
ABSTRACT

RAMASESHAN, RAVI. Traced Based Dependence Analysis for Speculative Loop
Optimizations. (Under the direction of Associate Professor Dr. Frank Mueller).

Thread level speculation (TLS) is a powerful technique that can harness, in part,

the large computing potential of multi-core / chip multiprocessors. The performance of

a TLS system is limited by the number of rollbacks performed, and thus the number of

dependence violations detected at run-time. Hence, the decomposition of a serial program

into threads that have a low probability of causing dependence violations is imperative.

In this thesis, we develop a framework that calculates a dynamic dependence graph

of a program originating from an execution under a training input. We are investigating

our hypothesis that by generating such a dependence graph, we are able to parallelize the

program beyond the capability of a static compiler while limiting the number of required

rollbacks. In our approach, we evaluated two techniques for calculating dependence graphs

to perform our dependence analysis: power regular segment descriptors and shadow maps.

After calculating dependence graphs that aid loop nest optimizations and after determining

program performance after parallelization, we assess results obtained with our framework

and then discuss future directions of this research.

We observed the most improvement in performance for two benchmarks, while the

others showed either no improvement or degradation in performance or in one case even a

slow-down with our analysis.
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Chapter 1

Introduction

1.1 Thread Level Speculation

Thread-level speculation is a technique that enables parallel execution of sequen-

tial applications on a speculative basis at run-time with either software or hardware support

for roll-back[3]. Despite the use of profilers and parallelizing compilers, automatic paral-

lelization has proven to be a very difficult problem . While successful for certain scientific

applications, automated parallelization has typically provided poor parallel performance

in the absence of or for weak inter-procedural analysis and for indirect memory accesses.

To alleviate this problem, speculative run-time systems have been proposed to exploit the

parallelism implicit in a sequential application. Since dependence, and hence correctness, is

enforced by the speculative run-time, the compiler can improve performance by speculating

on ambiguous or low probability dependences without absolute guarantees of independence

or correctness. To enforce correctness, the run-time employs data-dependence tracking

mechanisms, buffers data from speculative threads in temporary storage, rolls back incor-

rect executions, and commits data to the memory system only when speculative threads

do not violate data dependencies [5]. Figure 1.1 shows how a speculative run-time can

be used to parallelize a sequential program to detect data dependence violations between

speculative threads. The sequential program is decomposed into thread i and the specula-

tive thread i + 1. If the addresses being read to and written from are unknown at compile

time, conservative dependence analysis would place a dependence edge between the write

in the first thread and the read in the second. Hence, static compiler analysis would not

be able to parallelize the two threads without any synchronization. However, with a spec-
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ulative run-time system, the compiler can ignore this dependence, parallelize the program

and defer the governance of correct program semantics to the run-time. In this example,

the read in thread i + 1 reads a stale value of X before the write from thread i writes to

X. The run-time detects this dependence violation, flushes any work done and restarts the

speculative thread i + 1. Note that even though there is a dependence from the write in

the first thread to the very next read, the dependence does not cross the thread boundary,

it is not a dependence violation.

Figure 1.1: Thread Level Speculation: An example of speculative threads with data depen-
dences [3]

Conventionally, the speculation run-time provides a mechanism to run serial code

in parallel. The high cost of the squash-rollback-re-execute approach on a dependence

violation makes prudent selection of speculatively parallel threads the key to the success

of the approach. Ideally, no data dependence should cross a thread boundary to avoid

dependence synchronization delays and dependence violation rollbacks. Also, the threads

should be large enough to amortize the cost of their dispatch. The compiler is responsible

for decomposing a sequential program into speculatively parallel threads while considering

performance overheads related to data dependence violations.

Finding optimum program decompositions in general is NP-complete [16]. How-

ever, researchers have mainly targeted two constructs for extracting parallelism — subrou-



3

tines/functions and loops [3][12]. Loops are attractive candidates for parallelization because

programs spend most of their time executing within loops. Also, several loop iterations can

be combined into a single “chunk” to construct larger and more load balanced threads.

void vectCopy (int A[N], int B[N]) {

for (i = 1; i < N; i++) {

A[i] = B[i];

}

}

Figure 1.2: Loop Parallelization Example

Consider the example in Figure 1.2. The compiler would not be able to parallelize

the above loop since it would not be able to prove that the two arrays A and B do not

overlap. However, it is possible to speculatively parallelize this loop by assuming each

iteration to be independent of the other if A and B do not overlap for most of the invocations

of the function. In the event that A and B do overlap, the speculative run-time would detect

the dependence violation and execute the loop serially. Figure 1.3 graphically illustrates the

speculative parallelization of different iterations of a loop. In the figure, we combined three

iterations of the loop while decomposing the loop into threads. The thread on CPU1 is the

speculative thread. The shaded region denotes the dispatch overhead. Note that the master

(CPU0) thread suffers more dispatch overhead than the worker threads (CPU1). This is

because, besides the normal thread start-up overhead, the master thread is responsible for

dividing the work among all the worker threads.

1.2 Dependence Analysis

Data dependence analysis is the basic step in detecting loop level parallelism [8].

Traditionally, there have been many sophisticated approaches to calculate exact depen-

dences in a program statically. However, due to incomplete or obscured dependence infor-

mation, the compiler may be conservatively forced to assume a dependence between two

memory access points since it must maintain program correctness. If this dependence does

not actually exist, we call this a false dependence. False dependencies can arise due to many

causes:
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Figure 1.3: Example of a speculatively executed loop

1. Imprecise Alias Analysis: This is a problem that occurs more frequently in C/C++

programs. If the alias classification scheme is imprecise (as any moderate-cost alias

analysis is), then conservative aliasing between pointers will have to be assumed.

2. Indirect Accesses: These occur in codes that use index arrays. Consider the access

A[B[i]]. In this case, the compiler has no information about which parts of the array

A are accessed unless the values in the entire array B are known. This is not usually

the case at compile time. Hence, the compiler must assume that any element of array

A may be accessed.

3. Calls: A significant fraction of loop nests contain calls in the loop body. Without

knowing the memory accessed by the called function, the compiler must assume that

all global memory and the references passed as arguments to the called function are

modified by the call. Inter-procedural analysis can often provide information about

the memory locations accessed by the called function. However, such analysis may be

imprecise (e.g., due to symbolic variables) or may not be available for all calls (e.g.,

library functions).

4. Symbolic Terms: The presence of symbolic terms in array subscripts, loop bounds

and condition predicates may make it impossible to precisely determine if dependencies
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exist.

The most straightforward approach for the compiler to parallelize a loop is to

statically prove that there are no loop-carried dependencies between iterations of that loop.

If true, then all iterations of the loop can be conceptually executed in parallel. Such a

loop is called a DOALL loop [6]. Considering dependences introduced due to the above

mentioned imprecision in dependence analysis, this constraint prevents a large number of

loop nests from being parallelized.

