32 bit Intel Xeon machine.

1. Creating Perfmon context: The PMU state includes the values of the PMC and

PMD registers and possibly other related registers. A Perfmon context can be defined

as the state of the PMU hardware and the associated software component. The libpfm

library provides an interface to allow users to create and modify this context. But at

the same time, the internal structure of the context is specific to the PMU and the

operating system, and is never directly exposed to an application.

It is created by the following function:

int pfm create context(pfarg ctx t *ctx, void *smpl arg, size t smpl size);

pfarg ctx t structure is defined as:

typedef struct {
unsigned char ctx smpl buf id[16]; /* which buffer format to use */

uint32 t ctx flags; /* noblock/block/syswide */

int32 t ctx fd; /* ret arg: fd for context */

uint64 t ctx smpl buf size; /* ret arg: actual buffer sz */
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uint64 t ctx reserved3[12]; /* for future use */

} pfarg ctx t;

Here, Perfmon keeps compatibility with various buffer formats used by the existing

tools. These formats enable various existing tools to represent the information they

need in a more efficient manner. For instance, some tools want to keep the samples

sequentially ordered while others may need to aggregate identical samples. Further-

more, some tools, for ease of their internal debugging purpose or as a part of an

enhancement may also want to record additional information that is not coming from

the PMU itself, such as the amount of free memory or the number of active processes,

the current thread identifier and so on. To handle a variety of formats, a classic

operating system principle, the “separation of mechanism from policy”, is used. Basi-

cally, tools are given freedom to implement their own formats but at the same time a

default sequential sampling format is also provided by the interface. The design pro-

vides hooks for the tools to create their own call-backs, which are invoked by Perfmon

on specific events. In particular, there is a mandatory call-back handler for counter

overflow. The handler can record whatever information it needs into whatever format

it wants. PEBS information is also recorded in a particular format that is uniquely

identified by a format key. We pass this information in the ctx smpl buf id[] string in

the above structure.

ctx flags describes the properties of the context. A context can support per-thread

monitoring (default) or system-wide monitoring, i.e., each core is independently mon-

itored by newly spawned threads for monitoring purposes. System-wide support (See

Figure B.1) requires that these monitoring threads be pinned to the CPU core and

that each thread perform self monitoring, i.e., notifications sent due to events gener-

ated by a thread’s execution should go to the same thread. Since we run OpenMP

parallel benchmarks in our work and we explicitly pin our threads to the CPU cores,

we, in essence, perform system wide monitoring. However, we do not need to pass

any flag for this purpose. Other possible flags are PFM FL NOTIFY BLOCK and

PFM FL OVFL NO MSG. PFM FL NOTIFY BLOCK indicates that the thread be-

ing monitored should be blocked during an overflow notification. This flag is only

valid for a non self-monitoring per-thread session. The default behavior is to let the

monitored thread run while the overflow notification is processed. Since we perform
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self monitoring, we do not use this flag as this can lead to a deadlock where the thread

receiving the asynchronous notification can itself get blocked, thereby preventing the

execution of the signal handler itself. PFM FL OVFL NO MSG indicates that the

application is not interested in receiving overflow notification messages. By default,

one message is generated for every notification. This flag is also not set in our imple-

mentation.

ctx fd is the descriptor that identifies the context. It is set to a positive integer if the

call to pfm create context() is successful.

ctx smpl buf size is valid only on successful return, i.e., when the selected sampling

buffer format exists and uses the buffer re-mapping service, this field contains the

actual size in bytes of the buffer.

User Space

Kernel Space

Monitoring Program

Core 0 Core 1 Core 1Core 0

NUMA NODE 0 NUMA NODE 1

fd 0 fd 1 fd 2 fd 3

Kernel  Threads

User/Worker  Threads

pfm ctx
fd table

Figure B.1: Monitoring across multiple cpu cores
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Sample format-specific parameters (e.g., PEBS format specific) are passed by ’smpl arg’

parameter. The P4/Xeon specific format is defined as:

typedef struct {
size t buf size; /* size of the buffer in bytes */

size t intr thres; /* index of interrupt threshold entry */

uint32 t flags; /* buffer specific flags */

uint64 t cnt reset; /* counter reset value */

uint32 t res1; /* for future use */

uint64 t reserved[2]; /* for future use */

} pfm p4 pebs smpl arg t;

PEBS writes the records in a buffer. Its size can be configured by ’buf size’ member

of the above structure. An asynchronous notification may be generated once a certain

fraction of this buffer is filled. This fraction is given by the ’intr thres’ member. We

configure it as 90% of the total number of PEBS records (40 bytes) that can be placed

in this buffer.

