
ABSTRACT

RAMASUBRAMANIAN, RAHUL. Exploring Virtualization Platforms for ARM-based Mobile
Android Devices. (Under the direction of Frank Mueller.)

The advent of smartphones has revolutionized the mobile phone market. Currently, ARM-

based (Advanced RISC Machine) smartphones running the popular Android software stack

dominate the market. Mobile devices are increasingly becoming the primary interface between

a vast number of users and the Internet. Due to its growing popularity, these mobile platforms

are facing the same security threats that the x86 ISA (Instruction Set Architecture) based sys-

tems are subjected to. Recent attacks have shown that a number of security threats cannot be

addressed by sandboxing or Android’s existing philosophy of access right approval by users, nor

can they be addressed by ARM’s TrustZone hardware capabilities that only protect selected

peripheral devices.

Virtualization techniques have been explored a great deal in desktop (x86) platforms and

are widely accepted as a means to enhance OS (Operating System)/platform security. In this

thesis, we take an in-depth look at the various mobile virtualization techniques available to date,

which would help to investigate security threats faced by the Android ecosystem. We study the

various virtualization platforms that are available and evaluate their state of implementation

and their potential utility in a virtualization-based mobile security framework. We analyze

the advantages and disadvantages of each of these virtualization approaches and conclude with

comments on future deployment of virtualization technologies to enhance mobile security.

c© Copyright 2011 by Rahul Ramasubramanian

All Rights Reserved

Exploring Virtualization Platforms for ARM-based
Mobile Android Devices

by
Rahul Ramasubramanian

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Computer Engineering

Raleigh, North Carolina

2011

APPROVED BY:

Alexander Dean James Tuck

Frank Mueller
Chair of Advisory Committee

DEDICATION

Dedicated to my parents and my family.

ii

BIOGRAPHY

Rahul Ramasubramanian was born in the city of Jamshedpur in India. He received his Bachelor

of Engineering degree in Electronics and Communications Engineering in 2005 from Siddaganga

Institute of Technology, Visvesvaraya Technological University, India. In fall of 2009, he joined

North Carolina State University as a graduate student. He has been working under the guidance

of Dr. Frank Mueller at the Systems Research Laboratory, Department of Computer Science

since Spring, 2010. His primary research interests lie in mobile virtualization systems and

security. Prior to joining NCSU, Rahul was a Senior Software Engineer working with various

flavors of mobile operating systems at Samsung Electronics Ltd.

iii

ACKNOWLEDGEMENTS

I am thankful to my parents, family and the faculty and students of NCSU for all the support,

patience and love that they have provided to me. My special gratitude to Dr. Frank Mueller

for his guidance and encouragement throughout the course of this endeavor.

iv

TABLE OF CONTENTS

List of Tables . vii

List of Figures . viii

Chapter 1 Introduction . 1
1.1 Overview of Security Threats in Android Platform 2

1.1.1 Rootkit Attacks . 3
1.1.2 Permission Escalations . 3
1.1.3 Transmission of Private Data Surreptitiously by Applications 4

1.2 ARM Virtualization and Mobile Security . 5

Chapter 2 Virtualization . 7
2.1 Important Concepts . 8
2.2 Different Types of Virtualization . 9
2.3 CPU Virtualization . 9
2.4 Virtualization Types . 10

2.4.1 Full Virtualization . 11
2.4.2 Paravirtualization . 11
2.4.3 Hardware-Assisted Virtualization . 12

2.5 Memory Virtualization . 14
2.6 Mobile Virtualization and Virtualization for ARM 14

2.6.1 Security through Virtualization . 14
2.6.2 Maximizing the Utilization of the Cpu Cores Available 15
2.6.3 Multiple Operating Systems Running on the Same Core 16

2.7 Challenges for Virtualization on ARM . 16

Chapter 3 OKL4 . 17
3.1 The Microkernel Approach to Virtualization . 19
3.2 Virtualization with OKL4 . 19
3.3 Software Constructs in OKL4 . 20

3.3.1 Threads . 21
3.3.2 Addresses spaces . 21
3.3.3 Capabilities . 21
3.3.4 Data Types/Data Fields and Data Constructors 21
3.3.5 Thread Scheduler . 22
3.3.6 Inter Process Communication . 22
3.3.7 Mutex . 23
3.3.8 Virtual Registers . 23

3.4 OKL4 Porting Efforts . 23
3.4.1 OkAndroid and OKL4 merging . 23
3.4.2 OKLinux . 24

v

3.4.3 Problems and Issues faced in this Process 24

Chapter 4 KVM on ARM . 26
4.1 KVM vs. Microkernels: A Closer Look . 27
4.2 The KVM/ARM Virtualization Approach . 29

4.2.1 CPU Virtualization in KVM/ARM . 29
4.2.2 Memory Virtualization . 30

4.3 Implementation Status . 32

Chapter 5 Virtualization with L4 . 33
5.1 L4: Specifications . 34
5.2 Components of the L4 Software Architecture . 34

5.2.1 Fiasaco Microkernel . 35
5.2.2 L4 Runtime Environment (L4RE) . 35
5.2.3 L4Linux . 35
5.2.4 L4 Services . 35

5.3 L4Linux/L4Android on L4 Microkernel . 36
5.3.1 Startup . 36
5.3.2 Device Management . 36
5.3.3 Low Level Memory Management . 37
5.3.4 Physical Memory . 37

5.4 L4Android . 37
5.5 L4Android/L4Linux Installation Efforts . 37

5.5.1 Target Hardware: ARM PB11MPCORE 38
5.5.2 Android on PB11MPCORE . 39
5.5.3 L4Linux on PB11MPCORE . 41
5.5.4 L4Android on PB11MPCORE . 41
5.5.5 Current Status . 42

Chapter 6 Conclusion . 43
6.1 Feasibility of Today’s Mobile Virtualization

Technologies . 43
6.2 Currently Working Aspects of Our Virtualization Effort 44
6.3 Work Needed for Full Deployment . 44
6.4 Future Work . 44

References . 46

Appendix . 48
Appendix A Steps to Build Android . 49

A.1 Configuring and building Android and L4Linux for
PB11MPCORE . 49

vi

LIST OF TABLES

Table 2.1 Processor Modes In The ARM ISA . 8

vii

LIST OF FIGURES

Figure 1.1 Android Security threats overview (courtesy Google Inc.) 2
Figure 1.2 Permissions in Android . 4
Figure 1.3 Virtualization in Mobile Architectures 5

Figure 2.1 Virtualization Overview . 7
Figure 2.2 Various Processor Modes (Rings) in the x86 ISA 9
Figure 2.3 Full Virtualization . 10
Figure 2.4 Paravirtualization . 11
Figure 2.5 Hardware-Assisted Virtualization . 12
Figure 2.6 Memory Virtualization . 13
Figure 2.7 Mobile Virtualization benefits . 15

Figure 3.1 HTC Dream Platform Architecture . 18
Figure 3.2 OKLINUX/OKL4 Architecture . 20
Figure 3.3 Thread Capabilities in OKL4 . 22

Figure 4.1 KVM Overview . 26
Figure 4.2 KVM Vs Microkernel . 28
Figure 4.3 CPU Virtualization . 30
Figure 4.4 Memory Virtualization . 31