In this thesis, we explore the use of dynamic dependence graphs for decomposing

a program into threads. We respect all dependences that occur in the dynamic dependence

graph while decomposing the program. Such a decomposition is not safe for all input

but since we use a training input characteristic of the common input to the program, the

dependences that occur in our analysis are those that are the most likely to occur for any

input. Hence, it is our hypothesis that such a thread decomposition would be profitable for

coarse-grain speculative parallelization. Though dependence graphs, to guide speculative

optimization, have been dynamically created in the past, we employ a novel approach of

using Power Regular Section Descriptors for regular accesses and Largest Common Sub-

range Descriptors for irregular accesses that makes our analysis scalable. We also evaluate

the precision of our analysis technique versus that of a shadow-map based non-scalable

approach.

The remainder of this thesis is organized as follows. Chapter 2 describes our trace-

based dependence analysis and optimization framework. Chapter 3 discusses the results that

we obtained. Chapter 4 describes related work. Chapter 5 provides our conclusions.
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Chapter 2

Tracing and Dependence Analysis

Framework

2.1 Overview

The objective of this framework is to build a dependence graph to guide speculative

loop nest optimizations. Figure 2.1 illustrates a high-level view of the framework. The

program is first traced with a training input, and the tracing and dependence analysis

framework calculates a dependence graph of the program. The Loop Nest Optimizer (LNO)

phase in the Open Research Compiler (ORC) then generates a speculatively parallel program

using this dependence graph. The program is speculatively parallel because the dependence

graph used in the optimizations may not respect every dependence that may exist in the

program for different inputs but only those that were exercised by the inputs in the tracing

run.

The entire framework operates in four distinct serial phases:

1. Instrumentation :— The framework, implemented within the LNO component of

ORC, instruments the program by inserting calls to a tracing library at certain points

in the program.

2. Tracing :— The instrumented program is linked with a tracing library and run with

a training input to generate a trace of the program execution representative of the

common case behavior of the program.
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Figure 2.1: Framework Overview

3. Dependence Analysis — The generated trace is processed to calculate a dynamic

dependence graph of the program.

4. Speculative Parallelization — Using the dynamic dependence graph of the pro-

gram, aggressive loop optimizations are applied.

Each of these phases shall be described in detail later. In the following sections we

shall briefly describe ORC and its internal representation — WHIRL (Winning High Level

Intermediate Representation Language).

2.1.1 Open Research Compiler

The following description has been taken from ORC’s website.

“The Open Research Compiler (ORC) [13] project provides a leading open source

ItaniumTMProcessor Family (IA-64) C/C++ and Fortran90 compiler infrastructure to the

compiler and architecture research community. This project is a collaboration between Intel

Corp. and Chinese Academy of Sciences. It is based on the Pro64 (Open64) open source

compiler from SGI [2] [10]. It has the following major back-end components:

• Inter-procedural Analysis and Optimizations (IPA)

• Loop Nest Optimizations (LNO)

• Scalar Global Optimizations (WOPT)
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• Code Generation (CG)”

This research is focused on speculative loop nest optimizations. Hence the com-

ponent in back-end of interest here is the LNO. It implements a large number of loop nest

optimizations, e.g, loop fission, unrolling, tiling, interchange, reduction, privatization and

auto-parallelization. LNO uses two analysis frameworks that are relevant to this research —

array dependence graphs and array region analysis. Array dependence graphs are primarily

used for most loop optimizations while array region analysis is used for privatization.

2.1.2 WHIRL

The following description of WHIRL has been taken from [19].

“Every compiler uses an internal representation (IR) to bridge the semantic gap

between the source language and machine instructions. This enables the compiler to handle

many languages and many architectures with the same infrastructure. In general, a compiler

has multiple levels of IR. The higher levels of IR contain more structural information about

the program while the lower levels lose this information.”

“WHIRL is the IR used by ORC and it has five levels. Each WHIRL level is

semantically the same, however, the structural information about the program decreases

in the lower levels. This multi-level approach to the IR enables optimizations to work at

the most appropriate levels. Figure 2.2 shows the different components of ORC and the

levels of the IR each component works with. Compilation can be viewed as a process of

gradual transition, called lowering, from high level language constructs to low level machine

instructions. During a typical compilation, the source code is compiled into VH (Very-High)

WHIRL and the IR is progressively lowered into L (Low) WHIRL and finally into machine

instructions.”

LNO uses H (High) WHIRL in which side effects can only occur at statement

boundaries and control flows are fixed. In H WHIRL, high level control flow constructs

are represented using operators such as DO LOOP, DO WHILE, WHILE DO and IF. Also array

accesses are represented using the ARRAY operator. Scalar loads and stores are represented

as LDIDs and STIDs while indirect loads and stores are represented as ILOADs and ISTOREs,

respectively. Each WHIRL statement is organized as a tree and a program unit contains a

list of WHIRL statements.
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Figure 2.2: Continuous Lowering in the SGI Pro64 Compiler [19]

2.2 Instrumentation Framework

The instrumentation framework is responsible for placing calls to a tracing library

in the program at points corresponding to possible nodes in the dependence graph. It also

places instrumentation for points corresponding to structured control flow constructs. The
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objective of the framework is to create a program that generates a trace of addresses for

memory accesses and control flow transitions for loops, calls and functions.

We shall now describe the statements in the IR that we need to instrument.

“LNO builds a graph of all the array statements in a function which it calls the

array dependence graph. Each array load (ILOAD) and store (ISTORE) is mapped to a vertex

in the graph and so are CALLS. Non array loads and stores (LDIDs and STIDs) may also

appear in the graph only if they exhibit a dependence with some array load/store. A good DO

loop is one which satisfies certain criteria which include not containing any unsummarized

calls 1, bad memory references 2 and early exits. Edges only exist between loads and stores

that share at least one common good DO loop. The edges in the dependence graph have a

list of lexicographically positive dependence vectors associated with them. The dependence

vectors may either be distance or direction vectors. Any statement in the IR which is not

mapped to a vertex in the graph must be assumed to be dependent on everything.” 3

We instrument array and scalar loads and stores, function entry and exits and call

sites. DO LOOPs are instrumented so that we can distinguish between different iterations of

each loop.

Each instrumentation point is associated with a unique integer identifier, which

we call a reference identifier. We maintain the type of the statement that was instrumented,

and in the case of loads and stores, the size of the memory access as meta information per

instrumentation point. The instrumentation passes the reference identifier of the instru-

mentation point and, in the case of loads and stores, the memory address accessed to the

instrumentation library. This technique simplifies the instrumentation and also reduces the

amount of trace data generated.

For loads, stores and calls, the instrumentation for each statement is added in

post-order so that the trace generated correctly reflects the execution of the program. We

place two instrumentation points per loop. The first marks the beginning of the loop body

and the second marks the completion of all iterations of the loop. The sequence of markers

generated by this instrumentation is adequate to distinguish between two iterations of a

loop and removes one instrumentation point from the loop body. This reduces tracing

overhead in terms of time as well as stable storage space.
1Unsummarized calls are call statements in the WHIRL without any IPA information inside the DO loop
2Bad memory references are loads and stores that are not mapped in ORC’s dependence graph
3The description of array dependence graphs is taken from comments in the source code file dep graph.h

in the ORC source tree
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2.3 Tracing Phase

In the tracing phase, the instrumented program is linked with the tracing library

and executed to generate a faithful trace of the execution of the program through some

training input.