2. Remapping the buffer to user space: The kernel-level sampling buffer is remapped

in the virtual address space of the user-level application. This is accomplished using

the ’mmap()’ system call. Without the mmap() call, the buffer exists and samples are

stored into it but they remain totally inaccessible from the user-level. The sequence

of calls is as follows:

pfm create context(&ctx, &buf arg, sizeof(buf arg)) ;

pfm fd=ctx.ctx fd;

. . .

(smpl hdr t *)mmap(NULL, ctx.ctx smpl buf size, PROT READ, MAP PRIVATE,

pfm fd, 0);

The buffer is of fixed size given by ctx.ctx smpl buf size and is always exported as

read-only. As such, only PROT READ is valid. Any write access is disallowed by

the virtual memory subsystem and may result in the termination of the controlling

process. The effect of mmap is shown in Figure B.2.
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Figure B.2: Memory mapping the sampling buffer

The PEBS format for the P4/Xeon exports a header that starts at the beginning of

the sampling buffer returned to the user. The header is declared as follows:

typedef struct {
uint64 t hdr overflows; /* # overflows for buffer */

size t hdr buf size; /* bytes in the buffer */

size t hdr start offs; /* actual buffer start offset */

uint32 t hdr version; /* smpl format version */

uint64 t hdr res[3]; /* for future use */

pfm p4 ds area t hdr ds; /* DS management Area */

} pfm p4 pebs smpl hdr t;

Because of PEBS alignment constraints, the actual PEBS buffer area does not nec-

essarily begin right after the header. The hdr start offs is used to compute the first

byte of the buffer. The offset is defined as the number of bytes between the end of
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the header and the beginning of the buffer. The following expression determines the

start of the buffer:

actual buffer = (unsigned long)(hdr+1)+hdr->hdr start offs

3. Setting up PMC for L1/L2 misses: Perfmon2 exposes the logical PMU to the

users. These logical registers are then mapped to the actual hardware registers by the

Perfmon2 implementation. We now describe the physical PMU configuration needed

to setup the Performance Monitoring Control (PMC) registers and how this is actually

accomplished using libpfm support.

Selecting Replay Event: As mentioned in Section 2.2 , we use the replay tagging

mechanism for tracking L1/L2 misses. There are a total of 45 Event Select Control

Register (ESCR) MSRs in the PEBS PMU of the Intel Xeon that can be written

to by the software to count specific events. Associated with each ESCR is a pair

of performance counters and each performance counter can count events selected by

multiple ESCRs. The format of ESCR MSR is shown in Figure B.3.

31 30 25  24 9 8                    5    4   3    2  1     0

Event MaskEvent Select Tag 

Value

Tag Enable

OS

USR

Reserved

Reserved

63                                                                                                                           32

Figure B.3: Event Select and Control Registers for Pentium4 and Intel Xeon Processors

The following flags and fields are relevant to us:

• USR flag: If set, the events are counted when processor is running at the current

privilege level (CPL) of 1, 2, or 3. These privilege levels are generally used by

application code and unprotected operating system code. This needs to be set.
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• Event mask field, bits 9 through 24: Selects specific events from an event class

that is specified by the event select field. We set a mask of 1 which signifies that

the marked micro-ops are “Non Bogus” (NBOGUS).

• Event Select field, bits 25 through 30: Selects a class of events to be counted.

The events within this class that are counted are selected with the event mask

field. For the replay event, a value of 0x9 needs to be assigned to it.

libpfm configuration

The MSR CRU ESCR2 register is mapped to logical register 21

(See lib/pentium4 events.h). Through libpfm, it is configured as:

npmcs = 0 ;

pc[npmcs].reg num = 21;

To set the values in the above fields/flags, we do the following operation:

pc[npmcs].reg value = (9ULL << 25) | (1ULL << 9) | (1ULL << 2);

npmcs++ ;

Counter Configuration Control Register (CCCR) Setup: Each performance counter

has an associated control register called CCCR. These registers can enable or disable

counting and also associate events with the counters. The following flags and fields

are relevant for the current work:

• ESCR select field, bits 13 - 15: Selects events to be counted by identifying the

ESCR associated with the CCCR. It gets the value 0x5 (refer to Table A-7 of

[11]).

