
ABSTRACT

SAINI, AJAY. Affinity-Aware Checkpoint Restart. (Under the direction of Dr. Frank Mueller.)

Current checkpointing techniques employed to overcome faults for HPC applications result

in inferior application performance after restart from a checkpoint for a number of applications.

This is due to a lack of page and core affinity awareness of the checkpoint/restart (C/R)

mechanism, i.e., application tasks originally pinned to cores may be restarted on different cores,

and in case of non-uniform memory architectures (NUMA), quite common nowadays, memory

pages associated with tasks on a NUMA node may be associated with a different NUMA

node after restart. This work contributes a novel design technique for C/R mechanisms to

preserve task-to-core maps and NUMA node specific page affinities across restarts. Experimental

results with BLCR, a C/R mechanism, enhanced with affinity awareness demonstrate significant

performance benefits with negligible overheads compared to its affinity-agnostic counterpart.

© Copyright 2014 by Ajay Saini

All Rights Reserved

Affinity-Aware Checkpoint Restart

by
Ajay Saini

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Computer Science

Raleigh, North Carolina

2014

APPROVED BY:

Dr. William Enck Dr. Steffen Heber

Dr. Frank Mueller
Chair of Advisory Committee

DEDICATION

To my parents.

ii

BIOGRAPHY

Ajay Saini was born in Bahadurgarh, a small town in the state of Haryana in India. He did his

schooling in Bahadurgarh and New Delhi and went to YMCA University of Science and Tech-

nology Faridabad, Haryana for his B.Tech in Computer Science. He joined ST Microelecronics

Pvt. Ltd. as a Systems Engineer and worked there for three years. He came to NC State in Fall

2012 as a Master’s student in the department of Computer Science. He has been working under

Dr. Frank Mueller as a Research Assistant since August 2013.

iii

ACKNOWLEDGEMENTS

This work would not have been possible without the collective effort of a lot of people. First

and foremost, I would like to thank my advisor Dr. Frank Mueller for showing confidence in me

and giving me the opportunity to work on this project. His guidance and feedback put me on

the right track from time to time. I would like to thank Eric Roman and Paul H. Hargrove at

Lawrence Berkley National Laboratory for their advice and support. Special thanks to Arash

Rezaei, PhD student under Dr. Frank Mueller, for his continuous support and guidance when

I hit an impasse. I am thankful to Dr. William Enck and Dr. Steffen Heber to serve on my

committee. Lastly, I would like to thank my labmates in the System Research Lab and my

family for their support.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

Chapter 1 Introduction . 1
1.1 High Performance Computing (HPC) . 1
1.2 Fault Tolerance . 1
1.3 Checkpoint/Restart and BLCR . 2
1.4 OpenMP . 2
1.5 NUMA Architectures . 3

Chapter 2 Motivation, Hypothesis and Contribution 5
2.1 Motivation . 5
2.2 Hypothesis . 7
2.3 Contributions . 7

Chapter 3 Design . 8
3.1 Original BLCR Checkpoint-Restart Flow . 8

3.1.1 Checkpoint flow . 8
3.1.2 Restart flow . 9

3.2 Saving and Restoring Affinity Information . 9
3.3 Affinity Aware BLCR Checkpoint-Restart Flow 12

3.3.1 Checkpoint flow . 12
3.3.2 Restart flow . 13

Chapter 4 Implementation . 14
4.1 Saving and Restoring Thread to CPU Core Affinity 14
4.2 Saving and Restoring Page to NUMA node Affinity 14

Chapter 5 Results . 16
5.1 Experimental Framework . 16
5.2 Experiments . 17
5.3 Performance . 18
5.4 Overheads . 22

5.4.1 Checkpoint file size overhead . 22
5.4.2 Checkpoint time overhead . 23
5.4.3 Restart time overhead . 23

5.5 LULESH Benchmark Results . 27

Chapter 6 Related Work . 29

Chapter 7 Future Work and Conclusion . 31
7.1 Future Work . 31

v

7.2 Conclusion . 31

References . 32

vi

LIST OF TABLES

Table 5.1 This table shows total iterations, and the iteration at which a checkpoint was
initiated in our experiments . 17

Table 5.2 % Change using the affinity-aware BLCR over the original BLCR for 16 Threads 22
Table 5.3 % Change using the affinity-aware BLCR over the original BLCR for 8 Threads 23
Table 5.4 Results for LULESH Benchmark for 16 Threads 27
Table 5.5 Results for LULESH Benchmark for 8 Threads 28

vii

LIST OF FIGURES

Figure 1.1 OpenMP: fork-join model of parallel execution [3] 3
Figure 1.2 Memory Access Architectures . 4

Figure 2.1 Effects of pinning and no-pinning . 6

Figure 3.1 Checkpoint flow . 10
Figure 3.2 Restart flow . 11

Figure 5.1 NAS Benchmark (CLASS C) execution time after restart (excluding restart
time) . 18

Figure 5.2 NAS Benchmark (CLASS C) total CPU migrations after restart 19
Figure 5.3 NAS Benchmark (CLASS C) average execution time of each iteration be-

fore checkpoint, after checkpoint using AA-BLCR and after checkpoint using
Original-BLCR . 20

Figure 5.4 NAS Benchmark (CLASS C) checkpoint file size 24
Figure 5.5 NAS Benchmark (CLASS C) checkpoint time 25
Figure 5.6 NAS Benchmark (CLASS C) restart time . 26

viii

Chapter 1

Introduction

1.1 High Performance Computing (HPC)

HPC systems, also popularly referred to as Supercomputers, generally capitalize on aggregating

computing power in a way that delivers much higher performance than one could get out of

a typical single desktop computer or workstation in order to solve large problems in science,

engineering, or business [1]. They are used for a wide range of computationally intensive tasks

in various fields, including quantum mechanics, weather forecasting, climate research, oil and

gas exploration, molecular modeling and physical simulations. HPC systems have been shifting

from expensive massively parallel architectures to clusters of commodity PCs to take advan-

tage of cost and performance benefits. The TOP500 [4] list provides rankings of the fastest

supercomputers according to their LINPACK benchmark results twice a year.

The parallel architectures of supercomputers may require the use of special programming

techniques to exploit their full potential. Message passing is one of the widely used programming

paradigm for HPC systems. Application work is divided among nodes/systems and they com-

municate through messages to solve large problems. The Messsage passing Interface (MPI) is

a standardized and portable message-passing API (Application Programming Interface) widely

used in research and industry. The standard defines the syntax and semantics of core of library

routines for writing portable message-passing programs in Fortran or C/C++. Several mature

and efficient implementations of MPI exists, including OpenMPI, MPICH and MVAPICH. More

and more applications utilize MPI to exploit the computing power of HPC systems.