The tracing library writes the trace information onto stable storage. Each record

written by the tracing library is a 10 byte tuple of (reference identifier, address) where

the reference identifier is 2 bytes and the memory referenced is 64 bits.

2.4 Dependence Analysis Framework

The dependence analysis framework uses the trace file and the meta-information to

calculate a dynamic dependence graph whose edges are associated with dependence vectors.

2.4.1 Dependence Analysis

The following summary of some of the key concepts in dependence analysis has

been taken from [6] as background.

“Dependences can be characterized by several different properties. The type of a

dependence - true, anti- and output - tells whether it corresponds to a write before a read,

read before a write or a write before a write. Dependences in loops have special properties.”

An iteration vector of an access in a loop is a vector of normalized iteration numbers

of the loop nest in which the access is seen. “A dependence direction vector describes the

relationship (<, =, or >) between the values of the loop indices for the nest at the source and

the sink of the dependences. The distance vector gives the number of iterations crossed by

the dependence for each index in the loop nest. A dependence is said to be loop independent

if its direction vector entries are all equals. Otherwise it is a loop carried dependence. The

level of a loop-carried dependence is the nesting level of the loop that corresponds to the

leftmost non-equals direction in the direction vector. A transformation that reorders the

iterations of a level-k loop, without making any other changes, is valid of the loop carries

no dependence.”
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2.4.2 Overall Structure

The basic technique used in the dependence analyzer is to maintain sets of memory

accesses and to check whether the current memory access exhibits a dependence with any

past memory accesses. Dependence vectors are determined by calculating the difference

between the iteration vectors of the two dependent accesses. The dependence analyzer has

four major parts — maintaining the current context, maintaining the access pools, detecting

dependences and calculating dependence vectors.

Figure 2.3 shows the overall structure of our dependence analyzer framework. The

trace file is read in and each is processed through the dependence analysis framework.

Loops, call sites and function entry and exits are records in the trace file that we classify as

structured control flow (SCF) records. These records are used by the dependence analyzer

to maintain the current context of the program and to associate an iteration vector with

every memory access. The remainder of this section describes the core of the trace based

dependence analyzer in detail.

2.4.3 Extended Context Stack

We define an extended context of the program to contain not only the call stack

but also loop nest information. A loop context encodes the loop identifier and the iteration

number of the current iteration. A calling context encodes the call site and also the function

being called. Besides pushing and popping calling contexts onto and from the extended

context stack while processing functions, we also push and pop loop contexts as the loop

body is entered and exited per iteration. We assume a regular loop structure where loops
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may either be disjoint or completely nested. Due to this property, we only require loop

iteration begin markers without their corresponding loop iteration end markers. When we

process a loop iteration-begin marker, the current context stack is checked to see if this

loop is the current context. Otherwise, we push this loop context with an iteration number

of zero onto the context stack. If the current context is already this loop then we simply

increment the iteration number of the loop context. In this way, we maintain normalized

iteration vectors for each loop nest independent of the actual induction variable. The trace

file also contains records for call sites and function entry and exits. Using this information,

we maintain a call stack as a part of our extended context stack.

2.4.4 Access Pools

An access pool is defined as a an iteration-space ordered or unordered set of mem-

ory accesses stored as a tuple of reference identifier, address and possibly the iteration vector

of the access. Access pools are required to keep track of past memory accesses. In order to

calculate dependence vectors and dependences due to calls, we save the extended context

stack as an extended iteration vector along with each access in the access pool. Keeping

track of past accesses becomes a hard problem for programs that perform large amounts of

memory accesses. In this thesis, we focus our research on scientific programs that typically

have a large number of memory accesses though most of these accesses are array references.

Marathe et al. [7] performed a detailed study of memory access patterns and showed that

most accesses for scientific programs are regular or slow changing. They also proposed a

compressed representation of a group of memory accesses per instruction pointer called a

Power Regular Section Descriptor (PRSD). Beyond this work, we establish that the regular

access region of a PRSD also makes it possible to test for a dependence in time linear in

the depth of a PRSD. Hence, we use a PRSD-like mechanism to maintain our access pools.

Our PRSDs encode rectangular regions using a base address and a vector of di-

mensions and are maintained per memory access instrumentation point. Each dimension

describes a stride, which is the distance each memory access is apart from its preceding

access in this dimension, and length, which is the number of accesses in this dimension.

Initially, an access is a zero-dimension PRSD and is then combined using a compatibility

function to form larger dimension PRSDs. The test that determines if two PRSDs P and

Q are compatible is works as follows:
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1. If the two PRSDs are both of dimension N then they are compatible if the strides

and lengths of each of their N dimensions are identical.

2. If P has dimension N − 1 and Q has dimension N , then P is said to be compatible

with Q if all the dimensions of P are identical to the lower N − 1 dimensions of Q

and the base address of P is predictable by the stride of the N th dimension of Q.

3. All other PRSDs are considered incompatible.

We shall illustrate the process in which PRSDs are combined to form larger PRSDs

in the following example:

1. &A[0][0] &A[0][0] Trivial Zero-Dimension PRSD
2. &A[0][1] &A[0][1] Trivial Zero-Dimension PRSD
3. &A[0][0], (+4, 2) Combine 1 and 2 (Rule 1)
4. &A[0][2] &A[0][2] Trivial Zero-Dimension PRSD
5. &A[0][0], (+4, 3) Combine 3 and 4 (Rule 2)
6. &A[1][0] &A[1][0] Trivial Zero-Dimension PRSD
7. &A[1][1] &A[1][1] Trivial Zero-Dimension PRSD
8. &A[1][0], (+4, 2) Combine 7 and 8 (Rule 1)
9. &A[1][2] &A[1][2] Trivial Zero-Dimension PRSD
10. &A[1][0], (+4, 3) Combine 8 and 9 (Rule 2)
11. &A[0][0], (+4, 3), (+40, 2) Combine 5 and 10 (Rule 1)
12. &A[2][0] &A[2][0] Trivial Zero-Dimension PRSD
13. &A[2][1] &A[2][1] Trivial Zero-Dimension PRSD
14. &A[2][0], (+4, 2) Combine 12 and 13 (Rule 1)
15. &A[2][2] &A[2][2] Trivial Zero-Dimension PRSD
16. &A[2][0], (+4, 3) Combine 14 and 15 (Rule 2)
17. &A[0][0], (+4, 3), (+40, 3) Combine 11 and 16 (Rule 1)

Searching for an access to a particular memory address involves a search in the

memory region defined by the PRSD. This search in the PRSD address space can be solved

using integer linear programming. For rectangular region PRSDs, the compatibility test

has a complexity linear in the number of dimensions of the PRSD.