Figure 5.1 PB11MPCORE Hardware Architecture (courtesy ARM) 38
Figure 5.2 Android on PB11MPCORE Architecture 41

viii

Chapter 1

Introduction

The advent of the HTC dream as the first commercial smartphone that deployed an Android

stack was a watershed moment in the mobile telephony business. The release of an open-source

mobile platform changed the dynamics of this industry in more than one way. Decrease in time

to market, availability of third party applications running on Dalvik Virtual Machine (build

once, deploy many times) and new commercialization opportunities have revolutionized the mo-

bile gadget industry. Due to these ground-breaking developments, the mobile telephone, which

till that point remained a simple communication device, transformed into an ubiquitous device

that connected a person to the vast digital world. Mobile phones also saw themselves moving

from being low performance, memory restricted devices to high powered, large memory sys-

tems. This led to a large proliferation of such devices in the consumer world and the subsequent

coining of the term ‘smartphones’ to describe them. Recent introduction of tablets running on

an Android stack have accelerated this proliferation and are seriously competing with tradi-

tional low-end desktops/laptops in the computational device business. A vast majority of this

class of devices currently run on ARM-based hardware platforms. These ARM-based hardware

platforms have also evolved from being low powered (300 MHz) devices to very high powered

(1.2 GHz dual core) entities. These developments have made the ARM ISA the architecture of

choice when it comes to mobile platforms. Today, ARM-based chipsets account for more than

1

ninety 90 % of smartphones worldwide. Smartphones have increasingly become the primary

interface between a vast number of users and the Internet. Due to this, smartphones now are

also being used to run applications that use/store sensitive information about the user. Bank-

ing applications, credit card purchases, personal information and emails are good examples of

such applications. Due to these developments, security threats that previously were restricted

to desktop environments are now increasingly being seen in the mobile environment.

1.1 Overview of Security Threats in Android Platform

Figure 1.1: Android Security threats overview (courtesy Google Inc.)

2

Android security threats can be broadly discussed (but not restricted to) under the following

heads:

1. Rootkit attacks;

2. Permission escalations;

3. Transmission of private data surreptitiously by applications.

1.1.1 Rootkit Attacks

Rootkits are often deployed as loadable kernel modules (LKM) that infect the underlying An-

droid kernel and compromise the integrity of the whole Android systems. They are notoriously

difficult to detect and equally difficult to disinfect. There are many well publicized root kits

that have been developed for the Android platform. These vary from simple proof of concept

key logger rootkits to sophisticated rootkits that gain full root access on the device. Once these

rootkits have compromised the Android kernel, all data that resides in the device is subject to

a security threat and can be easily stolen and sent to a desired destination as text messages or

Internet messages. They can also be used to make unauthorized phone calls, listen into user

calls and use the use the GPS connected device for unauthorized location detection. Other

rootkit attacks have also known to drain the battery very fast by initializing power exhaustive

services like Bluetooth or GPS (Global Positioning System). Figure 1.1 highlights two of these

issues.

1.1.2 Permission Escalations

The Android security model defines a set of permissions that applications get access to at the

time of installation. The ability of any application to access any component or service is pri-

marily dependent on the set of permissions that is granted to it by the user. These permissions

are explicitly granted by the user at installation time. Since most users of smartphones are not

technologically savvy, it is not very difficult for a malicious application to escalate unnecessary

3

permissions [14] [13]. Since, more often than not, the user will grant them, this will lead to a

creation of security gap inadvertently by the user. This flaw can be used by malicious applica-

tions to snoop user data and steal it. Figure 1.2 depicts operation of permission escalations on

an Android device [2].

1.1.3 Transmission of Private Data Surreptitiously by Applications

Figure 1.2: Permissions in Android

A recent trend that is being observed is the plethora of applications that are attempting to

steal personal information from the user without user consent [21] [24]. Valid and seemingly

innocuous applications have been found to transmit personal information about the user (name,

email ID, GPS locations) without the user’s explicit knowledge. Many known applications of

this sort exist both in Android and IOS (iPhone OS) ecosystems today.

4

1.2 ARM Virtualization and Mobile Security

Figure 1.3: Virtualization in Mobile Architectures

Virtualization is quite a well-known concept in the desktop/enterprise domain. A lot of

success has been achieved in the area of exploring virtualization as a security solution in the

desktop computing environment. Mobile virtualization is a relatively new concept that attempts

to utilize virtualization techniques in the mobile domain. The primary stumbling block to this

approach has been the lack of virtualization support on mobile architectures. Notwithstanding

this, we have seen a few novel concepts emerge in the area of mobile virtualization. Figure 1.3

depicts the platform architecture of a typical virtualization system.

Most mobile virtualization platforms typically attempt to isolate computing resources from

applications/platforms that use them. This isolation provides a means to regulate the access

5

that the applications have to the computational resources, thus enabling malware detection

capabilities. The isolation is achieved by inserting a virtual hypervisor layer between the oper-

ating system and the hardware. A guest operating system that runs on top of the hypervisor

layer can access the underlying hardware via paravirtualized system call only. This enables the

hypervisor layer to govern all the interactions that take place between operating systems (and

the layers above it) and the hardware [12]. Many policies and checks can be implemented in

the hypervisor layer to ensure that unauthorized access and data transmission are thwarted,

thus ensuring that the systems in question are not compromised.

In the next few chapters, we discuss the concept of virtualization and paravirtualization in

detail (Chapter 2), followed by a discussion of various mobile virtualization platforms currently

available (Chapter 3, 4, 5) and concluding with a some lessons learnt and suggestions for future

work in this area (Chapter 6).

6

Chapter 2

Virtualization

Virtualization is a well-established concept [15] [20]. It was initially developed in the 1960’s

to address the shortcomings of third generation architectures and multiprogramming in the

IBM (International Business Machines) operating system [18]. Over the years, the technology

has matured to great extent and has found much use in enterprise/desktop computing systems

[3]. Virtualization has found many applications, e.g., providing a secure computing platform,

kernel debugging, server consolidation and support for multiple operating systems. In the last

decade, virtualization has also penetrated the embedded domain, which has opened up exciting

opportunities in that sector. Figure 2.1 depicts a typical organization of a virtualized system.

Figure 2.1: Virtualization Overview

7

2.1 Important Concepts

Virtualization can be defined as a method that separates the services or a computing environ-

ment from its hardware components. This separation enables multiple operating environments

to run on the same hardware, each isolated from the other one. Virtualization can also be

viewed as a software framework that simulates one machine’s instructions on another machine

[8]. Typically, virtualization services are implemented as a software layer that resides between

the operating system(s) and the underlying hardware. This layer then receives requests from

the operating system, executes them on the hardware before passing the results back to the

operating system. Such a layer is generally refered to as Virtual Machine Monitor (VMM). In

order to improve performance, only privileged instruction execution passes through the VMM

layer. All non-privileged instructions are directly executed on hardware. These privileged

instructions are typically instructions that access hardware components and change sensitive

system data structures. Privileged instructions are supported in modern architectures by pro-

cessor modes. The processor needs to be running in supervisor mode to be able to execute

privileged instructions. Figure 2.2 and Table 2.1 depict the use of such modes for the x86 and

the ARM architectures respectively.

Table 2.1: Processor Modes In The ARM ISA

Name Description Priviledged

Abt abort yes
Fiq Fast Interrupt Request yes
Irq Interrupt Request yes
Svc Supervisor yes
Sys System yes
Und Undefined yes
Usr User no

8

Figure 2.2: Various Processor Modes (Rings) in the x86 ISA

2.2 Different Types of Virtualization

System virtualization can viewed as a combination of CPU virtualization, memory virtualization

and device virtualization.

2.3 CPU Virtualization

The x86 ISA is the dominant architecture used in enterprise/desktop environments today. As

a result, it is very popular in the realm of virtualization. The x86 ISA has 4 different modes of

operation (ring0 to ring3), each of which provide different levels of privileges while operating in

that mode. Ring0 is the most privileged mode and is also referred to as the supervisor mode.