1.2 Fault Tolerance

HPC systems have large computing power. But at large scale, systems become unreliable as

their component count (10,000s or even 100,000s of processing cores) increases the overall fault

1

rates. HPC systems may experience both software faults and hardware faults. The mean time

between failures (MTBF) / interrupts (MTBI) is in the range of 6.5-40 hours depending on the

maturity / age of HPC installations [28]. Faults may result in a lost computation or, if handled

via fault tolerance, in an increase in execution time and cost of running the applications. Fault

tolerance is an active area of research which pertains to improving reliability of HPC systems.

1.3 Checkpoint/Restart and BLCR

Checkpoint/Restart is one of the most widely used mechanism for fault tolerance for HPC

systems. Using this mechanism, the state of the application is saved at regular intervals on

stable storage. When a fault is encountered, then instead of restarting the application from the

beginning, it can be started from the last checkpoint. This saves the cost and time required to

re-execute the entire application when faults occur.

BLCR [11] is one such checkpoint/restart mechanism. It is implemented as a Linux kernel

module combined with a user-level shared library. It can checkpoint a multi-threaded application

and its support has also been extended to MPI implementations like OpenMPI, enabling it to

checkpoint multi-process applications. It provides command line tools and function calls to

checkpoint/restart an application. Using simple commands, e.g., cr checkpoint 〈processid〉, an

application can be checkpointed and its state is written to a file on disk. In case of a fault,

the application can be restarted from the checkpoint file using the cr restart 〈checkpoint file〉
command.

1.4 OpenMP

OpenMP [3] is an API jointly defined by a group of major computer hardware and software

vendors with the goal of providing a standard among a variety of shared memory architectures

and platforms. It is comprised of three primary API components: Compiler directives, runtime

library routines and environment variables. The API supports C/C++ and Fortran on a wide

variety of architectures. For example, in the C language, the gcc compiler flag -fopenmp and

header file omp.h enables support for OpenMP.

OpenMP programs exploit parallelism exclusively through the use of threads. The program-

ming paradigm uses the fork-join model of parallel execution (see Figure 1.1). All OpenMP

programs begin as a single process, the master thread. The master thread executes sequentially

until the first parallel region construct is encountered. The master thread then creates a team

of parallel threads. The statements in the program that are enclosed by the parallel region

construct are then executed in parallel among the threads in a team. When the threads of a

team complete the statements in the parallel region construct, they synchronize and terminate.

2

Figure 1.1: OpenMP: fork-join model of parallel execution [3]

Only the master thread continues to execute. The number of parallel regions and the threads

that comprise them are configurable through compiler directives and/or environment variables.

OpenMP is commonly employed to exploit parallelism in HPC applications.

1.5 NUMA Architectures

Modern CPUs operate at higher execution rates than main memory can be accessed. With

the increase in the number of processing cores on a single system, uniform memory access

architecture (Figure 1.2(a)) can starve a set of processors, notably because only one processor

can access the computer’s memory at a time. NUMA [2] (Figure 1.2(b)) attempts to address

this shortcoming by attaching separate memory per processor (or group of cores), avoiding the

performance hit when several processors attempt to address the same memory. NUMA is a

computer memory design used in multiprocessing, where the memory access time depends on

the distance to memory location relative to the requesting processor. A NUMA system classifies

memory into NUMA nodes. A processor can access its own local NUMA node memory faster

than non-local memory (memory assigned to a remote NUMA node). NUMA designs typically

provide performance gains over other multiprocessing architectures, especially if a software

application is designed to take advantage of such a memory hierarchy.

3

Shared Memory

Interconnection Network

P1

Processing Cores

P2 Pn

(a) Uniform Memory Access

NUMA Nodes (2 CPU cores per NUMA node)

P1

M1

P2

 Interconnection Network

P3

M2

P4

Pn-1

Mn

Pn

(b) Non-Uniform Memory Access

Figure 1.2: Memory Access Architectures

4

Chapter 2

Motivation, Hypothesis and

Contribution

2.1 Motivation

With the recent rise in the number of processing cores on HPC systems (10,000s or even 100,000s

of processing cores), faults are also becoming common. The mean time between failures (MTBF)

/ interrupts (MTBI) is in the range of 6.5-40 hours depending on the maturity / age of the

installation [28]. Several approaches have been studied to enable fault tolerance in an HPC

environment. One of the widely used methods is Checkpoint/Restart (C/R). It involves saving

the context of a job/application at regular intervals and restarting the application from a saved

context if a failure occurs. Such an approach saves significant time because we do not have to

start the job from scratch. A large number of checkpoint-restart utilities have been developed,

each with its own advantages [22].

Another notable development attributed to the increase in the number of cores is an ac-

celerated shift towards distributed non-uniform memory access (NUMA) architectures. Such

architectures consist of collections of computing cores with fast local memory, communicating

with each other via a slower inter-chip communication medium. Access by a core to the local

memory, and in particular to a shared local cache, can be several times faster than access to

the remote memory or cache lines resident on another chip.

Several applications developed for such HPC environments take advantage of this non-

uniform memory arrangement. Applications, at times, are started with its threads pinned to

particular cores. This preserves both thread-to-core affinity and data-to-NUMA node (page-

to-NUMA node) affinity. Judicious bindings can improve performance by reducing resource

contention (by spreading processes apart from one another), reducing migration overheads and

NUMA remote memory access penalties (by reducing excessive process movement), or improving

5

inter-process communications (by placing processes close to one another). Figure 2.1(a) shows

an application with 4 threads pinned to particular cores. But when the same application is

executed without pinning (Figure 2.1(b)), its threads can migrate both locally (within a NUMA

node) or remotely (to another NUMA node). Such migrations might result in overheads as a

thread might be moved away from ”hot” caches or local NUMA memory.

Core0 Core1

 Local Memory

NUMA 0

Core3 Core2

Core0 Core1

 Local Memory

NUMA 1

Core3 Core2

thread1

thread2

thread3

thread4

(a) Application threads pinned to CPU cores

Core0 Core1

 Local Memory

NUMA 0

Core3 Core2

Core0 Core1

 Local Memory

NUMA 1

Core3 Core2

Remote migration

local migration

thread1

thread2

thread3 thread4

(b) Application threads not pinned resulting in migrations

Figure 2.1: Effects of pinning and no-pinning

There are various real world scenarios where pinning is beneficial, especially for applications

which are sensitive to such placement. For example, Dice et. al [10] talk about the benefits of

NUMA aware locks. Even Operating System (OS) process schedulers have inbuilt intelligence

to reduce migrations, and their memory allocators are NUMA aware such that data is allocated

6

on a local NUMA node where a thread is running.

Considering these two locality aspects - affinity awareness and checkpoint restart, perfor-

mance suffers when an affinity sensitive application is checkpointed, and later on restarted

using existing C/R techniques. Existing C/R techniques do not take affinity information into

account. Even if we start an application with its thread pinned as in Figure 2.1(a), when such

an application is restarted from a checkpoint, we might end up with an application run as in

Figure 2.1(b) as no pinning is enforced. This is the problem we target in this work: How can

we ensure that affinity information is preserved across restarts?