The list of PRSDs generated for a particular instrumentation point is divided

into active and dormant sets. The PRSDs from the active set are tested for compatibility

during PRSD compression while the PRSDs from the dormant set are maintained only for

dependence checking. This heuristic may reduce the efficiency of the PRSD mechanism but

the loss in compression makes the process scalable to a large number of PRSDs, which is

often encountered for irregular accesses.
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2.4.5 Dependence Testing

Our dependence testing strategy compares the current access with past accesses

in the access pools. Maintaining two separate access pools, one for loads and one for stores,

makes dependence checking simpler and faster by reducing the number of accesses that need

to be consulted for detecting dependences. If the current access is a load, then all accesses

in the store pool must be checked to see if there was a store to the same address. If one is

detected then we determined a read-after-write or a true dependence. The iteration vectors

for the store and the current load are extracted and then used to calculate a dependence

vector. Similarly, if the current access is a store, we detect anti- and output dependences,

respectively by checking with the load and store pools.

The compressed representation of all the accesses traced by an instrumentation

point avoids pairwise testing of each access. However, for a large number of PRSDs in each

pool, this technique becomes infeasible. Hence we maintain an auxiliary data structure

that we call a super range access pool along with our load and store pools in which we

divide the memory address space defined by the PRSDs into disjoint regions based on the

bounds of the PRSD. It is called a super range access pool because it calculates super-sets

of overlapping memory regions. Every PRSD belongs to exactly one region. These regions

are formed as follows:

If P is the new PRSD and R is the set of regions for an access pool then the set

R, which is initially empty, is generated according to the following RULES:

1. If the region defined by P does not intersect with any Ri ∈ R, then make a new

region, containing P and with the same bounds as P and add it to R.

2. If the region defined by P is completely enclosed within the region defined by Ri ∈ R,

then add P to Ri’s set of PRSDs.

3. If the region defined by P intersects with Ri ∈ R, and possibly Ri + 1 ∈ R then make

a new region containing all PRSDs in regions P , Ri and possibly Ri +1 whose bounds

enclose the regions defined by Ri, Ri + 1 and P .

Figure 2.4 shows a snapshot of the super range access pool. As can be seen from the

figure, it divides PRSDs into maximal disjoint regions of overlapping PRSDs. All PRSDs

are maintained as a part of linked lists in the PRSD table per reference identifier. Since
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PRSD Table

PRSD3

lb=0xFF05
ub=0xFF50 ub=0x100

lb=0x50lb=0x700
ub=0x800

lb=0x500
ub=0x700

id1 id2 id3

lb=0xFF00
ub=0xFF10

[0xFF05−0xFF50] [0x500−0x800] [0x50−0x150]

Region1 Region2 Region3

PRSD2 PRSD4

PRSD7

PRSD5PRSD1

PRSD6

lb=0x75
ub=0x100

lb=0x75
ub=0x150

Figure 2.4: Super Range Access Pool

PRSD1 and PRSD2 overlap in region 0xFF05to0xFF10, we create region Region1 for

the two overlapping PRSDs. Similarly, region Region2 consists of PRSD3 and PRSD4

due to the overlapping access 0x700. Region Region3 consists of three PRSDs — PRSD5,

PRSD6 and PRSD7. Thus, any access that belongs to region Region1 needs to be tested

for dependence only with PRSD1 and PRSD2. Maintaining this auxiliary region map

makes testing for a dependence much faster on average by distributing PRSDs into disjoint

regions. Now, a PRSD may only need to be tested for a dependence against other PRSDs

in its region.

2.4.6 Calculating Dependence Vectors

After identifying the two memory accesses due to which the dependence was man-

ifested and extracting their corresponding extended iteration vectors, we a) identify nodes

between which the dependence edge must be placed in the per-function dependence graph,

b) calculate dependence vectors for the edge with respect to the loop nest and c) collect

dependence edges in dependence graphs per function. We scope this project to only calcu-

lating direction vectors for an edge. Although we identified the memory access due to which

a dependence is caused, the presence of calls in the program complicates the placement of
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the dependence edge in the correct function. This is because the accesses may be in different

invocations of the function at different call sites.

Common Prefix

<main>
Call2
<foo> <0>

Loop2
<3>

Store4
<&X>

<main>
Call1 Call2

<foo>
Loop2
<3>

Loop3
<3>

Loop4
<0>

Call2
<foo>

Load8
<&X>

Common

Call1 Loop3

Loop Nest

{0,3}

Figure 2.5: Placement of Dependence Edges

We shall describe the process of calculating the dependence vector an edge using

the example illustrated in Figure 2.5. We use the two extended iteration vectors shown in

the figure to calculate the points between which the dependence needs to be placed and

also the dependence vector for the edge. A dependence was detected from Store4 to Load8

and is represented by the dotted arrow. The common prefix of both the iteration vectors

is skipped and the last calling context is recorded. In this case, the last calling context

was Call2 < foo >. Hence, foo is the function in which the dependence edge needs to be

placed. Next, the common loop nest is identified and the difference between the iteration

numbers for each context gives the dependence vector for the edge. Then the edge is placed

between the next call in the extended iteration vector or the memory access itself depending

on which one exists. In this case, the the edge was placed from Store4 to Call2. In this

way, we create per-function dependence graphs for the entire program.

2.5 Speculative Parallelization Phase

This phase reads in the dynamic dependence graph computed by the dependence

analysis phase, described in Section 2.4, combines it with ORC’s static dependence graph

and builds a dependence graph that potentially more accurately reflects opportunities of

successful TLS than either graphs.

We first read in our dependence graph and establish a mapping between the nodes
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and access points in the IR. A node in the dependence graph corresponds to an instrumen-

tation point that is uniquely identified by its reference identifier. By traversing the IR in

the same manner as was done while instrumenting the program, we can establish a map-

ping between points in the IR and nodes in our graph. The dependence graph calculated

by the compiler using static analysis is imprecise due to the reasons described in Section

1.2. Depending on the precision of sequencing information maintained by the PRSDs the

dynamic dependence graph computed by the trace-based analyzer might also be imprecise.

This is discussed in detail in Section 2.6. Let Gs be the dependence graph calculated by the

compiler using static analysis and Gd be the dynamic dependence graph calculated using

our dependence analyzer. We build the new dependence graph Gn by iterating over each

of the edges of both Gs and Gd as follows:

1. If an edge exists in the Gs and not in Gd, then we do not add the edge in the new

dependence graph Gn.

2. If an edge does not exist in Gs but exists in Gd, then we add the edge to Gn if one or

both of the end points of this edge belongs to V (Gs).

3. If the edge being added to the dependence graph Gn is present in both Gs and Gd,

then theoretically we would want to create a set of dependence vectors that tightly

constrains the two dependence vector sets. However calculating such a set is hard.

Hence, we select the more constrained of the two sets of dependence vectors based on

the number of dimensions and whether they are distance or direction vectors.