Ring3 is the least privileged mode and is referred to as the user mode. Usually, the operating

9

system runs in ring0 whereas user programs run in ring3. This ensure that the user mode

programs cannot affect overall system security even if the process context is compromised. It

is this ring system of security that is utilized to implement virtualization on the x86 ISA. In

this section we discuss different approaches to virtualization using the x86 ISA as reference

architecture. The approaches are:

1. Full Virtualization,

2. Paravirtualization, and

3. Hardware-assisted virtualization.

2.4 Virtualization Types

Figure 2.3: Full Virtualization

10

2.4.1 Full Virtualization

Full virtualization refers to a technique where an unmodified guest operating system runs in a

fully virtualized environment [9]. No changes to the guest operating system are required as it

is unaware that it is running in a virtualized setup. This is typically achieved by combining

techniques of binary translation and trap & emulate. Most privileged instructions of the x86

ISA, when run in the user mode, are trapped. The VMM uses this trap to catch the instruction

before execution and emulates it in the VMM. Some privileged instructions that cannot be

trapped in user mode are handled by a technique called binary translation [22]. In this tech-

nique, small blocks of instructions are translated into a new set of instructions that emulated

the translated blocks effect. The user-level instructions are directly executed on hardware to

improve performance. Figure 2.3 shows such a virtualization scheme.

2.4.2 Paravirtualization

Figure 2.4: Paravirtualization

11

Paravirtualization refers to a technique where the guest operating system is modified. Priv-

ileged instructions are replaced with calls to the hypervisor called hypercalls. The hypervisor

layer provides a hypercall interface with services such as memory management, device usage and

interrupt management to the guest. This ensures that all privileged mode activities are moved

from the guest operating system to the hypervisor. Paravirtualization is usually faster than

full virtualization. The performance gains are primarily achieved due to the lack of dynamic

overheads associated with binary translation and trap & emulate. Since paravirtualization re-

quires changes to the guest operating system code to avoid calls to privileged instructions, it

obviates the need for trap & emulate and binary translation. Of course, this benefit comes

with the additional cost of maintaining a modified guest operating system, but these costs are

considered acceptable because paravirtualized systems are shown to deliver performance close

to native systems. Figure 2.4 shows such a virtualization scheme.

2.4.3 Hardware-Assisted Virtualization

Figure 2.5: Hardware-Assisted Virtualization

12

Due to the popularity of virtualization in industry today, hardware manufacturers are pro-

viding virtualization support at the hardware level. Intel and AMD (Advanced Micro Devices)

support virtualization technologies (VT-x and AMD-V, respectively), and ARM is expected to

provide virtualization support in the upcoming CORTEX A-15 ISA [10]. Typically, these new

architectures have a new mode of operation that is dedicated for the hypervisor. This mode,

also referred to as the root mode [22], allows the VMM to run with a higher privilege than the

supervisor mode of the processor.This concept can be understood by equating the ‘root mode’

to a privilage level ‘ring0 -1’. All the privileged instructions executed in the supervisor mode

are automatically trapped and control is passed to the hypervisor executing in root mode. The

state of the registers in the guest mode is saved for later context restoration. Hardware-assisted

virtualization thus removes the need for binary translation, paravirtualization and trap & emu-

late. This technique is relatively new and is considered expensive because of the cost involved in

frequently switching contexts for hypervisor execution. Figure 2.5 shows such a virtualization

scheme.

Figure 2.6: Memory Virtualization

13

2.5 Memory Virtualization

Typically, modern operating systems provide virtual memory support, which enables process

to run on virtual memory abstractions. The virtual-to-physical memory translation is usually

performed by the MMU (Memory Management Unit). Such mappings are calculated in the TLB

(Translation Look-aside Buffer). With virtualization, an extra layer of translation is needed.

The MMU has to be virtualized to support the guest operating system. The guest operating

system now maintains the mapping of virtual memory to the guest physical memory but has

no control over the actual physical memory. It is the responsibility of the VMM to actually

control the mappings of different guest physical memory to the actual hardware memory. The

VMM also utilizes the concept of shadow page tables to speed up the translations from guest

virtual addresses to actual physical addresses. Figure 2.6 pictorally depicts this concept.

2.6 Mobile Virtualization and Virtualization for ARM

Virtualization in embedded systems has emerged fairly recently. With the growth of complexity

in both hardware and software systems used in embedded systems today, virtualization is

increasingly becoming a valuable proposition. Typical benefits of virtualization on embedded

systems include (but are not restricted to) the following topics:

1. Security through Virtualization,

2. Maximize the utilization of CPU cores, and

3. Multiple Operating Systems running on the same core.

Figure 2.7 depicts these three benefits of mobile virtualization.

2.6.1 Security through Virtualization

Virtualization can provide a secure and isolated computing environment for critical components

of the embedded software stack. Services like the voice call stack, messaging, etc., on a smart-

14

Figure 2.7: Mobile Virtualization benefits

phone can run on a isolated virtual machine, thus protecting them from any security breach

that occurs in other components.

2.6.2 Maximizing the Utilization of the Cpu Cores Available

Due to the divergent nature of the communication and application stack of today’s smartphones

(the communication stack is timing-sensitive and, the application stack is feature-rich), it is

common to run these two services on separate CPU cores. The communication stack is run

on a core hosting a real time operating system (e.g., REX) while the application stack is run

on a separate core hosting a feature rich operating system (e.g., Android). Virtualization can

obviate the need for two separate cores by running two different operating systems on a same

core in a secure and isolated manner.

15

2.6.3 Multiple Operating Systems Running on the Same Core

Another advantage of running multiple operating systems on the same core is that it allows for

separate user profiles on the same hardware. It is a common sight to see people carry multiple

mobile phones for work and personal use. With virtualization, this can be achieved on a single

piece of hardware with the different operating systems running concurrently and in isolation

from one other. This significantly reduces the device clutter due to multiple phones and also

reduces the cost of maintaining multiple mobile devices.

2.7 Challenges for Virtualization on ARM

Today, ARM devices own approximately 90% percent of the market share in the mobile tele-

phone market segment and consequently are the single most important processor architecture

deployed in smartphones. In this section we discuss the challenges encountered when deploying

virtualization on current generation ARM devices. The primary issue that hinders virtualiza-

tion on ARM is the way sensitive instructions of its ISA are executed. Sensitive instructions

are a class of instructions in the ISA that can change the mode of operation of the processor

or access specific information regarding the state of various hardware resources in the system.

Such instructions thus have the capability of superseding the hypervisor. Since some of these

sensitive instructions do not trap when they are executed in user mode, the trap & emulate

method used to implement full virtualization is not achieve able in current ARM architectures.

Current methods of binary translation and other efforts to achieve full virtualization on ARM

are not mature and stable yet. Due to this, paravirtualization is the most reliable and popular

method of virtualization on ARM architectures.

16

Chapter 3

OKL4

In the previous chapter, we saw how the ubiquity of smartphones has made it the latest target for

malware and other security-related attacks. We also explored virtualization and its potential

use to build a reliable and secure framework that helps to minimize these attacks. In this

chapter, we focus on one of the virtualization-based mobile solutions currently available. We

explore OKL4, one of the available mobile virtualization platforms. It is a Microkernel-based

embedded hypervisor, called a microvisor, which is well suited for mobile hardware platforms.

OKL4 currently supports a variety of architectures from X86 to ARM. This make it a good

choice as a hypervisor because most mobile architectures today run on different flavors of the

ARM architecture. The hardware platform used was the HTC Dream mobile phone, which has

a Qualcomm MSM7201A-based chipset as the underlying hardware platform. It was decided to

port OKLinux, which is a paravirtualized version of Linux, on the HTC (High Tech Computer

Corp.) Dream target platform (Figure 3.1). The goal was to port a paravirtualized guest

operating system running on top of OKL4. This would enable us to decouple the Operating

system and the hardware layer. Such architecture provides us with an effective mechanism to

intercept all accesses to the underlying hardware, thus enabling us to determine if hardware

operations being performed are malicious or not. Such a design paradigm enables us to have a

monitoring framework that is fully independent of the guest operating system being monitored.

17

Figure 3.1: HTC Dream Platform Architecture

18

The inherent insulation of the monitoring framework makes sure that the monitor can also

detect if the core services of the guest operating system (kernel, etc.) have been compromised.