2.2 Hypothesis

We hypothesize that an application can regain its original runtime performance after restart

from a checkpoint if its affinity information, i.e., process-to-core affinity and memory page-to-

NUMA node affinity, is restored.

2.3 Contributions

When we restart an application from a checkpoint, we want that application to exhibit the

same affinity behavior it had before the checkpoint. In this work, we present a simple and novel

approach to save and restore affinity information. We have implemented our design in BLCR,

enhancing it to affinity-aware BLCR. BLCR [11] is a hybrid checkpoint restart mechanism for

Linux and is implemented as a kernel module with a user level library. With our enhancements

and through configurable options, applications can be checkpointed and restarted with affinity

awareness, both thread-to-core and page-to-NUMA node affinity. Applications that are sensitive

to CPU core pinning and NUMA memory placement experience significant benefits when using

the affinity-aware BLCR. We have evaluated the benefits of our enhancements on the NAS

Benchmark suite and see performance improvement ranging from 45% to 70% in application

execution time after restart compared to using the original BLCR. To the best of our knowledge,

we are first to implement such affinity awareness in a checkpoint restart mechanism.

7

Chapter 3

Design

In this section, we present a high-level overview of the BLCR design before focusing on our

enhancements for affinity awareness. For a detailed description of the BLCR design, see [11].

BLCR is implemented as a Linux kernel module combined with a user level shared library.

An application can be checkpointed (i.e., its current state is written to a file) and restarted from

a checkpoint file. Figure 3.1 and Figure 3.2 show the checkpoint and restart flow along with a

table of actions taken at each step. The table shows actions common to both implementations

(the original BLCR and the affinity-aware BLCR) as well as actions taken individually. Time

flows from top to bottom in each diagram. Activities performed in the checkpoint restart flow

are represented by numbers and described in the right halves of the figures.

In the following, we first discuss the checkpoint and restart flow of the original BLCR. Then

we describe our enhancements and present the checkpoint and restart flow of our modified

BLCR. We use a running example of an application with three threads in our description.

3.1 Original BLCR Checkpoint-Restart Flow

3.1.1 Checkpoint flow

When a checkpoint request is triggered, it results in the following sequence of actions (see

Figure 3.1):

Step1: After the initialization phase, one of the application threads is selected as a group

leader and the other threads wait for a wake up signal from the group leader.

Step2: The leader thread records parent/child relationships and then reaches a barrier to

wake up other threads. All threads then return from this barrier to reach another barrier.

Step3: While the other threads wait, the leader thread records its process id, register

contents and signals. It then saves shared items, including dirty pages, virtual memory maps,

8

mmaped files and protection flags in the checkpoint file. On reaching another barrier, it wakes

up the other threads and waits for them to complete.

Step4 and Step5: All threads save their private data including process id, register contents

and signals.

Step6: After all threads have reached the final barrier, they return from kernel space and

the application continues.

3.1.2 Restart flow

Restarting from a checkpoint is largely the inverse of the checkpoint process. A restart request

results in the following actions (see Figure 3.2):

Step1: Once the initialization phase is completed, the restart process performs an ioctl()

call, which causes the process to be forked. The parent process returns to user space and waits

for the restart to complete. The child is cloned as many times as there were threads in the

original application that is being restarted. One thread is selected as group leader, and the

other threads wait for a wake up signal from the leader thread.

Step2: The leader thread loads its register contents and signals. It unmaps the existing

virtual memory areas and remaps the virtual memory areas based on the information stored

in the checkpoint file. It loads the shared items including dirty pages and uses kernel support

(sys mprotect in Linux kernel) to restore protection flags. The leader thread then reaches a

barrier to wake up other threads and waits for them to complete.

Step3 and Step4: All other threads reloads their private data including registers and

signals.

Step5: After all threads reach a barrier, the leader thread locks the kernel process table and

restores the parent child relationship while the other threads wait. It then reaches a barrier,

where it wakes up the other threads and waits for them to complete.

Step6: After all threads have reached the final barrier, they return from kernel space, i.e.,

the application is restarted and resumes normal execution.

3.2 Saving and Restoring Affinity Information

The checkpoint and restart flow described in the previous section does not consider affinity

information, thread-to-core and page-to-NUMA node while checkpointing and restarting an

application. To save and restore this affinity information, we considered various design ap-

proaches.

For thread to core affinity, we prototyped (1) a brute force approach, wherein we would

extract and save the cpumask for each thread during checkpointing. During restart, we would

9

 Application
1

 BARRIER

 BARRIER

 BARRIER

Checkpoint
initiated

Return from
kernel space

leader thread

thread2 thread3 thread1

2

3

leader thread

4
other threads

5

thread2 thread3 thread1
6

last thread

(a) Checkpoint flow diagram

Steps Actions common to both
implementations of
checkpoint

Actions
performed only by
original BLCR
checkpoint

Actions performed only by
affinity-aware BLCR
checkpoint

1 Checkpoint
initiated

2 leader thread records
parent/child relationship

3 leader thread records
pid, registers, signals,
shared items - mmaps,
files, protection flags

leader thread
saves all dirty
pages

leader thread saves
cpumask, dirty pages on
local NUMA node only

4 other threads record pid,
registers, signals.

other threads record
cpumask, VM maps,
protection flags, dirty pages
on local NUMA node

5 last thread records pid,
registers, signals.

last thread saves cpumask
VM maps, protection flags,
dirty pages on local +
orphan NUMA node

6 Return from kernel space

(b) Table of actions taken during checkpoint

Figure 3.1: Checkpoint flow

10

 BARRIER

 BARRIER

 BARRIER

 do_fork()

 Restart

clone()

thread1 thread2 thread3

 Restart

2 leader thread

3
other threads

4
last thread

5 leader thread

1 Restart
Initiated

 Restart thread1
thread2

thread3

6
Return from
kernel space

(a) Restart flow diagram

Steps Actions common to both
implementations of
restart

Actions performed
only by original
BLCR restart

Actions performed only
by affinity-aware BLCR
restart

1 Restart initiated

2 leader thread loads pid,
registers, signals, unmaps
VMA’s and loads saved
VMA’s, files.

leader thread loads
all the pages as it
saved all of them,
restores protection
flags.

leader thread restores its
cpumask, loads local
NUMA saved pages

3 other threads load pid,
registers, signals

other threads restore
their cpumask and load
local NUMA saved pages

4 last thread loads pid,
registers, signals

last thread restores its
cpumask and loads local +
orphan NUMA saved
pages, restores protection
flags.