• Enable flag, bit 12: We need to set this flag to enable counting L1/L2 cache

misses.

• Reserved bits 16,17: These must be set to 11b as shown in the x86 manual [11].

libpfm configuration

For PEBS, the MSR IQ CCC4 register is used. This is mapped to the PMC register

number 31. Here is how we configure CCCR using libpfm:

pc[npmcs].reg num = 31;
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pc[npmcs].reg flags = PFM REGFL NO EMUL64;

pc[npmcs].reg value = (5ULL<<13) | (1ULL<<12) | (3ULL<<16);

npmcs++ ;

With PFM REGFL NO EMUL64 flags, 64-bit emulation is disabled by the kernel on

the associated counter. Otherwise, spurious interrupts get generated for every counter

overflow.

Enabling PEBS for L1/L2: Additional MSRs are required for replay tagging for

L1/L2 cache miss (refer Table A11 in [11]). In MSR PEBS MATRIXD VERT, bit 0

needs to be set for both L1 and L2 cache load miss metrics. This is configured as

follows:

pc[npmcs].reg num = 63;

pc[npmcs].reg value = 1;

npmcs++ ;

In MSR IA32 PEBS ENABLE, for L1 load miss, bits 0 (PEBS enable bit), 24 and 25

need to be set, whereas for L2 load miss, bits 1, 24 and 25 need to be set. This is

done as follows:

pc[npmcs].reg_num = 64;

if(prop_pebs_source == pebs_source_l2)

{

pc[npmcs].reg_value = (1ULL<<25)|(1ULL<<24)| (1ULL << 1) ;

}

else

{

pc[npmcs].reg_value = (1ULL<<25)|(1ULL<<24)| 1ULL ;

}

npmcs++ ;

To program the registers, the following library function needs to be called:
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int pfm write pmcs(int fd, pfarg pmc t *pmcs, int count)

Fd is the context descriptor returned after a call to pfm create context(), control

registers and their values are passed through the ’pmcs’ data structure, and count is

the number of PMC registers to be programmed.

4. Setting up PMD registers:

The logical PMU also exposes Performance Monitoring data (PMD) registers that

contain the actual information or counter values useful for the monitoring tools. We

now describe various PMD registers needed by our framework.

Event Notification:

Perfmon manages a first-in, first-out (FIFO) queue of messages that can be used to

notify an application when a counter overflows. A message with the following structure

is appended to the end of the queue when a counter overflows or a monitored thread

terminates:

typedef union {

uint32_t type;

pfm_ovfl_msg_t pfm_ovfl_msg;

} pfm_msg_t;

The message can be read by using the “read” I/O system call on Perfmon’s file de-

scriptor. Only one message queue is maintained per context.

The following types of messages are defined:

• PFM MSG OVFL: overflow notification message. It is associated with the

pfm ovfl msg t structure.

• PFM MSG END: termination message. It is not associated with any particular

message type.

We need to pass a flag ’PFM REGFL OVFL NOTIFY’ to get an overflow notification

(message of type PFM MSG OVFL). This is done as follows:

pd[0].reg num = 8; /* Selecting IQ CTR4 register */

pd[0].reg flags = PFM REGFL OVFL NOTIFY;
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Sampling Period:

For event-based sampling, a sampling period is expressed as a number of occurrences

of an event. The PMU needs to be informed of this sampling period. As it turns out,

most PMUs can not detect a user defined threshold for recording number of events.

For example, it does not work to program a value of 1000 to configure a PMU to

record a sample after every 1000 events. The way it works with modern PMUs is,

that a counter needs to be set with a value equal to maximum counter value minus the

sampling interval since the counter logic would only increment the counter after every

occurrence of the specified event. After the counter reaches a maximum value, an

overflow would occur that can be detected by the hardware (as an overflow implicitly

causes setting of a flag that can be checked easily by the hardware) and an interrupt

is raised. The kernel catches the interrupt and notifies the monitoring tool. Using this

mechanism, a sampling period is expressed as an offset from the maximum value of the

counter. In our implementation, we read the sampling period from a configuration file.