3.1 The Microkernel Approach to Virtualization

The concept of microkernels dates back to the 1980s [23] and typically refers to a minimalist

approach of operating system design. This design approach typically mandates that only a

minimum set of the most essential software constructs necessary to build a system be the part

of the operating system kernel. This approach is fundamentally different from the monolithic

kernel designs as seen in commercially popular operating systems like Linux. The software

constructs that are provided by the Microkernel are then utilized by elements outside of the

kernel to implement various services needed by the operating system. The typical kernel soft-

ware constructs that are provided are interprocess communications, virtual memory and shared

memory support. The primary goal of such a design is to reduce the number of lines of code

within the kernel, also known as the trusted computing base or the TCB. A smaller TCB results

in less vulnerabilitiy and fewer bugs in the operating system kernel, thus making it more se-

cure. In a Microkernel-based design, there is no difference between application code and system

software. Most system services, e.g., device drivers, are implemented as services outside the

kernel, and the Microkernel does not differentiate between these services and application code.

Such a design paradigm is essentially well-suited from an embedded system perspective because

traditionally the difference between applications and system services in embedded systems is

not very well defined.

3.2 Virtualization with OKL4

OKL4 is a product of Open Kernel Labs (OKLabs), which is a startup company in collaboration

with UNSW (University of New South Wales) and NICTA (National Information Communica-

tion Technology Australia). OKL4 is a commercial virtualization solution using the Microkernel

19

Figure 3.2: OKLINUX/OKL4 Architecture

approach. Figure 3.2 depicts the architecture of a OKL4 based system. It is based on the well-

known Pistachio Microkernel. Due to this Microkernel approach to design, OKL4 has the

following inherent advantages:

1. The guest operating system is executed in a non-privileged mode.

2. It has a very highly performaning IPC service available.

3. Provides efficient sharing of system resources between guests.

4. It is open source.

5. It has a small memory footprint.

6. It ensures isolation and fault tolerance between guests.

3.3 Software Constructs in OKL4

OKL4 provides a rich set of software constructs to the end user, which can be utilized to build

a robust and isolated system. In a paravirtualized system, the guest OS is modified to use these

20

constructs to run the guest in a less privileged mode. In this section, we briefly discuss the

various software constructs that are currently available in OKL4.

3.3.1 Threads

Threads are contexts of execution within an OKL4 environment. System calls provided by

OKL4 enable the creation and deletion of these threads. These threads can assume different

states similar to Linux processes.

3.3.2 Addresses spaces

OKL4 provides system calls to create and associate virtual address spaces to threads. Address

spaces also associate virtual addresses to addresses of memory mapped devices (ports, I/O, etc.).

These system calls can be used to create, initialize and associate memory mapped devices to

threads of execution via virtual mappings, and these mappings are controlled by the microvisor.

3.3.3 Capabilities

Capabilities are akin to permissions. These capabilities enable access control management.

Threads have capabilities associated with them that constrain their access to various system

resources. It can be thought of as a key or a token that allows access to a resource. Figure 3.3

depicts the thread capability model used in OKL4.

3.3.4 Data Types/Data Fields and Data Constructors

OKL4 provides these constructs to characterize different objects residing in the memory or

in virtual registers. These constructs are used to define the encoding of objects in term of a

sequence of bits an occasionally to impose additional restrictions such a range numeric values

allowed in a particular field [5].

21

Figure 3.3: Thread Capabilities in OKL4

3.3.5 Thread Scheduler

OKL4 has a pre-emptive scheduler that divides the execution time between different threads of

execution. A round robin algorithm is used to pre-emptively schedule various threads running

on OKL4.

3.3.6 Inter Process Communication

OKL4 provides an effective method of communication between threads called IPC. Threads

communicate using messages on the IPC. This communication is monitored by the OKL4

Microkernel to ensure that such communication does not violate any security policies which are

22

implemented in the system.

3.3.7 Mutex

OKL4 provides mutexes to manages resources contention among various threads.

3.3.8 Virtual Registers

Every thread of execution has access to a number of virtual registers it can utilize.

3.4 OKL4 Porting Efforts

3.4.1 OkAndroid and OKL4 merging

OKL4 follows a Microkernel based design. It provides an API (Application Programming

Interface) that acts as a layer of abstraction over the underlying architecture. The API layers

also serve as service providers. The services are broadly classified into timing, memory and

control services. This software architecture provides a robust programming environment that

enables applications to run in a secure and isolated space. Also, platform specific code in

OKL4 is separated out from the platform independent part. This ensures that the changes

required for porting OKL4 to various platforms remain restricted to a minimal number of

source files. The first part of our implementation required us to merge the changes made in the

OkAndroid source with the vanilla OKL4-3.0 source. The merging process involved adding a

platform specific source folder (in our case, the platform was called Trout), and changing many

of the configuration scripts, Makefiles and SConscripts inside OKL4 to tailor it to compile for

our hardware platform. Many of the scripts that were earlier written for Android platform

(components like bionic and binder IPC), had to be changed for a Linux specific build. One

of the other challenges was that OKL4 relied on older versions of the components of the Linux

build environment (perl, gcc, etc.). This required extensive changes to our build environment

to suit OKL4. Once, these changes were done, we were ready to port OKLinux on top of OKL4.

23

3.4.2 OKLinux

OKLinux software architecture is very similar to a traditional Linux 2.6 kernel. The L4-specific

code resides mainly in the arch/l4 folder inside the kernel. Since OKLinux has not been ported

onto the MSM7200A platform yet, we had to add the mach-msm folder inside arch/l4/sys-arm

folder. The basic version of MSM-specific code was taken from the linux-next branch of the open

source kernel tree. Once we added this, we had to make many changes in the mach-msm folder

before we could attempt a build. The main changes arose due to the fact the different versions

of the Linux kernel were being merged (OKLinux is 2.6.24 and linux-next was 2.6.30). Due to

this, there were a lot of differences in the kernel APIs (mainly in the sections were memory and

page tables were getting initialized) and header files used by the MSM specific code. We had to

resolve these issues by modifying all headers and associated APIs in the MSM code to match

the requirements of OKLinux. After these changes were done, we also had to change most

of the Kconfig and Makefiles to incorporate the MSM source into the kernel build structure.

The next change was in the kernel folder of arch/l4. Since a new architecture was added, we

had to incorporate the interrupt and timer initialization calls of the new architecture in the

various setup and timer-related sources of OKLinux. Another important change affected the

L4 configuration files and required us to properly define all the correct environment variables

needed by OKLinux. Once these changes were incorporated and intermediate errors debugged,

compiling and linking the OKLinux kernel for the HTC dream target succeeded.

3.4.3 Problems and Issues faced in this Process

After compiling the sources for the OKL4/OkAndroid port on the HTC G1, we tried to build the

boot images for OKL4. The OKL4 system uses a tool called Elfweaver, which is used to merge

the various ELF files into a single ELF file. This ELF file is then used by the various OKL4

scripts to create a final bootable image. Elfweaver allows the user to edit a set of configuration

files to specify/modify various attributes (memory start /end address, entry point, etc.) of

the resultant ELF file. It was during this process that we faced many problems with moving

24

forward with OKL4. Image creation eventully failed because of a lack of support for virtual

driver for this specific hardware. Although OKL4 is open source, most of the sources that

affect smartphone-specific platforms such as the MSM platform, have not yet been released.

The image creation process fails because essential information needed by the image forming tool

is missing. This leads to errors such as physical memory pool indices going out of range. Since

these issues could not be resolved without proper driver support, we could not proceed further

create a workaing image of OKL4 running a virtualized version of Android on actual hardware.

One of the main issues with this porting effort was that the OKL4 Microkernel version 3.0 is

not a kernel targeted for virtualization. It is designed to be a virtualization solution instead.