5 leader thread restores
parent/child relationship

6 Return from kernel space

(b) Table of actions taken during restart

Figure 3.2: Restart flow

11

directly overwrite the cpumask of each thread with the saved one. This provisionally works on

Linux, but may constrain portability as the state of a thread is modified without the kernel’s

knowledge. (2) We also tried to provide affinity information at the time of calling the clone

function. But the Linux clone API lacks such a flag. We decided to implement a modification

of the brute force approach. Instead of directly overwriting the cpumask, we would use kernel

support to change the cpumask, making the method portable and kernel aware.

For page to NUMA node affinity, we prototyped (1) an approach to save the NUMA nodeid of

pages while checkpointing. During restart, we use kernel support to migrate pages to appropriate

NUMA nodes. On Linux, this method requires calls to unexported kernel functions from a

kernel module and access to userspace buffer, both of which are not easily supported. Besides,

we realized this approach would have page migration overheads. (2) Another approach was to

divide the work of saving/loading pages among threads. This method was based on the fact

that most of the operating systems, nowadays, are NUMA aware, i.e., their memory allocator

allocates pages on the local NUMA node where the thread is running using the first touch

policy. This approach does not inflict migration overheads. This is the approach we chose.

3.3 Affinity Aware BLCR Checkpoint-Restart Flow

With the above design schemes, we modified steps 3, 4 and 5 of BLCR’s checkpoint flow.

Correspondingly, to use this new stored information, we modified steps 2, 3 and 4 of the restart

flow.

3.3.1 Checkpoint flow

A checkpoint request results in the following actions (see Figure 3.1):

Step1 and Step2: The same as earlier.

Step3: The leader thread, saves its process id, registers and signals. It also saves its cpumask.

It then saves shared items, including virtual memory maps, mmaped files and protection flags,

but only those dirty pages that belong to its local NUMA node. It then reaches a barrier where

it wakes up other threads and waits for them to complete.

Step4: The other threads save their private data, including process id, registers and signals.

Now, each thread also saves its cpumask and those dirty pages that belong to its local NUMA

node, if these pages have not already been saved by another thread belonging to the same

NUMA node. To maintain the original design flow and to account for the actions to be taken

during restart, virtual memory maps and protection flags are also saved without incurring

significant impact on the checkpoint file size.

Step5: The last thread, in addition to saving the same items as the other threads, also saves

12

those pages that belongs to a NUMA node on which none of the threads are running (which

we refer to as the orphan NUMA node).

Step6: The same as earlier.

3.3.2 Restart flow

A restart request results in the following actions (see Figure 3.2):

Step1: The same as earlier.

Step2: The leader thread loads the register contents, signals and cpumask. If cpumask is

not equal to its current cpumask, it resets it using kernel support. It then unmaps the existing

virtual memory areas and remaps the virtual memory areas using the stored information in the

checkpoint file. It loads its saved pages. As the thread is running as per the original cpumask

and, due to NUMA awareness of the memory allocator, pages are allocated on the same NUMA

nodes that they were on before the checkpoint. The saved protection flags are not restored here.

The leader thread then reaches a barrier where it wakes up other threads and waits for them

to complete.

Step3: The other threads load their private data, including registers, signals and cpumask.

Kernel support is needed to reset the cpumask. Then, the saved pages are loaded, and the pages

are allocated on the correct NUMA nodes.

Step4: The last thread additionally brings the pages belonging to orphan NUMA nodes to

its local NUMA memory and restores the protection flags, saved during checkpoint, for each of

the virtual memory maps.

Step5 and Step6: The same as earlier.

13

Chapter 4

Implementation

We implemented our enhancements in BLCR on Linux. We took the following issues into

consideration during our implementation. First, no changes should be made to the Linux kernel

code. Second, implemented features of BLCR like synchronization, should be reused to keep the

changes to minimum. Third, new updates should be flexible, i.e., they can be turned on/off via

command line parameters and/or environment variables.

4.1 Saving and Restoring Thread to CPU Core Affinity

To save and restore thread-to-core affinity, we need kernel support to access this affinity infor-

mation during checkpoint and reset it during restart. In the Linux kernel, CPU affinity is saved

in the cpumask of a Task Control Block (TCB) of a thread/process. While checkpointing, we

save this mask in the checkpoint file. During restart, we read this mask and then utilize the

Linux kernel call

i n t s e t c p u s a l l o w e d (s t r u c t t a s k s t r u c t *p , cpumask t new mask)

to reset the cpumask if the current mask is not equal to the saved one. This places the thread

as per the new mask on the original CPU core.

4.2 Saving and Restoring Page to NUMA node Affinity

To save and restore page-to-NUMA node affinity, we rely on the first touch memory policy of

Linux memory allocator, which allocates pages on the local NUMA node where the thread is

running. In order to implement it, we need two pieces of information: (1) which NUMA node

does a thread belong to and (2) which NUMA node does a page belong to. We utilize the kernel

call

14

i n t numa node id (void)

to inquire which NUMA node the current thread is running on. To obtain the page-to-NUMA

node mapping, we need page table information. BLCR already implements a page table walk

function to extract page information given a virtual address. We utilize it to determine the page

address and then use the kernel call

i n t page to n id (const s t r u c t page *page)

to determine the NUMA node of a page. Based on these two pieces of information, each thread

only stores pages that belong to its local NUMA node. To avoid duplicate savings of pages, we

use a flag array to keep track of NUMA nodes for which (potentially shared) pages have already

been saved. Each thread consults this array before saving a page. The last thread additionally

saves the leftover pages allocated on a NUMA node on which none of the threads are running

(orphaned NUMA node). During restart, each thread starts loading pages after it has been

rescheduled as per saved CPU affinity. Thus, each thread loads pages (utilizing the first touch

memory policy) on the correct NUMA node maintaining the page-to-NUMA node affinity.

We have added support for environment variables and command line parameters to turn

on/off these features. We have also added an additional environment variable to optionally reset

the CPU affinity of the threads during restart. This allows threads to optionally be moved to

a different set of CPU cores after restart.

15

Chapter 5

Results

5.1 Experimental Framework

Experiments were conducted on a node in a local cluster comprised of 108 compute nodes with

1728 cores. All machines are 2-way SMPs with AMD Opteron processors, eight 2GHZ cores per

socket (16 cores per node) and four NUMA nodes (4 cores forming one NUMA node). Linux

x86 64 version 2.6.32.27 is installed on each of the machines. The memory hierarchy consists of

three levels of cache, L1 (64KB), L2 (512KB), L3 (5MB), and a 32GB RAM.

We used the OpenMP version of the NPB (NAS Parallel Benchmarks) suite [7], [14] (ver-

sion 3.3) for our experiments. The NPB features a set of programs, BT, SP, LU, IS, FT, MG,

CG, EP, DC and UA, designed to help evaluate the performance of parallel supercomputers.