From the point of view of a monitoring tool, counters are always 64 bits. Therefore a

sampling period ’p’ is always expressed as:

pmd value = 264 - p = ∼0 - p - 1 = -p

The interface provides three sampling periods per counter. They are defined as follows:

• The current period is specified in the reg value field. It represents the current

sampling period. When the context is detached, this is actually the initial sam-

pling period to be used.

• The short period is specified in the reg short reset field. It represents the sampling

period to reload into the PMD register after an overflow that does not trigger a

user-level notification.

• The long period is specified in the reg long reset field. It represents the sampling

period to reload into the PMD register during a call to restart monitoring (via

pfm restart()).

The following ’C’ statement assigns the sampling period:

pd[0].reg value = -prop pebs period;
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It was found that a sampling interval of 10 is a good compromise. A sampling interval

of ’1’ is too lossy, whereas higher sampling intervals can miss a lot of events.

pd[0].reg long reset = -prop pebs period;

pd[0].reg short reset = -prop pebs period;

To program the pmd registers following function is called:

int pfm write pmds(int fd, pfarg pmd t *pmds, int count) ;

5. Getting ownership of the descriptor and setting up asynchronous notifica-

tion:

Our framework is intended to provide library support for OpenMP parallel applica-

tions. While tracing, the application is instrumented to configure, start and stop the

monitoring. It is usually a good choice to be informed of the available records writ-

ten by the PMU rather than polling the memory buffer. This allows the application

to keep doing its main job for most of the time and thus reduces the overhead of

monitoring. The Perfmon2 implementation facilitates this by allowing us to request

a SIGIO signal when a message is appended to the message queue. The setup follows

the regular procedure to request asynchronous notification on a file descriptor. On

Linux, for instance, the thread to be traced uses the fcntl() system call to:

• request that the file be put in asynchronous notification mode using the O ASYNC

flag and to

• request ownership of the descriptor using the F SETOWN command.

6. Loading the Perfmon context: Perfmon context can be loaded by the following

function:

int pfm load context(int fd, pfarg load t *load);

This function returns error if the context could not be loaded, else it returns 0. The

command applies to the context identified by ’fd’. The descriptor must identify a

valid context. The command takes one argument of type ’pfarg load t’ pointed to by

the argument ’load’. For our purpose, only one field in ’load’ is important, namely

’load pid’, which is set to the thread-id of the controlling thread. On Linux, this is the

value returned by gettid() on NPTL-enabled (Native Posix Thread Library) systems.
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Figure B.4: Effect of pfm load context

Loading the Perfmon context is necessary to monitor a specific thread since it loads

the software state of the designated event set onto the actual PMC and PMD registers.

The thread to which the context is attached is called monitored thread and the thread

that does this attachment is called controlling thread. For self-monitoring threads, the

controlling thread is the monitored thread (see Figure B.4).

With our framework, each thread is explicitly pinned on a CPU core, and each thread

performs self monitoring. For PEBS, we profile one thread at a time, i.e., we run the

trace execution run ’n’ number of times, where ’n’ is the number of threads of OpenMP

parallel benchmarks. This is because the traces were obtained on a machine with fewer

cores than threads, and it was observed that overflow notification signal meant that

a thread was interrupted by another thread sharing the processor. This defeats the

purpose of self-monitoring, which is experimentally found to be more stable. Also, the

truncated runs ran longer compared to the runs on Itanium2 processors (in previous

work) as PEBS traces on the Xeon took more runs before becoming representative

of memory accesses. However, this is not a limitation of our design. If we had full
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hardware resources (number of cores >= number of threads and stable PEBS traces),

we could have performed tracing along the lines of the trace design on Itanium2

machines [20].

B.2 Configuring PEBS-based PMU on Core2 Machine using

libpfm

For Core2 Duo machines, a later version of libpfm, libpfm-3.2-071017 is used.

Configuration steps are enumerated below.

1. Initialize Perfmon library: A call to pfm initialize() is made. It detects the PMU

support for the machine and reports error if the internal sanity tests fail.