Therefore, any upgrade of the guest operating system is a challenging task because it needs

exhaustive hardware and OKL4-kernel support.

25

Chapter 4

KVM on ARM

Figure 4.1: KVM Overview

Thus far, in the previous chapters, we have focused on virtualization technologies that

take the microkernel approach. In this chapter, we will take a look at KVM (Kernel Virtual

26

Machine), another virtualization technology, which takes a slightly different approach to virtu-

alization. KVM is a virtualization technology that is tied to the Linux kernel. It first appeared

in the Linux 2.6.20 distribution as a loadable kernel module. Figure 4.1 gives us an overview

of KVM.

The primary differentiating factor between KVM and other virtualization techniques is the

rather simplistic implementation approach used by KVM. In virtualization technologies today,

the virtual machine monitor largely implements all major services like the scheduler, memory

manager and timers. This results in a fairly large and complicated code base. KVM, on the

other hand, leverages the existing functionality in the Linux kernel and thus is comparatively

smaller and much less complex. It utilizes existing Linux code for services like scheduling,

memory management and timers. Another inherent advantage of KVM is that it uses hardware

virtualization techniques in modern processor architectures. Hence, KVM does not carry the

general performance overheads of the software virtualization techniques like paravirtualization.

These advantages make KVM an easier solution to deploy and maintain and is a reason why

KVM is becoming quite popular in the virtualization market.

The primary drawback of KVM is that currently it only supports modern architectures that

are virtualizable (x86 and AMD). Due to this, KVM is not the primary choice of virtualization

in the mobile ecosystem. In the next few sections, we will discuss KVM/ARM, which is an

approach to use KVM virtualization techniques on ARM-based architectures. We will study the

novel approach of light-weight paravirtualization, KVM’s approach to virtualization on ARM

architectures and the current state of implementation of KVM/ARM.

4.1 KVM vs. Microkernels: A Closer Look

Microkernel based virtualization technology (OKL4, L4-Fiasco) have a VMM that resides di-

rectly on top of the hardware resources. All operating systems then run on top of the VMM.

All hardware control mechanisms like CPU control, scheduling and memory management are

usually implemented in the hypervisor itself. The guest operating system does not directly

27

Figure 4.2: KVM Vs Microkernel

control the hardware. Each guest operating system that runs in such a setup is a separate

cell. It is thus isolated from the other guests. In the KVM based approach, the host is not a

hypervisor per say, but happens to be a Linux kernel running directly on top of the hardware.

The hypervisor is implemented as a kernel module and thus accesses the hardware through the

Linux kernel interface. The guest operating systems runs as a process on top of the host kernel.

These can be controlled by typical Linux commands like kill, ps, etc. Different guest operating

system instances are viewed as separate processes under the host kernel. Isolation amongst

various guest operating systems is achieved by both KVM and Microkernel based approaches.

In Microkernel-based and KVM-based techniques, the hypervisor does have direct access to the

hardware, but in the case of KVM, the access is through the host kernel interface as opposed to

the microkernel where the hypervisor sits directly on top of the hardware. Figure 4.2 explores

these differences.

28

4.2 The KVM/ARM Virtualization Approach

In this section we will discuss the following:

1. KVM/ARM attempts to overcome the issues with Virtualization on ARM based devices

and,

2. The approach taken to both CPU and memory virtualization.

4.2.1 CPU Virtualization in KVM/ARM

Any processor architecture is deemed to be virtualizable if all the sensitive instructions in its

ISA are also privileged. A sensitive instruction is typically defined as an instruction whose

effect is dependent on the processor’s mode of operation. A privileged instruction is defined as

an instruction that traps if it is executed in an incorrect mode. Therefore, when all instructions

that are sensitive are also privileged, then virtualization can be implemented using the trap

& emulate concept. The primary problem with the ARM architecture is that not all of the

sensitive instructions defined by its ISA are privileged. Such instructions primarily are special

loads and stores, status registers (CSPR and SPSR), some special data processing instructions

and memory access instructions. These instructions may behave differently, be ignored or may

be unpredictable when executed in user mode. These instructions do not trap when they are

executed in user mode. Due to this problem, the ARM instruction set architecture is inherently

not virtualizable.

Light-Weight Virtualization: KVM/ARM tries to solve the problems of virtualization in

the ARM architecture by using light-weight paravirtualization. This technique involves making

some changes in the guest OS kernel to take care of sensitive non-privileged instructions. All

other user space instructions can be directly executed on hardware while the privileged instruc-

tions are taken care of by trap & emulate method. The changes to the guest operating system

are made by an automated script that replaces the necessary instructions with instructions that

will trap. These are then handled in the interrupt handler and the required functionality is

29

Figure 4.3: CPU Virtualization

emulated. The automated script is based on using regular expressions to find such instructions

and the SWI instruction of the ARM ISA as a replacement. The information required to emu-

late is encoded (instruction replaced, operands) in this instruction’s data field and is used later

in the interrupt handler. The changes made to the guest operating system are fully automated

and thus do not need intensive knowledge of the GUEST OS internals. Figure 4.3 shows all the

instructions og the ARM ISA that are of interest for virtualization.

4.2.2 Memory Virtualization

Memory virtualization is needed because we both the guest OS and host should be allowed

to have full access to the entire virtual memory space without interfering with each others

operation. Moreover, the host should always retain full control of the actual physical memory

and it should not let the guests access the physical memory directly. This restriction requires

the creation of one extra layer of memory virtualization in KVM/ARM. The extra layer is

termed guest physical address space. Another new term, ‘Machine Memory’, is introduced to

30

Figure 4.4: Memory Virtualization

refer to the actual physical memory of the system. Figure 4.4 illustrates this 4-level memory

management scheme. The mapping of guest virtual addresses to guest physical addresses is

handled by the memory manager of the guest operating system. The guest physical addresses

are then mapped onto the virtual memory space of the host kernel. Then, the host kernel’s

virtual memory manager maps these virtual addresses to actual physical (machine) address via

the host MMU.

Shadow Tables and Shared Pages: KVM/ARM manages the shadow page tables in the host

kernel. These tables map the guest virtual addresses to actual physical addresses to speed up

the translation. Figure 4.4 also illustrates the concept of shadow tables. KVM/ARM establishes

this mapping on demand. Changes in the guest virtual page table must be accurately mapped

onto the shadow page table. This is taken care of by KVM/ARM because whenever the guest

changes the page table, it has to invalidate the TLB entry associated with that page. As this

is a privileged operation, it traps to the KVM/ARM module where appropriate changes to the

shadow page table are made. Every time a new mapping is created in the shadow page table,

31

two entries in the table are initialized. One of them handles exceptions and another handles

the access API to the shared page. The ARM architecture mandates that any switches between

virtual address spaces are always done using a page that is mapped onto the same virtual

address in both addresses spaces. This shared page must always be hidden from the guest. If

the guest tries to access the page, it will trap, and then KVM/ARM will change the mapping

of the shared page to a different virtual address in both host and guest operating systems. The

page fault should then be handled in a normal fashion. KVM/ARM typically uses reserved

memory regions to map the shared page for Linux guests.

4.3 Implementation Status

Currently, the source code available for KVM/ARM does not boot fully. After building the

source code, we tried to boot the guest using QEMU emulation, but the boot process fails due

to CPU resets. It is known that the same issue occurs when KVM/ARM is run on the Texas

Instruments Beagle Board platform. Furthermore, the authors have also announced that they

are not supporting ARMv5-based platforms any longer and are concentrating their efforts on

porting KVM/ARM on to the ARM CORTEX15 platform, which is the first ARM platform

with hardware virtualization support. Reference boards for this platform will be available in

late 2011, and the authors of KVM/ARM claim that the port to the CORTEX15 architecture

should be ready by then.