The benchmarks are derived from computational fluid dynamics (CFD) applications and orig-

inally consisted of five kernels (IS, FT, MG, CG, EP) and three pseudo-applications (BT, SP,

LU). These five kernels mimic the computational core of five numerical methods used by CFD

applications. The simulated CFD applications reproduce much of the data movement and com-

putation found in full CFD codes. The benchmark suite has been extended to include two new

benchmarks (UA, DC) for unstructured adaptive mesh, parallel I/O, multi-zone applications,

and computational grids. We conducted experiments with BT, SP, LU, IS, FT, MG, CG, and

UA. Others (SP, DC) did not have enough iterations to perform checkpoints/restarts.

We also present an analysis of affinity-aware BLCR for benchmarks/applications that are not

sensitive to thread-to-core or page-to-NUMA node mappings. We observed LULESH benchmark

to be one such example. LULESH [15] is a highly simplified kernel of an application, hard-

coded to only solve a simple Sedov blast problem. LULESH approximates the hydrodynamics

equations that describe the motion of materials relative to each other when subjected to forces.

16

Table 5.1: This table shows total iterations, and the iteration at which a checkpoint was
initiated in our experiments

NAS Bench-
marks

Total iterations Iteration no. at which a
checkpoint was initiated

BT 200 10

SP 400 10

FT 20 2

MG 20 2

LU 250 10

CG 75 10

UA 200 10

IS 10 2

5.2 Experiments

Experiments were conducted to assess (1) application execution time after restart from a check-

point file, our major target area, (2) checkpoint file size overhead, (3) checkpoint time overhead,

and (4) restart time overhead.

The input size for NAS parallel benchmarks can be configured as per different classes. We

used CLASS C data inputs for our experiments as they had longer execution times and resulted

in larger checkpoint files. While collecting data, we tried to remove background noise by starting

with a fresh node (usually restarting that node) and fixing the CPU frequency for each of the

cores to 2GHz before conducting our experiments.

We instrumented the NAS benchmarks to initiate a checkpoint at a particular iteration

count after initialization as shown in Table 5.1. The first column in Table 5.1 lists the NAS

benchmarks, the second column shows the total iterations in the complete run of that benchmark

and the third column shows the iteration number at which the checkpoint was initiated. In

selecting an iteration to checkpoint at, we tried to ensure a sufficiently long execution time after

restart. But as we found out in experiments, restarting from checkpoint taken, irrespective of

the remaining work, resulted in similar performance.

During experiments with each benchmark, we took five different checkpoints at the same

iteration count. Each checkpoint was restarted two times. This was done both for the original

BLCR and the affinity-aware BLCR. The graphs depict average values of these runs. Percentage

change between results of the original BLCR and the affinity-aware BLCR was calculated using

the following formula:

17

%Change =
(OriginalBLCR Time − AffinityAwareBLCR Time) ∗ 100

OriginalBLCR Time
(5.1)

(a) 16 Threads

(b) 8 Threads

Figure 5.1: NAS Benchmark (CLASS C) execution time after restart (excluding restart time)

5.3 Performance

Figure 5.1 depicts the execution time of the NAS benchmarks after restart from a checkpoint

file using the original BLCR and the affinity-aware BLCR (AA-BLCR). Figure 5.1(a) depicts

results when each of the NAS benchmarks are configured to run with 16 threads. Figure 5.1(b)

depicts results for 8 threads. The x-axis depicts each of the NAS benchmarks and the y-axis

depicts the average execution time after restart in seconds. This execution time excludes the

time taken by BLCR to restart the application. Due to the large range in the data values,

the graph is split into two parts, with benchmarks FT, MG, IS depicted in the left half and

BT, SP, LU, CG, UA depicted in the right half of Figure 5.1(a) and Figure 5.1(b). Table 5.2

depicts percentage change between the original BLCR and the affinity-aware BLCR for different

parameters when using 16 threads. The first column lists the NAS benchmarks and the second

18

(a) 16 Threads

(b) 8 Threads

Figure 5.2: NAS Benchmark (CLASS C) total CPU migrations after restart

19

(a) 16 Threads

(b) 8 Threads

Figure 5.3: NAS Benchmark (CLASS C) average execution time of each iteration before check-
point, after checkpoint using AA-BLCR and after checkpoint using Original-BLCR

20

column shows the percentage change in the application execution time after restart. Table 5.3

depicts these measurements for 8 threads. We observe significant improvements when using

the affinity-aware BLCR for both thread configurations. The application execution time, after

restart, improves between 37% and 73% for 16 threads (Table 5.2 second column) and between

18% and 46% for 8 threads (Table 5.3 second column).

In case of the original BLCR, affinity information is not saved and only the leader thread

restores the memory information. This causes all the data to be allocated locally to a single

NUMA node (the node the leader thread is running on), unless the leader thread scatters

data over different NUMA nodes when occasionally migrated by the OS scheduler. When the

application is restarted, threads may be scheduled to run on any core but when they try to

access data, they suffer from NUMA remote memory access delays in addition to migration

overheads, which causes the observed performance degradation. In case of the affinity-aware

BLCR, affinity information is restored and no NUMA access delays and migrations are incurred.

These observations are reflected in Figure 5.2 and Figure 5.3. Figure 5.2 depicts the total CPU

migrations for the application after restart for the original BLCR and the affinity-aware BLCR

on the y-axis for each NAS benchmarks on the x-axis. The migrations event of the perf stat

command was used to obtain CPU migration numbers. Figure 5.2(a) depicts results for 16

threads and Figure 5.2(b) for 8 threads. Due to the large variations in the data values, the y-axis

is divided into two intervals as shown in the Figure 5.2(a) and Figure 5.2(b). We observe a large

reduction in CPU migrations for the affinity-aware BLCR as thread-to-core maps are restored.

Table 5.2 (third column) depicts the percentage change in CPU migrations for 16 threads and

Table 5.3 (third column) for 8 threads. There are still some migrations that are attributed to

migrations before thread-to-core maps are restored. Figure 5.3 depicts the average execution

time per iteration before initiating a checkpoint and after the restart from the checkpoint for

the original BLCR and the affinity-aware BLCR on the y-axis for each NAS benchmarks on

the x-axis. As can be observed, execution time of each iteration increases after restart in case

of original BLCR whereas it remains the same as before checkpointing for the affinity-aware

BLCR. Table 5.2 (fourth column) depicts the percentage change in the average execution time

per iteration after restart for 16 threads and Table 5.3 (fourth column) for 8 threads.