2. Create Perfmon context: This step is same as in Section B.1.

3. Search for an L1/L2 miss event: The latest libpfm provides a very useful function:

int pfm find full event(const char *str, pfmlib event t *ev) ;

An event name is passed in one of the fields of the ’ev’ structure. This function

searches for the corresponding event descriptor and event mask (if needed). These

fields along with the number of masks are populated in the fields of ’ev’ as a result of

this function call.

For L2 and L1 cache misses, the following strings are respectively searched:

(a) MEM LOAD RETIRED:L2 MISS and

(b) MEM LOAD RETIRED:L1D MISS.

4. Remapping the buffer to user space: This is same as in Section B.1.

5. Get the PMC and PMD register values from libpfm:

This library makes it easy for the users to get the values of PMC and PMD registers

for the ’pfmlib event t’ returned by the ’pfm find full event’ data structure. This is

accomplished through the following function:

int pfm dispatch events(pfmlib input param t *p, void *mod in, pfmlib output param t

*q,void *mod out);
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The input arguments are divided into two categories: the generic arguments in p

and the optional PMU model specific arguments in mod in. The same applies for the

output arguments: q contains the generic output arguments and mod out the optional

PMU model specific arguments.

In p, we pass the event count (1 because we measure either L1 or L2 miss event in

test run) and the privilege level of the code to be traced. Since we are interested

in tracing user-level application code, we pass PFM PLM3 (least privilege level 3) in

the pfp dfl plm flag of p. Through mod in, we inform libpfm that we are using PEBS

support of the Core2 PMU.

The generic output parameters contains the register index and values for the PMC

and PMD registers to obtain the measurement.

6. Program PMC and PMD registers: This step is same as in Section B.1.

7. Getting ownership of the descriptor and setting up asynchronous notifica-

tion.

8. Load Perfmon Context: This is also same as in Section B.1.
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Appendix C

The Instruction Decoder (Parser)
This is the most important module in our framework. It takes the instruction

pointer (of cache load miss instructions), and the contents of other architectural registers

as input and gives the effective address as the output after decoding the instructions. The

major components of its design are as follows:

1. Parser Initialization: The function parser init() initializes the parser. This function

reads the “/proc/<process id>/maps” file for code segments. An example of a map

file is shown below:

00400000-00555000 r-xp 00000000 00:15 787656 /home/b

zcmuell/NAS_RUNS/mg.C

00755000-00763000 rw-p 00155000 00:15 787656 /home/b

zcmuell/NAS_RUNS/mg.C

00763000-0077e000 rw-p 00763000 00:00 0

123c1000-3fff4000 rw-p 123c1000 00:00 0

40000000-40001000 ---p 40000000 00:00 0

40001000-40a01000 rw-p 40001000 00:00 0

40a01000-40a02000 ---p 40a01000 00:00 0

40a02000-41402000 rw-p 40a02000 00:00 0

41402000-41403000 ---p 41402000 00:00 0

41403000-41e03000 rw-p 41403000 00:00 0

41e03000-41e04000 ---p 41e03000 00:00 0

41e04000-42804000 rw-p 41e04000 00:00 0
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42804000-42805000 ---p 42804000 00:00 0

42805000-43205000 rw-p 42805000 00:00 0

43205000-43206000 ---p 43205000 00:00 0

43206000-43c06000 rw-p 43206000 00:00 0

. . .

In Linux, the code segment is usually mapped to the lower addresses (upper view in

the maps file). We scan at most first 50 lines to get the lower and upper value of the

address ranges and store it in an array of a range structure. Since these ranges are

arranged in increasing order, we coalesce two or more ranges if the upper value of one

range is the same as the lower value of the next range. This is a small optimization

for fast lookup of instruction pointers.

2. Validating the Instructions

The instruction pointers from the Perfmon traces are validated for correctness. Either

of these failure cases are possible:

(a) The instruction pointer (IP) is not in a valid range as verified by comparing it in

the address ranges calculated above. An error code of 1 is returned for this case.

(b) The opcode of the instruction is not understood by our parser. The x86 architec-

ture is a complex instruction set architecture (CISC) that has multiple instructions

referring to memory. It is challenging to decode each and every instruction, mostly

due to the variable-length instruction format. Each test benchmark is run to deter-

mine the load miss instructions, and the corresponding opcode is supported in the

parser. However, some opcodes which are not that frequently seen (by the instruc-

tions causing load miss) are neglected. An error code of 2 is returned for this case,

and these instructions with their opcodes are printed out on standard output.