ORC uses the new dependence graph to parallelize loop nests. By using a more

opportunistic dependence graph in ORC’s auto-parallelization framework, loops that were

earlier not auto-parallelizable by ORC may now be parallelized. The program generated

is a speculatively parallel program since the set of dependences represented in the new

dependence graph were only those that were manifested with the training input. They may

not be the complete set of dependences. Particularly, some other input to the program

might exercise dependences that were not honored by our analysis and cause incorrect

program behavior. Our research aims to use the dynamic dependence graph as a guide to

speculatively parallelize a program. We assume that the training input is characteristic of

the program and, hence, dependences not represented in the dynamic dependence graph

would be exercised infrequently during a regular run. We believe that this would reduce
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the number of roll-backs in the speculative run-time environment and thus improve the

performance of a TLS system.

2.6 Enhancements to the Framework

In this section, we describe techniques that we explored to improve our framework

in terms of analysis time, memory requirements as well as precision of the dependence graph

generated.

2.6.1 Sequencing Information and Dependence Analysis

Sequencing information is the information required to maintain a complete order

among all the accesses in the system. It plays an important role in the precise calculation of

dependences. Absence of, or limited ordering information may result in false dependences

between points in the program and a conservative set of dependence vectors for an edge.

STORE &A

LOAD  &A

B

C

A

B

A

C

STORE &A

Figure 2.6: False Dependence Edge

Figure 2.6 illustrates how the lack of ordering information can lead to false depen-

dence edges being added to the dependence graph of the program. The code snippet has

a sequence of two stores followed by a load. There is one output dependence from A to

B and one true dependence from B to C. Let us assume that we are currently at access C

and the stores A and B are maintained without ordering. Since there is no way to know

which was the last store, we have to conservatively assume that it could have either been

A or B. Thus, we have the extra dependence from A to C, which is not a real dependence.

In general we may introduce dependences that do not exist in the original program for any
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input or that do not exist for our training input but might exist for some other input. In

either case, the dynamic dependence graph should not contain this dependence.

Figure 2.7 illustrates how the lack of ordering information can cause imprecise

dependence vectors for edges in the graphs. Vectors enclosed within angular brackets are

iteration vectors for each memory access, and the vectors enclosed in braces are the depen-

dence vectors for each edge. The left-most figure shows the dependence graph of the code

sequence — a store followed by a load referencing the same address within a loop. The

second figure splits the nodes of the first dependence graph per iteration and the third re-

combines the split vertices. In the absence of sequencing information, the ordering among

the accesses in different iterations of the loop is lost and for the same reason discussed in

the previous example, we need to place a flow dependence from every store to every lexi-

cographically positive load referencing the same address. The same holds true for anti and

output dependences. In this example, the imprecision is seen in the edge A → B where the

distance vector {1} is summarized as a direction vector of {<}. In future iterations of the

loop, the other dependences would also become imprecise.

Hence, without sequencing information, the only safe set of direction vectors that

we can place on an edge are the set of all lexicographically positive direction vectors for every

level of the common loop nest. Due to this, even loops that exhibit only loop independent

dependences cannot be parallelized.

LOAD  &A <1..N>

{=} {=}

{1}

{1}

{1}
{1} {1}{<}

{1}{1}
A

{=}

<1> <2>

<2>

A A

BB

ASTORE &A <1..N>

B B<1>

{=}

Figure 2.7: Imprecise Dependence Vector

Thus, maintaining sequencing information with every access is highly imperative
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to identify parallelism. However, maintaining this information with every access is difficult

for a large number of accesses. In the next two sections, we describe possible techniques

that we explored to maintain enough sequencing information to calculate dependences at a

relatively low overhead.

2.6.2 Access Pools using Shadow Maps

Chen et al. [1] used a shadow memory structure to calculate dependences between

loads and stores. Besides the PRSD-based access pools, we also explored a shadow memory

structure to calculate dependences in a program. We maintain separate shadow memories

— one for loads and one for stores. The load pools are different from the store pools in that

they maintain a list of accesses per address as opposed to store pools where only the latest

access to that address is maintained. Our shadow memory structure is indexed using the

address of the load or store. We update these shadow memories as follows:

for Access ∈ AccessStream do

if Access is a load then

Add flow dependence edge: StoreMap[AccessAddress] → Access

List(LoadMap[AccessAddress])+ = (AccessId, AccessIterationV ector)

else {Access is a store}
Add anti-dependence edges for all: LoadMap[AccessAddress] → Access

Add output dependence edge: StoreMap[AccessAddress] → Access

StoreMap[AccessAddress]) = (AccessId, AccessIterationV ector)

end if

end for

The advantage of this technique is that it maintains perfect sequencing information

and, hence lets us calculate dependences very precisely. It discards old accesses that should

no longer be used for testing dependence and, hence, does not store all past accesses,

but only those accesses that are relevant to dependence analysis. However it suffers from

the disadvantage that its memory usage scales linearly with the memory foot-print of the

analyzed program.
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2.6.3 Power Sequenced Regular Section Descriptors

PRSDs are effective structures in compressing large regular or slow-changing ac-

cesses. However, as pointed out in Section 2.6.1, the absence of sequencing information in

PRSDs introduces a lot of imprecision in the dependence graph. In order to improve the

precision, we maintain the address and extended iteration vector of the last access described

by this PRSD. This heuristic was based on the observation that programs tend to have a

large number of loop-independent updates. By keeping information about the latest access

described by this PRSD, we are able to identify such dependences as loop independent and

reduce the imprecision.

A more general solution to the problem, however, would be to maintain complete

sequencing information along with the PRSD itself by compressing the extended iteration

vectors in a way similar to how PRSDs are compressed. Our new PRSD, which encodes se-

quencing information in the form of compressed iteration vectors as a vector of the following

tuples, is structured as follows:

• Base Address: The address of the first access in this dimension.

• Address Stride: The difference between consecutive accesses in this dimension.

• Base Iteration Number: The first iteration number generating an access for this di-

mension.

• Iteration Stride: The difference between consecutive iterations generating an access

for this dimension.

• Length: The number of accesses described in this dimension.

The following example examines the execution trace generated by the program

depicted in Figure 2.8 and demonstrates how the access at point X in the loop nest can be

completely described:

Thus at the end of the process, we generate the sequenced PRSD {&A[0][0], +40,

0, +1, 3} {&A[0][0], +4, 0, +1, 3} that describes each access and also the iteration

vector corresponding to each access. The advantage of this technique is that it can describe

and compress a large number of regular accesses, thus making the process potentially very

scalable. However, this technique cannot efficiently handle addresses and control flow of
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int A[10][10];

for (i = 0; i < 3; i++)

for (j = 0; j < 3; j++)

X: A[i][j] = ...