We observe that MG, LU, CG and UA show higher improvement in the application execution

time after restart compared to other NAS benchmarks. They show an average reduction of more

than 60% in the average execution time per iteration and int the number of CPU migrations

after restart. Although BT, SP and FT show large reductions in CPU migrations, the overall

performance improvement in execution time after restart is comparatively smaller. This can be

attributed to an interesting observation from the second and the fourth columns of Table 5.2

and Table 5.3 : The percentage change in the application execution time after restart (second

column) is equal to the percentage change in the average execution time per iteration after

21

Table 5.2: % Change using the affinity-aware BLCR over the original BLCR for 16 Threads

NAS
bench-
marks

% Change
in ap-
plication
execution
time after
restart

% Change
in CPU
migra-
tions after
restart

% Change in
average exe-
cution time
per iteration
after restart

% Change
in check-
point file
size

%
Change
in
check-
point
time

%
Change
in
restart
time

BT 46.35% 93.79% 46.38% -0.13% -0.31% -1.33%

SP 49.23% 71.78% 49.12% -0.12% -1.74% -0.14%

FT 48.49% 81.41% 48.50% -0.02% -0.20% -0.20%

MG 73.95% 86.42% 73.97% -0.04% -10.95% 0.14%

LU 71.97% 80.07% 72.12% -0.16% -11.68% -10.57%

CG 70.10% 61.08% 70.03% -0.10% -0.81% 0.02%

UA 64.52% 63.95% 64.64% -0.20% -3.90% -1.82%

IS 37.70% 27.70% 37.32% -0.07% -0.85% -0.12%

restart (fourth column). An application showing higher improvement in the average execution

time per iteration also shows higher improvement in the execution time as a whole after restart.

With this observation, we can infer (by process of elimination) that reduction in the average

execution time per iteration after restart (due to reduction in remote memory references) has a

major impact on the application performance compared to reduction in CPU migrations after

restart.

5.4 Overheads

Let us consider some of the overheads one would expect in affinity-aware BLCR.

5.4.1 Checkpoint file size overhead

Figure 5.4 depicts the checkpoint file size in MB on the y-axis and the NAS benchmarks on

the x-axis. Results are shown for both 16 threads (Figure 5.4(a)) and 8 threads (Figure 5.4(b))

and are almost same for both the original BLCR and the affinity-aware BLCR. Table 5.2 (fifth

column) shows the percentage change in the checkpoint file size for 16 threads and Table 5.3

(fifth column) shows the results for 8 threads. Negative percentages indicate overheads incurred.

We observe a size difference of around 1 MB between the checkpoint file with the original BLCR

vs. the checkpoint file with the affinity-aware BLCR. The difference in the file size is due to the

22

Table 5.3: % Change using the affinity-aware BLCR over the original BLCR for 8 Threads

NAS
bench-
marks

% Change
in ap-
plication
execution
time after
restart

% Change
in CPU
migra-
tions after
restart

% Change in
average exe-
cution time
per iteration
after restart

% Change
in check-
point file
size

%
Change
in
check-
point
time

%
Change
in
restart
time

BT 26.84% 76.25% 26.85% -0.07% -1.29% -0.17%

SP 41.05% 89.33% 41.06% -0.06% -1.34% -0.23%

FT 22.71% 48.10% 22.72% -0.01% -0.12% -0.19%

MG 46.22% 57.54% 46.15% -0.02% -6.11% -0.12%

LU 34.83% 86.63% 34.82% -0.08% -1.63% -1.23%

CG 37.36% 68.91% 37.44% -0.05% -0.51% -0.58%

UA 43.99% 86.42% 43.97% -0.11% -1.48% -0.34%

IS 18.72% 16.78% 18.50% -0.04% 0.39% -0.26%

affinity-aware BLCR storing with each of the threads some meta information, including virtual

address maps, protection flags, start and end marker and other information pertinent to the

BLCR framework. A difference of 1MB is not significant considering the checkpoint file sizes in

the 100s of MBs or even GBs.

5.4.2 Checkpoint time overhead

Figure 5.5 depicts the checkpoint time for the original BLCR and the affinity-aware BLCR.

Figure 5.5(a) depicts results for 16 threads and Figure 5.5(b) for 8 threads. The y-axis denotes

the checkpoint time in seconds and the x-axis denotes the NAS benchmarks. Table 5.2 (sixth

column) shows the percentage change in the checkpoint time for 16 threads and Table 5.3

(sixth column) shows the results for 8 threads. As can be observed, the difference between the

checkpoint time is also not significant.

5.4.3 Restart time overhead

Figure 5.6 depicts the restart time for the original BLCR and the affinity-aware BLCR. Fig-

ure 5.6(a) depicts results for 16 threads and Figure 5.6(b) for 8 threads. The y-axis denotes

the restart time in seconds and the x-axis denotes the NAS benchmarks. Table 5.2 (seventh

column) shows the percentage change in the restart time for 16 threads and Table 5.3 (seventh

column) shows the results for 8 threads. Similar to the checkpoint time overhead, this difference

23

(a) 16 Threads

(b) 8 Threads

Figure 5.4: NAS Benchmark (CLASS C) checkpoint file size

24

(a) 16 Threads

(b) 8 Threads

Figure 5.5: NAS Benchmark (CLASS C) checkpoint time

25

(a) 16 Threads

(b) 8 Threads

Figure 5.6: NAS Benchmark (CLASS C) restart time

26

Table 5.4: Results for LULESH Benchmark for 16 Threads

Input
Size

Total
it-
era-
tions

Average
exe-
cution
time
per it-
eration
(in sec)
without
pinning

Total
appli-
cation
exe-
cution
time
(in sec)
without
pinning

Average
exe-
cution
time
per it-
eration
(in sec)
with
pinning

Total
appli-
cation
exe-
cution
time
(in sec)
with
pinning

% Change in
application
execution time
after restart
for the affinity-
aware BLCR
over the origi-
nal BLCR

200 100 5.17 517.33 5.06 505.85 3.81%

200 200 5.22 1044.92 5.08 1015.91 4.56%

is also not significant.

Overall, the application execution time after restart and the overheads in terms of the

percentage change in Table 5.2 and Table 5.3 show that we obtain a significant performance

improvement in application execution time with affinity-aware BLCR compared to the original

BLCR with only minimum overheads.

5.5 LULESH Benchmark Results

We also investigated the impact of affinity-aware BLCR on benchmarks that might not be

sensitive to affinity information and/or that might actually suffer in performance when threads

are pinned to specific CPU cores. In some cases, binding/pinning can degrade performance by

inhibiting the OS capability to balance loads.

We conducted experiments with the LULESH benchmark. In our experiments, we instru-

mented LULESH to initiate a checkpoint at the 10th iteration. Table 5.4 depicts the results

for 16 threads and Table 5.5 for 8 threads. The first and the second columns show the input

parameters for LULESH, input size and total iterations, respectively. The third column shows

the average execution time per iteration (in seconds) and the fourth column shows the total

application execution time (in seconds). In both cases, thread-to-core pinning is not enforced

and no checkpoint/restart is initiated. The fifth and the sixth columns show measurements

similar to third and fourth column, respectively, but with thread-to-core pinning enforced. The

seventh column shows the percentage change in the application execution time after restart

when using the original BLCR and the affinity-aware BLCR.