32

Chapter 5

Virtualization with L4

In this chapter, we explore L4, which is one of the most well-known microkernels in academia

available today. L4, in many ways, was a key reason why the idea of microkernels resurfaced

after languishing for a while due to performance drawbacks of many first generation microkernels

like Mach [16]. After generating a lot of interest initially, due to their emphasis on security and a

small TCB, it was realized that the design of the first generation microkernels was fundamentally

flawed. The primary drawback of earlier microkernels like Mach and others was that of an

unacceptably high communication overhead due to a concept called in-kernel message buffering.

More than a 30% reduction in performance was observed in the MkLinux project, which was

an attempt to run paravirtualized Linux on top of Mach. The L4 project addressed many of

the performance bottlenecks from the design of first generation microkernels, and subsequently

demonstrated a paravirtualized Linux running on top of L4 which had runtime performances

comparable to native Linux. The L4 microkernel was proposed by Jochen Liedtke who first

developed the L3 and subsequently the L4 microkernel [19]. Jochen Liedtke describes the key

guiding principle behind microkernels thusly: “A concept is tolerated inside the microkernel only

if moving it outside the kernel, i.e., permitting competing implementations, would prevent the

implementation of the system’s required functionality”. L4 faithfully follows this key principle

by ensuring that only a minimum set of essential services are run inside the kernel, and the

33

rest of the services are implemented in form of servers outside the kernel. L4’s significant

improvement to overall system performance coupled with the key benefits of isolation, security

and resource reusability that L4 provides, has rekindled the interest in microkernels. These

properties also make L4 an excellent choice as a virtualization host for mobile platforms. In

the following sections, we take a closer look at the various attributes of L4 and describe our

attempts to paravirtualized the Android mobile operating system with L4 as a hypervisor.

5.1 L4: Specifications

Following the strict microkernel design principles, L4 exposes a very limited set of software

constructs that can be utilized to implement any number of services operating in user space.

Addresses spaces are provided by L4 to enforce isolation in an L4 subsystem. Tasks in L4

run in these isolated address spaces.

Tasks are basic entities that contain resources. Typically, they consist of an address space and

a set of associated capabilities.

A Factory is an entity used by applications to create new objects kernel capabilities. Applica-

tions need to access these factories to create these capabilities, required to extend functionality.

IPC (Inter Processes Communication) gates are used to set up a secure communication mech-

anism between tasks.

IRQ (Interrupt Response Queue) in L4 enables applications to access hardware interrupts.

Virtual interrupts are made available to enable signaling amongst tasks.

A scheduler in L4 implements a scheduling policy to govern time sharing amongst tasks.

Scheduler is also responsible for assigning threads to CPUs.

VCONS provide an in-kernel debugging console for applications.

5.2 Components of the L4 Software Architecture

In this section, we discuss the various components of the L4 architecture [11].

34

5.2.1 Fiasaco Microkernel

The Fiasco microkernel runs at the heart of the L4 system. It is a minimalist microkernel

providing all the basic services that cannot be provided outside of the kernel. It is a pre-

emptive real time kernel that supports hard priorities. This makes it an ideal microkernel for

embedded real-time systems.

5.2.2 L4 Runtime Environment (L4RE)

L4RE provides a basic set of runtime libraries and services that make application development

easier on the L4. Basic services include memory management, program loading, paging, I/O

(Input/Output) management, device management and GUI multiplexing. L4RE also provides

functional support in the form of a C library, Pthreads, C++ libraries, virtual file system

infrastructure and libsdl (low-level multimedia support).

5.2.3 L4Linux

L4Linux is a Linux kernel that has been paravirtualized to run on top of the L4 Microkernel

[17]. We discuss L4Linux in greater detail in the next section.

5.2.4 L4 Services

The services that run on the L4 microkernel and provide the basic environment for the appli-

cation to operate in are as follows:

MOE is the root task of L4. It is the first to be brought up and is responsible for bootstrapping

and service multiplexing. It multiplexes the services like scheduler, memory, CPU and VCONS

mentioned in previous sections. MOE is also responsible for bringing up the first program in

L4, the init process called NED.

NED is responsible for configuring and starting up the full L4 system. This responsibility was

moved to NED to make MOE less complicated. NED supports the script-based start-up of the

L4 system. The scripting language used is LUA [1].

35

I/O is the device and platform manager in L4. It provides a centralized management of periph-

erals and resources. I/O provides the abstractions for device accesses by applications and also

delegates device accesses among applications.

MAG provides secure multiplexing of input hardware and graphics amongst applications.

FB-DRV provides the low level access and initialization of various graphics hardware on a sys-

tem.

RTC is the multiplexer for the real time clock hardware on the platform.

5.3 L4Linux/L4Android on L4 Microkernel

L4Linux is the paravirtualized version of the Linux operating system that runs on the L4

environment. L4Linux runs like any other application in L4, implying it runs only in the user

mode. All privileged instructions from the Linux kernel were replaced with hypercalls to the

L4 microkernel. These changes to Linux are restricted to the architecture-specific parts of the

Linux kernel. The architecture-independent parts of Linux remain unchanged. The changes are

primarily related to the following areas of the Linux kernel.

5.3.1 Startup

Since L4Linux operates as a user-level application on top of L4, it does not require initializing

the hardware and interacting with the BIOS (Basic Input Output System). Because of these

reasons, codes dealing with these activities have been bypassed in L4Linux.

5.3.2 Device Management

Low-level hardware interfaces, such as interrupt handling and I/O, are modified and an inter-

rupt controller driver is used to handle these interrupts in an L4 specific manner via the IPC

mechanism. Code interacting with I/O is modified to now interact with the I/O manager in

the microkernel for device access.

36

5.3.3 Low Level Memory Management

Since application programs in L4 are not allowed to access the page table directly, the Linux

kernel is modified to avoid this. Instead, the L4 hypercalls are used.

5.3.4 Physical Memory

Some device drivers need to know the physical memory by their real addresses. This information

is needed by those device drivers that communicate with devices via DMA (Direct Memory

Access). Since L4Linux does not run on the hardware directly, this poses a problem. This

is resolved by modifying the Linux interface that the drivers use to map virtual addresses to

physical addresses.

5.4 L4Android

The popular Android operating system for smartphones by Google uses a slightly modified Linux

kernel at its core. It is a widely popular smartphone operating system that has revolutionized

the mobile phone market. The Android operating system is open source and freely available

for download. This makes it a very compelling choice for academic research on smartphones

technology. L4Android is an attempt to run this popular Android software stack on top of

L4Linux to achieve virtualization in smartphones. Since privileged instruction usage is restricted

to the kernel only, there are no virtualization-specific changes that need to be made to the

Android stack in order to run it on the L4 microkernel. The changes needed are already

existent in the L4Linux kernel. Hence, moving the L4Linux changes to the Android kernel

should be sufficient to ensure proper execution of Android on L4 Microkernel.

5.5 L4Android/L4Linux Installation Efforts

This section describes in detail our efforts to install L4Android on an ARM-based board.

37

5.5.1 Target Hardware: ARM PB11MPCORE

The PB11MOCORE is a development board provided by ARM. It is an integrated development

board based on ARM SMP (Symmetric multi-processor). It has an 8MB flash memory to hold

FPGA (Field Programmable Gate Array) images. The board has features such as 256 MB

RAM (Random Access Memory) and an Ethernet controller IC. A detailed description of the

features of this board can be found in the Emulation Baseboard User Guide [6]. Figure 5.1

depicts the PB11MPCORE hardware architecture.

Figure 5.1: PB11MPCORE Hardware Architecture (courtesy ARM)

38

5.5.2 Android on PB11MPCORE

The first challenge during the board installation effort was to build and run Android natively

on the PB11MPCORE board. Android releases do not have support for this board. Our first

task was to locate and bring together a set of Android patches that would enable us to boot

Android on this board. The main challenge during this task was that, at the time of our at-

tempts to boot this board, there was no single source for all the required patches. We had to

search for these patches online and test to them see which of them worked. Moreover, most

of the patches available were spread across different versions of Android. Some patches were

against Android version 2.1 (also known as Eclair) and some of them were against Android

version 2.2 (also known as Froyo). We had to manually modify the source files and move all the

patches to Android version 2.2 (Froyo). The patches used for this process fall broadly under

these subsystems of Android.