Figure 2.8: Control Flow and Address Regular Access Compression

&A[0][0] (&A[0][0], +0, 0, +0, 1), (&A[0][0], +0, 0, +0, 1) Trivial
&A[0][1] (&A[0][1], +0, 0, +0, 1), (&A[0][1], +0, 1, +0, 1) Trivial

(&A[0][0], +0, 0, +0, 1), (&A[0][0], +4, 0, +1, 2) Combine
&A[0][2] (&A[0][2], +0, 0, +0, 1), (&A[0][2], +0, 2, +0, 1) Trivial

(&A[0][0], +0, 0, +0, 1), (&A[0][0], +4, 0, +2, 3) Combine
&A[1][0] (&A[1][0], +0, 1, +0, 1), (&A[1][0], +0, 0, +0, 1) Trivial
&A[1][1] (&A[1][1], +0, 1, +0, 1), (&A[1][1], +0, 1, +0, 1) Trivial

(&A[1][0], +0, 1, +0, 1), (&A[1][0], +4, 0, +1, 2) Combine
&A[1][2] (&A[1][2], +0, 1, +0, 1), (&A[1][2], +0, 2, +0, 1) Trivial

(&A[1][0], +0, 1, +0, 1), (&A[1][0], +4, 0, +1, 3) Combine
(&A[0][0], +40, 0, +1, 2), (&A[0][0], +4, 0, +1, 3) Combine

&A[2][0] (&A[2][0], +0, 1, +0, 1), (&A[2][0], +0, 0, +0, 1) Trivial
&A[2][1] (&A[2][1], +0, 1, +0, 1), (&A[2][1], +0, 1, +0, 1) Trivial

(&A[2][0], +0, 1, +0, 1), (&A[2][0], +4, 0, +1, 2) Combine
&A[2][2] (&A[2][2], +0, 1, +0, 1), (&A[2][2], +0, 2, +0, 1) Trivial

(&A[2][0], +0, 1, +0, 1), (&A[2][0], +4, 0, +1, 3) Combine
(&A[0][0], +40, 0, +1, 3), (&A[0][0], +4, 0, +1, 3) Combine

Figure 2.9: Sequenced PRSD Compression Simulation Example

irregular accesses. Instead, the technique would generate a large number of sequenced

PRSDs, which also makes dependence testing inefficient.

2.6.4 Handling Irregular Accesses

One technique we explored during our research for handling irregular accesses was

founded on the observation that large data structures are usually defined by regular regions

of memory. For most optimized algorithms, all information maintained in data structures is

used, hence, addresses of irregular accesses would eventually define a regular memory region

that can be represented as a PRSD. This can be done by buffering all irregular accesses that

occurred for a certain length of time into the past, sorting the accesses and applying PRSD-
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Figure 2.10: Imprecise Dependence Vector

like compression on the new access stream. Although this technique has the advantage of

being able to compress irregular accesses, dependence analysis may be adversely affected

by the loss of sequencing information. Hence, we currently do not use this method in our

dependence analysis.

We also propose largest common sub-range descriptors (LCSDs) for compressing

irregular accesses by expanding regions defined by PRSDs in a hierarchical manner to build

up larger regions. The objective of this scheme would be to describe the largest region

of memory by introducing the fewest pseudo-references in the access stream. This scheme

would introduce false-dependences in the analysis but would make the process of dependence

analysis more scalable. The handling of irregular references is subject to future work.

2.6.5 Split Range Access Pools

The auxiliary memory maps that we maintain along with our PRSD access pools

are important in reducing the complexity of dependence analysis. These maps divide the

address range to limit the number of PRSDs that a particular access needs to be checked

against for dependence. These maps are organized as balanced binary search trees making

searching for an appropriate region extremely fast. Hence, we refer to the set of regions as

the region-tree.

A region R of PRSDs Pk in the split range access pool, described in Section 2.4, is

defined as follows:

R =
⋃{Pi|∀Pi ∈ P |R = φ ∨ ∃Pj ∈ R ∧ Pi ∩ Pj 6= φ}
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Intuitively, it coalesces all address ranges of overlapping PRSDs into a single mem-

ory region. The idea behind forming such ranges is that PRSDs of different ranges are in-

dependent of each other and this fact makes dependence analysis faster in the average case.

However, the super-range access pool does have the disadvantage of causing more depen-

dence checks for PRSDs. Consider an example where only regions R1 and R2 and regions

R1 and R3 overlap. An artifact of the union of the three sets into a single region is that

an access belonging to region R2 would also be checked for dependence with PRSDs from

region R3. This is unnecessary and increases the time required for dependence analysis.

R R R RR RR

PRSD1
PRSD1 PRSD4

PRSD3

PRSD7

PRSD7PRSD2 PRSD2 PRSD3
PRSD4

PRSD6 PRSD5

PRSD6

1 2 R3 4 5 6 7 8

id1 id2 id3

lb=0xFF05
ub=0xFF50

lb=0x700
ub=0x800

lb=0x500
ub=0x700

lb=0x75
ub=0x150

lb=0xFF00
ub=0xFF10

PRSD2 PRSD4

PRSD7

PRSD3PRSD1 PRSD5

PRSD6

PRSD Table

ub=0x100
lb=0x75

lb=0x50
ub=0x100

Figure 2.11: Split Range Access Pool

We explored another data structure we call the split range access pool shown in

Figure 2.11. In this technique, if two ranges P and R overlap, then we create three new

ranges R1, R2 and R3, defined as follows:

R1 = P − (P ∩R) R2 = (P ∩R) R3 = Q− (P ∩R)

Simply put, if two ranges overlap, we form three new regions: one corresponding

to the overlapping region and at most two more regions for the remaining parts of the

original two regions. Consider PRSDs PRSD1 and PRSD2 in Figure 2.11. The regions

formed are regions R1, R2 and R3. R1 and R3 only contain accesses from PRSD1 and

PRSD2, respectively while R2 contains accesses from both PRSD1 and PRSD2. Thus,
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any access that belongs to region R1 only needs to be checked for dependence with PRSD1

and not with PRSD2, which does not belong to R1. Only an access that belongs to

region R2 needs to be checked with both PRSD1 and PRSD2 for dependence. As can

be seen from the figure, the pessimistic approach of unification in the super-range access

pool case only applies to the intersection region, which can be significantly smaller than the

union of both regions. Thus this structure eliminates false dependences among PRSDs, and

the PRSDs in a particular region are the minimal set of PRSDs that need to be checked

for dependence. Hence, we believed that this structure makes dependence checking much

faster. A key point to note here is that in this case, each PRSD may appear in multiple

regions in the region tree. If a PRSD needs to be deleted, multiple nodes in the region

tree would have to be visited, and the PRSD would subsequently be deleted from each of

them. Our experiments showed that in the case of non-row major accesses, the

region tree suffered from heavy fragmentation and, thus, resulted in it having

as many vertices as the number of elements accessed. This caused an explosion in

the number of references to a PRSD, making deletion of a PRSD from the access pool very

costly. Hence, in spite of the favorable properties of the split range access pool, we chose

the super-range access pool.
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Chapter 3

Experimental Results

This chapter describes the experiments to measure the correctness of our frame-

work and performance of the programs generated through our framework.