When running LULESH with 16 threads, with and without thread-to-core pinning and no

checkpoint restart, pinning showed only marginal benefits. This can be observed by comparing

27

Table 5.5: Results for LULESH Benchmark for 8 Threads

Input
Size

Total
it-
era-
tions

Average
exe-
cution
time
per it-
eration
(in sec)
without
pinning

Total
appli-
cation
exe-
cution
time
(in sec)
without
pinning

Average
exe-
cution
time
per it-
eration
(in sec)
with
pinning

Total
appli-
cation
exe-
cution
time
(in sec)
with
pinning

% Change in
application
execution time
after restart
for the affinity-
aware BLCR
over the origi-
nal BLCR

200 100 6.80 680.23 7.00 700.16 -1.59%

200 200 6.85 1369.38 7.00 1398.03 -2.36%

the fourth and the sixth columns of Table 5.4. When using checkpoint restart, the affinity-

aware BLCR similarly showed marginal improvement over the original BLCR (Table 5.4 seventh

column). When running LULESH with 8 threads, with and without thread-to-core pinning and

no checkpoint restart, pinning showed lower performance as compared to no pinning. This

can be observed by comparing the fourth and the sixth columns of Table 5.5. When using

checkpoint restart, the affinity-aware BLCR similarly showed lower performance as compared to

the original BLCR (Table 5.5 seventh column). One of the reasons for such performance results

is that LULESH performs memory allocation and de-allocation dynamically in each iteration.

Hence, the data used in one iteration is more or less independent of the data used in earlier

iterations. This is also evident in the average execution time per iteration, that changes only

slightly, irrespective of whether or not the threads were pinned. This is observed by comparing

the third and the fifth columns of Table 5.4 for 16 threads and Table 5.5 for 8 threads.

Based on these experiments, we conclude that applications sensitive to thread-to-core pin-

ning and page-to-NUMA node mappings will obtain significant benefits when using the affinity-

aware BLCR. But for other applications that are not sensitive to such mappings, performance

improvement depends on how they themselves perform with and without pinning. If they show

some benefits with pinning, the affinity-aware BLCR will also show benefits. Otherwise, one

should revert to using the original BLCR for such applications. To this end, including affinity

awareness can be enabled/disabled by command line arguments and environment variables.

28

Chapter 6

Related Work

Checkpoint and restart as a tool for fault tolerance has been well studied. There are sev-

eral implementations of checkpoint restart mechanisms, including user-level implementations,

kernel-level implementations, hybrid implementations. Some of the implementations support

incremental checkpointing, some implement coordinated and uncoordinated checkpoint-restart

techniques, some support checkpointing only single-threaded applications whereas others sup-

port checkpointing multi-threaded applications. [22] provides a survey of different checkpointing

techniques.

DMTCP [6] (Distributed MultiThreaded CheckPointing) is a transparent user-level check-

pointing package for distributed applications. It can checkpoint multi-threaded applications.

CryoPID [9] is an open source user-level implementation, which consists of a program called

freeze that captures the state of a running process and writes it into a file. CRAK [30] is a trans-

parent checkpoint/restart kernel module for Linux. But CRAK cannot restart multithreaded

processes since it does not capture shared virtual memory areas. BLCR [11], which we have

used in our implementation, is a hybrid checkpoint restart mechanism providing a loadable

Linux kernel module.

Significant research has been conducted to lower the overheads in checkpoint restart mech-

anisms. Oliner et al. [21] present a cooperative checkpointing approach that reduces overheads

by only writing checkpoints that are predicted to be useful, e.g., when a failure is likely in the

near future. Incremental checkpointing [5], [18] reduces the size of full checkpoints taken by

periodically saving changes in the application data between full checkpoints. Moody et al. [17]

discusses the design and modeling of a scalable multi-level checkpointing system and recent

work [26] uses a combination of non-blocking and multi-level checkpointing. [13] discusses an

uncoordinated checkpointing protocol for send deterministic MPI HPC applications. A given

MPI application is said to be send deterministic, if, for a set of input parameters, the sequence

of sent messages, for any process, is the same in any correct execution. AI-Ckpt [20] provides a

29

runtime environment that enables asynchronous incremental checkpointing. Unlike other C/R

approaches, it leverages both current and past access pattern trends in order to optimize the

order in which memory pages are flushed to stable storage. Scalable Pattern-Based Check-

pointing (SPBC) [27] is a protocol that combines hierarchically coordinated checkpointing and

message logging. Libhashckpt [12] is a hybrid incremental checkpointing solution that utilizes

both page protection and hashing on GPUs to determine changes in application data with very

low overhead. ACR [19] is an automatic checkpoint/restart framework that performs applica-

tion replication and automatically adapts the checkpoint period exploiting online information

about the current failure rate. Sarood et al. [25] discuss a combination of checkpoint/restart

and temperature capping. It uses a runtime managed temperature capping to increase the

estimated reliability of HPC machines and reduce the total execution time required by applica-

tions. Algorithm-based fault tolerance (ABFT) techniques [8], [16] provide a solution for HPC

resilience to applications.

We investigated several of these existing checkpoint restart implementations, but, to the

best of our knowledge, none of these implementations provide affinity awareness as we have

described in this work.

30

Chapter 7

Future Work and Conclusion

7.1 Future Work

This work is part of a project to extend BLCR to provide resilience support for Partitioned

Global Address Space (PGAS) environments [23], [24]. PGAS is the programming paradigm

in the DEGAS [29] stack, which aims to develop the next generation of programming models,

runtime systems and tools to meet the challenges of Exascale systems. PGAS provides a par-

titioned (data designated as local or global) global (capability to directly read/write remote

data) view of address space. It provides affinity control through allocating data on local or

global address spaces. However, as we have described in our work, the existing implementation

of BLCR does not restore affinity information across restarts. We have already incorporated

affinity awareness in BLCR and we will integrate this capability into the PGAS environment

of DEGAS.

7.2 Conclusion

In conclusion, this work contributes a novel approach to incorporate affinity awareness in a

checkpoint restart mechanism. We have implemented our design in BLCR with minimal changes

and minimal overheads. Experimental results with the NAS benchmark suite indicate signifi-

cant performance benefits over the original BLCR. Affinity-aware BLCR is bound to result in

benefits for affinity sensitive application but, at the same time, we also discuss an example of an

application that is not sensitive to affinity, namely LULESH. As core pinning does not provide

benefits for LULESH in terms of execution time, using the affinity-aware BLCR also cannot

provide performance improvement.

Experiments with the NAS PB codes and LULESH showed that we are able to retain the

runtime performance of applications across restarts, which confirms the hypothesis.

31

REFERENCES

[1] HPC - High Performance Supercomputing. http://insidehpc.com/hpc-basic-training/what-

is-hpc/.

[2] Introduction to Parallel Computing. https://computing.llnl.gov/tutorials/parallel comp/.

[3] OpenMP. https://computing.llnl.gov/tutorials/openMP/.

[4] Top500. http://www.top500.org/.