1. Patches for Bionic:

These patches include changes required for the light-weight implementation of the C

library in Android known as Bionic.

2. Patches for Build:

These patches include changes to the build subsystem to accommodate the build process

for our board.

3. Patches for Dalvik:

Dalvik is the Virtual machine running within the Android subsystem. It provides an

execution environment for all the Android applications that user chooses to run on the

device. The Dalvik patches included changes to the Dalvik subsystem code pertaining to

our board.

4. Patches for Framework:

These patches include the required changes to the various frameworks in Android (UI

39

framework, telephony framework, etc.).

5. Patches for System Core:

These patches pertain to the changes needed in the core system libraries of Android.

6. Patches for Device:

Some patches were needed in the device folder of the Android subsystem to provide device

(PB11MPCORE) details for the image build process.

The primary purpose of these patches is to amend the TLS (Thread Local Storage) so that

it uses the kernel helper functions. They also add the required support for the ARMV6K

architecture, which is the architecture used in the PB11MPCORE board. Once these patches

were applied, we were able to completely compile and build Android for PB11MPCORE. The

next step in this process was to boot Android on this board. We decided to use the NFS

(Network File System) boot process in conjunction with the UBOOT (universal boot loader)

program to achieve this. A more detailed description of this process can be found in Appendix

1. The booting was successful and we managed to get the idle screen on Android after the boot

was completed. The problem we faced at this point was that the screen was locked and since

there was no mouse support available on Android, we had no way to unlock the screen. The

solution for this was using an application available for free download on the web, which could

be automatically launched after the boot process to ensure that the screen remained unlocked.

The problem with this app was that it needs the system to be rooted, which is usually not the

case in a regular Android build. This was overcome by a typical rooting binary available on the

web called Rangeagainstthecage [7]. This was a pre-built ARM binary, which we successfully

used to root the system and then unlock the screen. After this, we were able to use the

Android operating system on the ARM PB11MPCORE board. The keyboard was used to send

the control inputs and we tested various activities like launching the browser, launching other

pre-installed applications like the clock and the calendar. We also tested installing applications

using Android application installation files (.apk), which was successful.

40

Subsequently, The ARM Linux community has released a set of patches for Android on

PB11MPCORE recently. These can be found at http://www.linux-arm.org/LinuxKernel/

LinuxAndroidPlatform/.

5.5.3 L4Linux on PB11MPCORE

The source files for L4Linux were available for download from the TU Dresden website [4],

which maintains the latest versions of L4Linux for various processor architectures. After initial

problems with like tool version mismatches, etc., we were able to successfully compile and

create L4Linux images for our board. We were also able to boot the L4Linux images on our

development board using UBOOT and we successfully started a bash shell with a command

prompt.

5.5.4 L4Android on PB11MPCORE

Figure 5.2: Android on PB11MPCORE Architecture

41

The next step in the process of booting Android on L4 microkernel was to patch the L4Linux

kernel to incorporate the required changes for Android. We managed to do this and successfully

build the L4Android kernel for PB11MPCORE. Figure 5.2 shows the architectural overview of

L4Android on PB11MPCORE.

5.5.5 Current Status

We are currently trying to debug some baud rate mismatch issues that we are facing in the

initial boot-up of the L4Android kernel. The problem stems from using UBOOT which requires

a different baud rate for its operations than the L4Android kernel. This is the last step in the

process of booting a virtualized flavor of Android on a ARM based board.

42

Chapter 6

Conclusion

6.1 Feasibility of Today’s Mobile Virtualization

Technologies

After exploring three available and largely open-source virtualization technologies, we come

to the conclusion that although this technology is here to stay, tedious work still needs to be

performed for most of them before they can be utilized as an open platform for mobile virtu-

alization. Firstly, OKL4, which is one of the first microkernel-based virtualization technologies

we studied, claims that they already have their technology running successfully in many smart-

phones today. Since the relevant source code is not in the public domain, adopting OKL4 as a

platform for virtualization research is far-fetched as of today.

Secondly, KVM/ARM is currently not mature for hardware deployment. Our efforts at trying

to boot KVM/ARM even on a simulator level was not successful due to the many bugs in the

current code. Moreover, the authors have told us that they are currently concentrating on port-

ing the code to ARM CORTEXA15 based devices and are not concentrating on non-hardware

virtualizable ARM architectures for now. With a KVM/ARM port for ARM CORTEXA15 and

an appropriate board with the CORTEXA15 processor, one can possibly revisit KVM/ARM

and evaluate it again. Until then, KVM/ARM in its current states is not very useful as a

43

platform for mobile virtualization research.

Thirdly, we look at L4 and its feasibility as a platform for mobile virtualization on ARM devices.

This platform is the most promising amongst the once we tried out. There are a number of

reasons for this. L4 is a fully open source software and is available in its entirety for downloads

form the TU Dresden website. There is active support and development of this platform in

the open domain and there is a lot of assistance in terms of mailing lists, documentation etc.

Due to this, we were able to successfully boot L4Linux and also covered a lot of distance in our

attempts to boot virtualized Android on our development board.

6.2 Currently Working Aspects of Our Virtualization Effort

We were able to successfully build, deploy and run L4Linux, a paravirtualized version of the

Linux kernel on our development board. We were also able to boot a widely popular mobile

operating system on our board after patching the source code with the required changes. The

changes in L4Linux to support Android booting are also complete.

6.3 Work Needed for Full Deployment

Currently, we are facing problems with the baud rate mismatching between UBOOT and the

patched L4Linux kernel. Once this is resolved, a successful boot of a virtualized Android is

possible on an ARM based device (PB11MPCORE). Apart from us, TU Dresden is also working

to resolve this issue and some progress is expected soon.

6.4 Future Work

The possibility of future work in this area is immense as mobile virtualization is still in its

nascent stages. Apart from the projects discussed in this thesis, XEN/ARM, VMWare and

others are actively working on creating virtualization platforms for mobile architectures. With

44

the introduction of full virtualization support in ARM-based architectures with ARM COR-

TEXA15 based CPUs, virtualization should be ready to capture the mobile world. One of the

major applications of virtualization is seen in enterprise level applications for mobile devices.

With many corporations adopting mobile device like smartphones and tablets to enhance pro-

ductivity, information security is becoming vitally important. With geographic security not

being enforceable anymore, security aspects of virtualization increasingly seem to be the pre-

ferred solution to enable protection of data. Information security is of vital importance even

to non-corporate mobile users. With substantial financial and other critical data now residing

on mobile phones, virtualization gives us a powerful framework to develop security solutions

for mobile operating systems. Also, with the shrinking of space between personal and work

computing, virtualization helps in reducing the device clutter. Virtualization ensures that the

boundaries between work and personal computing can be maintained with different flavors of

operating systems running on a single device. Apart from this, virtualization also ensures that

the turnaround time and costs of deploying a mobile operating system is reduced because the

hypervisor layer takes care of most of the hardware management issues while the operating

system can provide better infrastructure services to applications. Thus, in time, mobile vir-

tualization may become a vitally important aspect of software in the mobile domain. Mobile

virtualization, like its desktop counterpart, has the potential to deliver transformational solu-

tions to the mobile ecosystem, effects of which may become visible very soon. Signs of this

can already be seen in form of activity in the startup world, with many new players already

jostling for space with established names. This is only going to intensify with proliferation and

enthusiastic adoption of mobile technologies by the populace at large. We hope that this will

lead to innovative virtualization-based solutions to the many complex issues that the mobile

domain faces today.