(c) Due to some PMU bugs, some invalid instructions that may not refer to memory

(do not involve a load µop) may be traced. For these, we evaluate 0 as the effective

address and return an error code of 3.

Internal counters are incremented for all the above cases. Invalid instructions are

filtered out after this step.
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3. Parsing Valid Instructions: This component is very specific to the x86 ISA. In the

current code base, support for the x86-64 (IA-32e) is also provided in addition to the

support for x86 (IA-32) Instruction Set Architecture (ISA). Manuals [12] and [13] can

be consulted to decode the instructions.

Instruction  

Prefixes
Opcode MOD R/M SIB Displacement Immediate

1/2/3 byteoptional 1 byte

(if required)

1/2/3 byte

(if required)

Address 

displacement 

of 1,2, or 4 

bytes (if 

needed)

Immediate 

data of 1,2, or 

4 bytes (if 

needed)

7         6  5               3  2             0                                           7            6 5             3 2   0

Scale Index BaseMOD Reg 

/Opcode
R/M

REX 

Prefix

optional 

(only valid 

for 64 bit )

Figure C.5: Instruction format for Intel’s EMT-64 and IA-32 architectures

Figure C.5 shows the instruction format for a 32bit/64 bit architecture. The REX

prefix is not present in 32 bit processors. The following steps are needed to determine

the effective address of a memory access from an instruction:

(a) Remove Instruction Prefixes: There are four groups of instruction prefixes.

At most one prefix from each group may be used by an instruction. The following

opcodes are checked to verify if instruction prefixes are present:

• Group1: Lock and Repeat prefixes: 0xf0, 0xf2, 0xf3

• Group2: Segment override prefixes: 0x2e, 0x36, 0x3e, 0x26, 0x64, 0x65

• Group3: Operand size override prefixes: 0x66, 0x0f

• Group4: Address size override prefixes: 0x67



72

A detailed explanation can be found in [13]. Function legacy prefix check(unsigned

char **ip ptr) takes an IP and advances the IP beyond the instruction prefix part

of the instruction (if instruction prefix is present) .

(b) Filtering REX prefix if present:

The IA-32e (e.g., Core2 machine is 64 bit or IA-32e) mode has two sub-modes.

These are:

• Compatibility Mode: This is the mode used by a 64-bit operating system to

run legacy software written for a 32 bit architecture without any modifica-

tions.

• 64-Bit Mode: This mode is used by a 64-bit operating system to run native

applications written to access a 64-bit address space.

REX prefixes are instruction-prefix bytes used in 64-bit mode. They do the

following:

• specify GPRs and SSE registers;

• specify 64-bit operand size; and

• specify extended control registers.

Not all instructions require a REX prefix in 64-bit mode. A prefix is necessary

only if an instruction references one of the extended registers or uses a 64-bit

operand. REX prefixes are opcodes in the range of 40H-4FH. We filter out REX

prefix bytes by using the following function:

int rex present(unsigned char rex byte, uint8 t* rex val) ;

This function returns a boolean value 1 if the REX prefix is present, otherwise

0. If present, it returns the prefix in argument ’rex val’ . We increment the

instruction pointer by 1 byte. Sometimes, the compiler may add a legacy prefix

(instruction prefixes of group 1,2,3 or 4) after the REX prefix, which we may

need to filter out by calling legacy prefix present().

The same opcodes for the REX prefix are available as INC/DEC instructions in

the 32 bit mode (IA-32) and there is no REX prefix there. But even in that case,

this assumption of the REX prefix range from 40H-4FH holds because INC/DEC

instructions do not have any memory operands and, thus, would never be traced

by the PMU configured for L1/L2 load miss events.
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(c) Identifying ’load’ memory instructions: By experimental runs of our target

benchmarks, some instructions (and their opcodes) have been identified that

reference memory quite often. These instruction opcodes are enumerated in our

framework as follows:

typedef enum \{

FLDL=1,

FLDCW,

MOV_A1,

MOV_8B,

. . .

CMP_XCHNG_B1, // Compare and exchange

// instruction also references memory.