3.1 Experimental Setup

Our experiments were conducted on a dual processor 900Mhz ItaniumTM2 machine

running Linux and configured our benchmarks to be compiled for two threads. We used

ORC version 2.1 for our framework.

We used a modified version of the NAS OpenMP C benchmark set (version 2.3) for

our experiments. The source code of each benchmark was modified by removing all OpenMP

directives from them. In addition, we also replaced the complex number implementation

used in the FT benchmark to use that provided by the C Standard Library. This modification

was required to circumvent a deficiency in our branch of ORC that performs reduction

analysis on structure elements incorrectly. The benchmarks were compiled at the highest

level of optimization (-O3). Our research focuses on do-all rather than do-across auto-

parallelization, hence we used the do-all -apo flag and turned do-across auto-parallelization

off. We also switched inter-procedural analysis and binary dead-code elimination off to

bypass secondary bugs in our branch of ORC. The benchmark speedup numbers reported

in this chapter are that for the highest class that our branch of ORC could compile them

for. The compilation for some of the benchmarks failed for the highest class due to issues

in the compiler back-end that could not be fixed due to time constraints.

In the following sections, we first describe our methodology for verifying the cor-
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rectness of our framework. We then evaluate the results of our framework using speedups

and number of loops parallelized as our metrics.

3.2 Validating Correctness of the Framework

We manually verified correctness of each stage of the framework for micro-benchmarks

by examining the trace file and the dependence graphs generated and relating them to

the original source code. The NAS benchmarks compare the results computed with pre-

computed results stored as static tables to verify them. Our tracing and optimization phases

passed the verification tests successfully thus validating the correctness of our framework.

We could also run any benchmark-class combination through our framework that our un-

modified branch of ORC could compile.

3.3 Speed-up Measurements

In this section, we present experimental results for the speed-up experiments that

we performed for the NAS benchmark set. The speedup of the program generated using our

framework is measured with respect to a program parallelized using only static analysis.

The following tables show the results for our PRSD compression-based technique as well as

the shadow map-based technique.

We used class S as our training input set for generating traces. The dependence

graphs generated using this training input set were used to optimize the benchmarks for

all other classes, too. While dynamic analysis has the drawback that the optimizations

are only valid for the input set for which the original analysis was performed, we assume

that the training data set for our analysis is representative of the inputs to the program in

general.

We report our performance results in Table 3.1. BT, FT and MG were compiled for

class B while EP, LU and SP were compiled for class C. Interestingly, all the benchmarks

successfully passed their verification tests even though their dependence graphs were gener-

ated for class S. We see the most improvement in performance for FT and LU benchmarks.

BT, EP and SP do not show any improvement or degradation in performance. However, the

MG benchmark shows a slow-down with our dynamic dependence graph. When we combine

the dependence graphs obtained from static and dynamic analysis, we observed that the
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Table 3.1: Performance Results with NAS Parallel Benchmarks
NPB Wall-clock time (seconds) Speedup

Static Graph Dynamic Graph
PRSD Shadow Map PRSD Shadow Map

BT 4222.80 4235.66 4228.72 -0.30% -0.14%
EP 1956.20 1956.69 1949.99 -0.03% 0.32%
FT 680.48 604.23 602.14 11.20% 11.51%
LU 7547.34 7261.83 6979.08 3.78% 7.53%
MG 96.26 97.51 98.91 -1.30% -2.75%
SP 6420.07 6391.06 6414.79 0.45% 0.08%

Table 3.2: Analysis Runtime Overhead Comparison
NPB Wall-clock time (seconds) Overhead

PRSD Shadow Map
BT 21176.291 11057.15 47.79%
EP 4514.791 3008.81 33.36%
FT 3613.289 3545.50 1.88%
LU 4360.125 3721.64 14.64%
MG 251.062 244.19 2.74%
SP 1653.741 1511.70 8.59%

results from our PRSD compression technique are comparable to those from the shadow-

map based technique. We also measured the analysis time required by the PRSD-based

technique versus that of the shadow map-based technique. As expected, the shadow map

based tecnhique requires lesser time to analyze a benchmark compared to the PRSD-based

technique. However, the low memory requirement is what makes the PRSD-based technique

more attractive.

3.4 Discussion

We anticipated larger speedups for most of the benchmarks when optimized with

the dynamic dependence graph obtained from our framework. However, our results do

not reflect the potential parallelism that exists in these benchmarks. In this section, we

shall present some details of our analysis of ORC and the dependence analysis framework.

Through this analysis, we provide insights as to why we observe such small speed-ups or,

in some cases, even slow-downs.
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3.4.1 Array Privatization

If every use of the array has its corresponding definition in the same iteration (or

chunk of iterations for a processor) then the compiler can assign separate copies of the array

for each processor. This compiler transformation is called array privatization and it is a

powerful technique that aids automatic parallelization. The privatization transformation

also needs to know how to initialize the private copy of the array and how to determine the

final values of the original array [9], [18]. ORC handles the final value problem by peeling-off

the last iteration of the loop and executing the remaining iterations in parallel. This way

after N − 1 iterations of the loop have been executed in parallel, the last iteration writes

the final values into the original array. Consider the following example adapted from psinv

function in the MG benchmark:

Exmaple 1 MG: Array Privatization Opportunity
for i3 = 1 to n3-1 do

for i2 = 1 to n2-1 do

for i1 = 0 to n1 do

r1[i1] = ...

end for

for i1 = 1 to n1-1 do

u[i2][i1] = r1[i-1] + r1[i+1] + ...

end for

end for

end for

Our dependence analysis framework reports that there is no dependence carried

by loop i2. This implies that every use of the array r1 has its corresponding definition

within the same iteration of the i2 loop. Hence, it is possible to privatize r1 based on our

dependence graph. ORC uses an analysis framework called Array Region Analysis (ARA)

for privatization. This analysis does not seem to be using the array dependence graph for

privatization and, hence, does not privatize r1. Hence, it does not parallelize this loop nest.

We believe that by modifying the ARA analysis to use our array dependence graph, we

would be able to improve our results.
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3.4.2 Parallelization Costs

Even though a loop may be proven to be parallelizable, it may not always be

profitable to run different sets of iterations in parallel. ORC evaluates the profitability of

loop parallelization using the following cost function: Tc + P × Tp + N ×W ÷ P where:

• Tc is the constant overhead for initializing a parallel region. If the loop contains

any reductions, we also add in an estimated cost for combining the partial reduction

results computed by each processor.

• Tp is the per-processor overhead for initializing a parallel region.

• P is the number of processors.

• W is an estimate of the serial work (number of cycles) per iteration of the loop, based

on a combination of the machine operation and cache miss cost estimates for the loop.

• N is the number of iterations of the loop.