[5] Saurabh Agarwal, Rahul Garg, Meeta S Gupta, and Jose E Moreira. Adaptive incremental

checkpointing for massively parallel systems. In Proceedings of the 18th annual interna-

tional conference on Supercomputing, pages 277–286. ACM, 2004.

[6] Jason Ansel, Kapil Arya, and Gene Cooperman. Dmtcp: Transparent checkpointing for

cluster computations and the desktop. In Parallel & Distributed Processing, 2009. IPDPS

2009. IEEE International Symposium on, pages 1–12. IEEE, 2009.

[7] David H Bailey, Eric Barszcz, John T Barton, David S Browning, Russell L Carter,

Leonardo Dagum, Rod A Fatoohi, Paul O Frederickson, Thomas A Lasinski, Rob S

Schreiber, et al. The nas parallel benchmarks. International Journal of High Performance

Computing Applications, 5(3):63–73, 1991.

[8] Zizhong Chen. Online-abft: an online algorithm based fault tolerance scheme for soft error

detection in iterative methods. In Proceedings of the 18th ACM SIGPLAN symposium on

Principles and practice of parallel programming, pages 167–176. ACM, 2013.

[9] cryopid-devel@lists.berlios.de. CryoPID - a process freezer for linux.

https://github.com/maaziz/cryopid, 2004.

[10] David Dice, Virendra J. Marathe, and Nir Shavit. Lock cohorting: A general technique for

designing numa locks. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles

32

and Practice of Parallel Programming, PPoPP ’12, pages 247–256, New York, NY, USA,

2012. ACM.

[11] Jason Duell. The design and implementation of berkeley lab’s linux checkpoint/restart.

2005.

[12] Kurt B Ferreira, Rolf Riesen, Ron Brighwell, Patrick Bridges, and Dorian Arnold. lib-

hashckpt: hash-based incremental checkpointing using gpus. In Recent Advances in the

Message Passing Interface, pages 272–281. Springer, 2011.

[13] Amina Guermouche, Thomas Ropars, Elisabeth Brunet, Marc Snir, and Franck Cappello.

Uncoordinated checkpointing without domino effect for send-deterministic mpi applica-

tions. In Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE International,

pages 989–1000. IEEE, 2011.

[14] Haoqiang Jin, Michael Frumkin, and Jerry Yan. The openmp implementation of nas

parallel benchmarks and its performance. Technical report, Technical Report NAS-99-011,

NASA Ames Research Center, 1999.

[15] Ian Karlin, Abhinav Bhatele, Jeff Keasler, Bradford L Chamberlain, Jonathan Cohen,

Zachary DeVito, Riyaz Haque, Dan Laney, Edward Luke, Felix Wang, et al. Exploring

traditional and emerging parallel programming models using a proxy application. In Par-

allel & Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on,

pages 919–932. IEEE, 2013.

[16] Dong Li, Zizhong Chen, Panruo Wu, and Jeffrey S Vetter. Rethinking algorithm-based fault

tolerance with a cooperative software-hardware approach. In International Conference for

High Performance Computing, Networking, Storage and Analysis (SC), 2013.

[17] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis R De Supinski. Design,

modeling, and evaluation of a scalable multi-level checkpointing system. In High Perfor-

33

mance Computing, Networking, Storage and Analysis (SC), 2010 International Conference

for, pages 1–11. IEEE, 2010.

[18] Nichamon Naksinehaboon, Yudan Liu, Chokchai Leangsuksun, Raja Nassar, Mihaela Paun,

and Stephen L Scott. Reliability-aware approach: An incremental checkpoint/restart model

in hpc environments. In Cluster Computing and the Grid, 2008. CCGRID’08. 8th IEEE

International Symposium on, pages 783–788. IEEE, 2008.

[19] Xiang Ni, Esteban Meneses, Nikhil Jain, and Laxmikant V Kalé. Acr: automatic check-

point/restart for soft and hard error protection. In Proceedings of SC13: International

Conference for High Performance Computing, Networking, Storage and Analysis, page 7.

ACM, 2013.

[20] Bogdan Nicolae and Franck Cappello. Ai-ckpt: leveraging memory access patterns for

adaptive asynchronous incremental checkpointing. In Proceedings of the 22nd international

symposium on High-performance parallel and distributed computing, pages 155–166. ACM,

2013.

[21] Adam J Oliner, Larry Rudolph, and Ramendra K Sahoo. Cooperative checkpointing:

a robust approach to large-scale systems reliability. In Proceedings of the 20th annual

international conference on Supercomputing, pages 14–23. ACM, 2006.

[22] Eric Roman. A survey of checkpoint/restart implementations. In Lawrence Berkeley Na-

tional Laboratory, Tech. Citeseer, 2002.

[23] Eric Roman. Overview of degas programming models area. Technical report, DEGAS

Summer Retreat, LBNL, 2013.

[24] Vivek Sarkar. Resilient runtimes for global address languages. Technical report, DEGAS

Summer Retreat, LBNL, 2013.

34

[25] Osman Sarood, Esteban Meneses, and Laxmikant V Kale. A cool way of improving the

reliability of hpc machines,. In Proceedings of The International Conference for High

Performance Computing, Networking, Storage and Analysis, 2013.

[26] Kento Sato, Naoya Maruyama, Kathryn Mohror, Adam Moody, Todd Gamblin, Bronis R

de Supinski, and Satoshi Matsuoka. Design and modeling of a non-blocking checkpointing

system. In Proceedings of the International Conference on High Performance Computing,

Networking, Storage and Analysis, page 19. IEEE Computer Society Press, 2012.

[27] André Schiper, Franck Cappello, Tatiana Martsinkevich, Amina Guermouche, and Thomas

Ropars. Spbc: Leveraging the characteristics of mpi hpc applications for scalable check-

pointing. In International Conference for High Performance Computing, Networking, Stor-

age and Analysis (SC” 13), number EPFL-CONF-189836, 2013.

[28] Chao Wang, Frank Mueller, Christian Engelmann, and Stephen L. Scott. Hybrid check-

pointing for mpi jobs in hpc environments. In Proceedings of the 2010 IEEE 16th In-

ternational Conference on Parallel and Distributed Systems, ICPADS ’10, pages 524–533,

Washington, DC, USA, 2010. IEEE Computer Society.

[29] Katherine Yelick, Vivek Sarkar, James Demmel, Mattan Erez, Dan Quinlan, Surendra

Byna, Paul Hargrove, Steven Hofmeyr, Costin Iancu, Khaled Ibrahim, Leonid Oliker, Eric

Roman, John Shalf, David Skinner, Erich Strohmaier, Samuel Williams, and Yili Zheng.

Degas: Dynamic exascale global address space. Technical report, DEGAS Summer Retreat,

LBNL, 2013.

[30] Hua Zhong and Jason Nieh. Crak: Linux checkpoint/restart as a kernel module. Techni-

cal report, Technical Report CUCS-014-01, Department of Computer Science, Columbia

University, 2001.

35