XADD_C1

} Linst;

After all the prefixes have been filtered out, the IP now points to the opcode

of the instruction. The function get load ins() compares the instruction opcode

against the predefined opcodes. If a match is found, the appropriate enumerated

opcode (as shown above) of the instruction is returned, else 0 is returned, which

implies that the opcode was not found. The actual IP and unsupported opcode

is printed out on standard output for further analysis.

(d) Filling ’Instr’ structure: The following structure defines a valid instruction

for us:

typedef struct

{

unsigned int opcode;

short int mod_rorm ; // ModR/M byte... one byte extra here

short int sib ; //scaled index... one byte extra

unsigned int displ; //Displacement

unsigned int imm; // immediate

} Instr ;

These fields are described below:
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• opcode: This field stores the primary opcode of the instruction. It can be

1, 2 or 3 bytes. If it is 2 or 3 bytes, it contains some legacy prefix that is

filtered out in previous steps. We only store the last byte of the opcode in

this field.

• mod rorm byte and sib byte: The x86 architecture supports various address-

ing modes for instructions referring to an operand in the memory. It contains

the following three fields of information (see Table C.5).

- The ’mod‘ field identifies types of addressing modes. Combined with ’r/m’

field, this identifies an exact addressing mode. For example, if mod is 01b, the

effective address would be of type [<reg value>] + one byte displacement.

But if mod is 10b, the effective address is of type [<reg value>] + four byte

displacement. Here, ’reg value’ is the base address stored in the general

purpose register defined by ’r/m’ field of ModR/M byte.

- The ’reg/opcode’ field specifies either a register number or three more

bits of opcode information. It is not used in the calculation of the effective

address even though the purpose of the reg/opcode field is specified in the

primary opcode.

- If mod is 11b, the value of r/m specifies a register as an operand, else

it helps to identify a register that contains the base address for a specific

addressing mode.

Table C.1: Example of use of MODR/M byte
MOD R/M Effective Address (EA)
11 001 ECX
10 001 [ECX]+disp32
01 001 [ECX+disp8]
00 001 [ECX]

Table C.1 depicts the use of the MODR/M byte in evaluating the effective

address. Note that in the first row, the ECX register is the operand and

there is no effective address. In second row, a 32 bit displacement is added

to the contents of the ECX register to calculate the effective address (EA)

whereas 8 bit displacement is added to the contents of the ECX register

in the third row to calculate the effective address. In the fourth row, the



75

contents of the ECX register indicates the effective address. This is how the

MODR/M generates various addressing modes.

A second addressing byte (SIB byte) may be needed with certain encodings

of ModR/M byte. The SIB byte includes the following fields:

- The scale field (SS) specifies the scale factor, i.e., the multiplication factor

that is used to calculate the scaled index.

- The index field (Index) specifies the register number of the index register.

- The base field specifies the register number of the base register.

Figure C.5 depicts the bit positions in the SIB byte for the above fields. The

following example shows how the ’scaled index’ and ’base’ fields are used in

calculating effective address:

Table C.2: Example of use of SIB byte
MOD SS Index Base Effective Address (EA)
00 00 101 000 [EAX] + [EBP]
10 01 101 000 [EAX] + [EBP]*2 + disp8
11 10 101 000 [EAX] + [EBP]*4 + disp32

The multiplication factor of two and four in the second and third column is

due to the scale factor(SS). [EAX] is the base address because the base field

is 000b.

These instruction encodings are explained in detail in [12] .

For our implementation, the enumerated opcode received from the previous

step helps to identify if the instruction has the ModR/M byte present. Most

of the instructions apart from ’MOV A1’ have the ModR/M byte present.

The SIB byte is determined by calling a function

check sib(Instr* lmiss, unsigned char* ip).

This function checks if R/M bits of the MODR/M byte have only bit 2 set,

i.e.,

if ( (sib & 0x7) == 0x4 ) { lmiss-> sib = *ip }
• Displacement And Immediate Bytes: Some addressing forms include a dis-

placement immediately following the ModR/M byte (or the SIB byte if one

is present). If a displacement is required, it can be 1, 2, or 4 bytes. If an

instruction specifies an immediate operand, the operand always follows any
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displacement bytes. An immediate operand can be 1, 2 or 4 bytes. However,

they do not contribute to the effective address calculation. Hence, we ignore

them.