ORC places a guard condition before the parallel region in order to dynamically

control whether a particular loop nest is to be parallelized or not. If the bounds of the loop

can be statically determined, then the guard condition is not required since the decision

of whether a loop should be parallelized or not can be made at compile time. The guard

condition evaluates the following inequality:

Tc + P × Tp + N ×W ÷ P ≤ N ×W

Simply put, this inequality evaluates whether the cost of parallelization exceeds

its benefit. If this inequality is not satisfied, then the loop should not be parallelized. We

observe slow-downs in some cases due to sub-optimal values for the Tc and Tp parameters.

We believe that with better tuned values of these parameters for our implementation of the

OpenMP library, ORC would be able to guard against profitable parallelization and, hence,

improve our results.

3.4.3 Non-DO Loops

A DO in WHIRL has the same semantics as a FORTRAN do loop. Usually, DO

loops correspond to C for loops. The induction variable, bounds and step of the DO may

never be changed inside the loop body. However, if they do change, then ORC converts

those loops to DO WHILE and WHILE DO before the IR reaches the LNO phase.
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Consider the following example adapted from the FT benchmark. In this program,

the array d is passed as a parameter to this function. Due to limited inter-procedural anal-

ysis, the compiler assumes that d may be modified across the call to function cfftz. Hence,

ORC converts both i and j loops to DO LOOPs whereas the jj and k loops are converted

into WHILE DOs. Inspite of our framework’s ability to show the independence between the

call to cfftz and the array d, ORC does not consider non-DO LOOPs for parallelization. As

is in this case, outer loops may not be parallelized and all the parallelism that exists in the

benchmark may not be exploited. We believe that this is another reason why we are not

achieving higher speedups for our benchmarks.

Exmaple 2 FT: Non-DO Loops
for k = 0 ; k < d[2] ; k++ do

for jj = 0 ; jj <= d[1] - fftblock ; jj += fftblock do

for j = 0 ; j < fftblock ; j++ do

for i = 0 ; i < d[0] ; i++ do

y0[i][j] = x[k][j+jj][i]

end for

end for

cfftz (is, logd[0], d[0], y0, y1)

for j = 0 ; j < fftblock ; j++ do

for i = 0 ; i < d[0] ; i++ do

xout[k][j+jj][i] = y0[i][j]

end for

end for

end for

end for

Hence, we conclude that translating opportunities for parallelism exposed by our

dynamic dependence analysis into performance improvements requires stronger support

within the compiler.
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Chapter 4

Related Work

RSDs have been used to describe data references in a loop [4]. The idea of PRSDs

originates from memory trace compression performed on-the-fly [7]. While their work intro-

duced the general concepts and an algorithm for compressing regular data references, our

work uses PRSDs to calculate dependences in a program.

Rus et al. proposed hybrid analysis [15] to combine static and dynamic analysis of

memory references using Linear Memory Access Descriptors. They place run-time depen-

dence tests for loops in order to perform automatic parallelization. While their work is not

targeted for speculative optimizations, their approach of aggregating memory accesses into

a single descriptor to ease analysis is similar to our PRSD-based approach to dependence

analysis.

Oplinger et al. developed a trace-driven tool called Memdeps [11] to select the best

loop for speculative parallelization in a dynamic loop nest. Memdeps operates on traces

generated by the AtomTM tool[17] which annotates program binaries and generates user level

traces that include events of interest: loads and stores, procedure entries and exits, and

iteration advances. While our tracing tool is similar in the events traced, we operate at

the IR level within the compiler as opposed to directly on the binary. Also, they target

integer application while we target scientific applications. Hence, their work targets finer

grained parallelism than ours, i.e, ours can exploit larger iteration spaces on arrays and

matrices. Memdeps detects dependences at run-time and characterizes these dependences

with the minimum execution delay of the edge, which is the number of instructions between

the two end-points of the dependence edge. Our dependence analysis framework is different

in that we calculate dependence vectors for each edge.
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Maydan et al. provides a methodology to evaluate the effectiveness of data depen-

dence analyzers [8]. They use Larus’ dynamic dependence analysis system llpp to evaluate

the effectiveness of their own symbolic dependence analysis scheme. They conclude that

memory disambiguation is the major cause of failure for dependence analysis. They ob-

served that array privatization is an important technique to parallelize loops, which is one

of the conclusions that we, too, were able to derive from our analysis.

Rauchwerger et al. proposed the LRPD test [14] for detecting dependence viola-

tions at run-time in speculatively parallelized loops. Our dependence analysis framework

bears close resemblance to their dependence violation detection scheme but differs in that

we use more efficient compressed representations for accesses while they use shadow-map

like bit-arrays. Also, we can detect dependencies at any level in a loop nest, while the

LRPD test can only detect dependencies for the speculatively parallel region as a whole.

The profiling and speculative optimization framework developed by Chen et al. for

ORC [1] is the most closely related work to ours. Their framework used shadow maps for

dependence analysis and was targeted for speculative PRE and speculative code scheduling

optimizations. They instrument the IR within ORC after the WOPT phase. In contrast,

our instrumentation is done at the LNO phase and we target loop nest optimizations,

such as auto-parallelization, loop interchange, privatization and reduction optimizations.

Compared to their dependence graph, we do not maintain input dependences. Instead, we

have to maintain a list of all the loads from a particular address without an intervening store

to the same address. Since they maintain input dependences in their dependence graph, they

only maintain the latest load from a particular address. This makes dependence testing for

anti-dependences slightly faster but entails transitively converting input dependences into

anti-dependences.
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Chapter 5

Conclusions and Future Work

This thesis describes a novel application of PRSDs for dependence analysis aid-

ing speculative loop optimizations. Our contributions are an instrumentation framework

within ORC and a dependence analysis framework that produces dynamic array dependence

graphs for each function in the program. In addition, we provide an interface within ORC

to read and transparently use our dynamic dependence graph to perform loop nest opti-

mizations. We explored different techniques to make the dependence analysis both efficient

and scalable. We present a technique to deal with irregular accesses. We also present an

enhanced PRSD that compresses not only the address trace but also the iteration vectors

of each access. We also evaluate the ability of our PRSD-based dependence analysis to ac-

curately reflect TLS opportunities with a shadow-map based technique. We observe up to

11% improvement in performance and conclude that the compiler needs to be enhanced to

take full advantage of our relaxed dependence information in order to yield larger benefits

from speculative parallelism.

The dependence analysis framework represents the first step towards a completely

automated speculation environment. Initially, we plan on adding sequencing information

as discussed in Section 2.6.3 and handle irregular accesses using LCSDs as discussed in

Section 2.6.4 to enhance our dependence analysis framework. We also plan to modify the

compiler to use our relaxed dependence information in correctly generating DO loops and

performing array privatization. We also plan on making the parallelization cost calcula-

tions more accurate by deriving correct values for parallelization overhead parameters and

obtaining run-time estimates for the cost of calls. These enhancements would strengthen

the optimization framework and capitalize on the true power of speculative loop optimiza-
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tions. While presently we do not provide any guarantees for correctness of the speculative

program, our next step would be to build a complete speculation run-time system that de-

tects dependence violations and, in case of mis-speculation, rolls-back computation. Using

PRSDs we plan to make enhancements to the LRPD work.
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