45

REFERENCES

[1] About lua. http://www.lua.org/about.html.

[2] Comparison of android app permissions of popular backgrounds app versus jackeey wall-
paper apps. http://www.androidtapp.com/.

[3] An introduction to virtualization. http://www.kernelthread.com/publications/

virtualization/.

[4] L4linux. http://os.inf.tu-dresden.de/L4/LinuxOnL4/.

[5] Okl4 microkernel programming manual. http://wiki.ok-labs.com/downloads/

release-pre-2.0/Okl4-progmanual.pdf.

[6] Realview platform baseboard for arm11 mpcore user guide. http://infocenter.arm.

com/help/index.jsp?topic=/com.arm.doc.dui0351e/I1007079.html.

[7] Realview platform baseboard for arm11 mpcore user guide. http://forum.

xda-developers.com/showthread.php?t=764950.

[8] Techoverview. http://virt.kernelnewbies.org/TechOverview/.

[9] Virtualization in xen 3.0. http://www.linuxjournal.com/article/8909.

[10] Virtualization is coming to a platform near you. http://www.arm.com/files/pdf/

System-MMU-Whitepaper-v8.0.pdf.

[11] Groer Beleg. Ecient virtualization on arm platforms.

[12] Geh Wynn Chow and Andy Jones. A framework for anomaly detection in okl4-linux based
smartphones, 2008.

[13] William Enck and Patrick McDaniel. Understanding androids security framework, 2008.

[14] Shantanu Goel. Solving the android permissions and malware puzzle. http://tech.

shantanugoel.com/2010/08/14/android-permissions-malware.htm.

[15] Robert P Goldberg. A survey of virtualization research. 1974.

[16] David B. Golub, Daniel P. Julin, Richard F. Rashid, Richard P. Draves, Randall W. Dean,
Alessandro Forin, Joseph Barrera, Hideyuki Tokuda, Gerald Malan, and David Bohman.
Microkernel operating system architecture and mach. In In Proceedings of the USENIX
Workshop on Micro-Kernels and Other Kernel Architectures, pages 11–30, 1992.

[17] Adam Lackorzynski Bjrn Dbel Alexander Bttcher Hermann Hrtig, Michael Roitzsch. L4
virtualization and beyond.

[18] VMVare Inc. History of virtualization. http://www.vmware.com/virtualization/

history.html.

46

[19] Jochen Liedtke. Improving ipc by kernel design. In In 14th ACM Symposium on Operating
System Principles (SOSP, pages 175–188, 1993.

[20] Susanta Nanda and Tzi cker Chiueh. A survey of virtualization technologies. Technical
report, 2005.

[21] Dean Takahashi. Android wallpaper app that takes your data
was downloaded by millions. http://venturebeat.com/2010/07/28/

android-wallpaper-app-that-steals-your-data-was-downloaded-by-millions/.

[22] VMWare. Understanding full virtualization, paravirtualization, and hardware assist.

[23] Wikipedia. Mach (kernel). http://en.wikipedia.org/wiki/Mach_(kernel)l.

[24] Xuxian Jiang Yajin Zhou, Xinwen Zhang and Vincent W. Freeh. Taming Information-
Stealing SmartphoneApplications (on Android). 4th International Conference on Trust
and Trustworthy Computing, 2011.

47

APPENDIX

48

Appendix A

Steps to Build Android

A.1 Configuring and building Android and L4Linux for

PB11MPCORE

This appendix describes in detail the steps needed to build and boot a complete android system

running on top a virtualized L4Linux kernel with L4 microkernel as the hypervisor.

1. Configure and Build Android

In the first step, we download build and compile the android subsystem. The instructions

for doing can be found at http://source.android.com/source/initializing.html.

Please be sure to follow the step precisely specially with reference to the correct tool

versions. Any mistakes here will lead to a lot of notorious bugs later.

2. Configure Linux kernel for ARM

In this step we configure and build the Linux kernel for Android. Firstly, download a copy

of Linux kernel version 2.6.33 which has been patched for ARM. This can be found in the

CVS repository of the systems lab at Dept of Computer Science, NCSU. Additionally,

newer version of the kernel will be progressively available at http://linux-arm.org/.

3. Building and Flashing the Linux kernel image into the development board.

49

Build this kernel with the following command:

make ARCH=arm CROSS COMPILE=arm-none-linux-gnueabi- uImage

The uImage we get at this step should be flashed into the PB11MPCORE after copying

them on to the memory card. Power on the board and in the command prompt and

switch to flash menu and burn the image using the following commands:

flash

write binary UIMAGE

list images

Copy the boot address associated with out uImage which will be the output of the last

command above.

4. Patch Android for PB11MPCORE

In this step we will patch and build the android sources that we downloaded in step

1. The patches can be downloaded into a separate from the CVS repositories of the

Systems Research Laboratory at Dept. of Computer Science, NCSU. The patches to be

downloaded are the following:

AndroidV2.2-arm-bionic.patch

AndroidV2.2-arm-build.patch

AndroidV2.2-arm-dalvik.patch

AndroidV2.2-arm-frameworks-base.patch

AndroidV2.2-arm-system-core.patch

AndroidV2.2-device-arm.tar.bz2

The patches need to go to the folder names associated with the patch. For instance, to

apply the bionic patch, go to bionic folder inside the android source directory and run

the following command:

git apply path-to- AndroidV2.2-arm-bionic.patch

Similarly, apply all the patches in the appropriate folders. Remember, the last patch,

AndroidV2.2-device-arm.tar.bz2 is a tarball that needs to be uncompressed in the vendors

50

directory.

5. Building Android for PB11MPCORE

In the topmost level of the Android source directory, build Android for PB11MPcore us-

ing the following command:

make PRODUCT-ARMv6k-eng

This will build the Android operating system for PB11MPCORE board.

6. NFS Boot of Android

To boot Android via NFS, do the following:

cp ANDROID ROOT/out/target/product/BOARD NAME/root/*

/var/nfs4/armv7-board-fs

cp ANDROID ROOT/out/target/product/¡BOARD NAME/system/*

/var/nfs4/armv7-board-fs/system

Comment out the following in the init.rc file in your source files:

mount rootfs rootfs /ro remount

mount yaffs mtd@system /system

mount yaffs2 mtd@system /system ro remount

mount yaffs2 mtd@userdata /data nosuid nodev

mount yaffs2 mtd@cache /cache nosuid nodev

Change the following file to reflect the proper permissions for the nfs folder

/srv/nfs4/android-fs *(rw,sync,no root squash,no subtree check)

First connect the serial output of the board to a Linux based PC. In a terminal prompt,

run minicom. In the Boot monitor command prompt on the board, run the following

command:

flash run UBOOTRV

Uboot command prompt will be seen in the minicom output. In the UBOOT command

prompt, run the following command with the address you copied in the step 3:

51

bootm address

Android will boot up and the idle screen will be displayed in the screen connected to

the board. You will also get a command prompt into Android in the minicom termi-

nal.Download the ’Rageagainstthecage’ binary from the CVS repositories of the Systems

Research Laboratory at Dept. of Computer Science, NCSU. Run this binary file to gain

root access into the Android system.

7. Building Patched L4Linux for Android on PB11MPCORE.

Download and build the L4Linux subsystem following the instructions given in the fol-

lowing link:

http://os.inf.tu-dresden.de/L4/LinuxOnL4/build.shtml

Once you have built and configured it for the PB11MPCORE board after following the

instructions in the above link, we can proceed to change L4Linux to incorporate the An-

droid patches and build the L4Linux again. For this replace the L4Linux sub-folder in

your L4 build folder with the patched L4Linux sources available in the CVS repository

of the Systems Research Laboratory at Dept. of Computer Science, NCSU. After replac-

ing the folder, build the L4subsystem once again. After the build, this patched L4Linux

kernel can be boot according to the step 3 and step 6.

52