In our implementation, we always read the next 4 bytes, and depending on

the type of instruction, the extra bytes may be discarded. Also, a Little

Endian architecture is assumed where the least significant byte of a word is

stored at the lowest address. An implication of this assumption is that we

need to left shift the higher bytes to get a correct displacement value.

(e) Calculate the Effective Address: After filling the ’Instr’ structure, the ef-

fective address is computed. The prototype of the function for this operation

is:

uint64 t calc effective add(Instr* instr, smpl entry t* ent,uint8 t rex val)

It takes instruction ’instr’, the contents of general purpose and other registers

returned by the PEBS record format in ’ent’ and the REX prefix in ’rex val’. For

instructions that do not have any REX prefix, a value of 0 is passed in ’rex val’.

Effective Address Calculation for 32 bit instructions (No REX Prefix)

As mentioned before, the two most significant bits in the ModR/M byte repre-

sent MOD, which identifies the basic addressing mode used by the instruction.

A binary MOD value of ’11’ is not relevant for us as it represents a register

addressing mode. Load miss instructions inherently refer memory. Fields MOD

and R/M are extracted from the MODR/M byte using bitwise operations. An

internal table (implemented through a switch-case construct) is first indexed by

MOD and then by R/M to calculate the effective address based on Table 2.2

shown in Intel’s software manual [12] .

We may need to decode the SIB byte if R/M is 100b. The following function is

called to decode SIB byte.

unsigned long decode sib(int mod,int sib,smpl entry t* ent,unsigned int disp, int

*is displ added,uint8 t rex val) ;

MOD is passed in the ’mod’ argument. The architectural register state is stored

in the ’ent’ argument. At most 4 bytes of displacement are given by disp. If this

function adds displacement, a flag (is displ added) is set to 1. For 64 bit address-

ing modes, a ’rex val’ argument is also passed (as explained in next Section).
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The base field in the SIB byte is extracted using bitwise operations. This iden-

tifies the base register. Then SS and index fields are also extracted. These fields

are used to identify the scaled index (using switch-case block). The scaled index

is added to the contents of the base register identified above. However, there is

an exception. If base field has a value 0x5H, the addressing modes are given by

Table C.3.

Table C.3: Decoding SIB byte if base = 0x5
MOD bits Effective Address
00 [scaled index] + disp32
01 [scaled index] + disp8 + [EBP]
10 [scaled index] + disp32 + [EBP]

In these cases, the above function calculates and returns the effective address

and sets the is displ added flag to 1 (true). This flag then identifies if further

addition of displacement values is required to calculate the effective address.

Effective Address Calculation for 64 bit addresses

Recall from 3b that the REX prefix helps in the identification of extra registers

(R8-R15). The format of the REX prefix is shown in Figure C.6.

Field Name Bit Position Definition

- 7:4 0100

W 3 0 = Operand size is 

determined by CS.D

1= 64 bit Operand

R 2 Extension of Mod R/M reg 

field

X 1 Extension of SIB index field

B 0 Extension of ModR/M field, 

SIB base field, or Opcode 

reg field

Figure C.6: REX prefix fields

Bits ’X’ and ’B’ are used for extending registers. If SIB is not present (Figure
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C.7), bit ’X’ is not used. Bit ’B’ is then used to extend the R/M flag of the

MODR/M byte. So, R/M now becomes 4 bits wide, which means that it can

now identify 16 unique combinations of effective addresses for an addressing

mode identified by MOD bits (remember that MOD=11b/ specifies the register

addressing mode that is not represented by a load miss instruction).

REX PREFIX

0100WR0B

Opcode

MOD R/M

Mod

(not equal 

to 11)

Reg

r r r 

r/m

b b b

R r r r B b b b

Figure C.7: Memory Addressing when SIB byte is not present

If the SIB byte is present (Figure C.8), bit ’B’ is not prefixed to the R/M flag.

Rather, it is prefixed to the base field of the SIB byte, thus identifying more base

registers (R8-R15). The ’X’ bit is now prefixed to the index field of the SIB byte,

thus identifying 8 more scaled index values.

REX PREFIX

0100WRXB

Opcode
MOD R/M 

Mod Reg

r  r  r 

r/m

b b b

R r r r B b b b

SIB Byte

Scale

ss

Index

x x x

base

b b b

X x x x

Figure C.8: Memory Addressing when SIB byte is present


