
ABSTRACT

BUDANUR RAMANNA, SANDEEP. Memory Trace Compression and Replay for SPMD
Systems using Extended PRSDs. (Under the direction of Dr.Frank Mueller.)

Analyzing the memory traces of multi-threaded SPMD programs is a cumbersome and ex-
pensive process due to large trace size, program complexity and long running times. Though
many binary instrumentation tools generate memory traces, they either gather statistical in-
formation with loss of details or generate large trace files that are difficult to handle. Our
approach provides near-constant size memory traces for dense algebraic kernels irrespective of
the problem size or number of threads involved while preserving the memory access details
along with the order in which memory references are issued. Our scheme not only compresses
loops but also groups similar memory access patterns across threads and processes into a single
entity called Extended Power Regular Section Descriptor (EPRSD), which is an enhancement
over the Power Regular Section Descriptor (PRSD) concept. We introduce a multi-level com-
pression scheme exploiting memory access patterns in loops, thread dependences and process
dependences that are capable of extracting an application’s memory access structure. We fur-
ther introduce a replay mechanism for the traces generated by our approach and discuss results
of our prototype on the X86-64 architecture. Considering all the above features makes the
EPRSD mechanism a promising approach for scalable memory trace compression and replay.



c© Copyright 2010 by Sandeep Budanur Ramanna

All Rights Reserved



Memory Trace Compression and Replay for
SPMD Systems using Extended PRSDs

by
Sandeep Budanur Ramanna

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Computer Science

Raleigh, North Carolina

2010

APPROVED BY:

Dr.Xiaosong Ma Dr.Xuxian Jiang

Dr.Frank Mueller
Chair of Advisory Committee



DEDICATION

Dedicated to my family.

ii



BIOGRAPHY

Sandeep was born in a small city called Mandya, located in the southern part of India. The
place is well known for its lush green farmlands and sugar factories. He was brought up and
educated in the city of his birth. After graduating in 2003 with a degree in Computer Science
and Engineering, he moved to a nearby city called Bangalore. He worked in telecommunication
software companies porting mobile platforms for clients around the globe. In the fall of 2008,
he joined NC State University to pursue his Master’s degree in Computer Science.

iii



ACKNOWLEDGEMENTS

First and foremost, I would like to thank Dr.Frank Mueller for his guidance, support and
faith in me. I am grateful to Todd Gamblin, Bronis de Supinski and Martin Schulz for their
valuable suggestions during the development of EPRSD template library. I would like to thank
Dr.Xiaosong Ma, Dr.Xuxian Jiang and all other members of the System Research group. I
would like to thank the members of pinheads online discussion group for their inputs on writing
binary instrumentation tools. I would like to thank all my labmates for their help and inputs.
I would also like to thank all my roommates for being cooperative.

iv



TABLE OF CONTENTS

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2 Scalable Trace Compression . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Memory Trace Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Intra-thread Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Inter-thread Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Inter-node Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Chapter 3 Memory Trace Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Binary Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 System Overview of Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Stack-walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Stack Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 Problems in Unique Signature Generation . . . . . . . . . . . . . . . . . . 17

Chapter 4 EPRSD Template Library . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Signature Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Design Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.1 Why Templates? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.2 Template Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.3 Memory Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Chapter 5 Experimental Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.1 Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

v



Chapter 8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Chapter 9 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Appendix A Code Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A.1 EPRSD Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
A.1.1 Intra-thread Merging Algorithm . . . . . . . . . . . . . . . . . . . . 50
A.1.2 Inter-thread Merging Algorithm . . . . . . . . . . . . . . . . . . . . . 50
A.1.3 Inter-node Merging Algorithm . . . . . . . . . . . . . . . . . . . . . 50

A.2 Signature Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

vi



LIST OF TABLES

Table 3.1 Unique Stack Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Table 6.1 Original vs. Compressed Trace Size of the Vector Addition Micro-benchmark
for Problem Sizes Varying with the Number of Threads (Weak Scaling) . . 31

Table 6.2 Original vs. Compressed Trace Size of the Matrix Multiplication Micro-
benchmark with Problem Sizes Varying with the Number of Threads (Weak
Scaling) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Table 6.3 Original vs. Compressed Trace Size of the AMG Benchmark with a Fixed
Problem Size and Varying Number of Processes (Strong Scaling) . . . . . . 34

Table 6.4 Original vs. Compressed Trace Size of the Aztec Benchmark with Problem
Sizes Varying with the Number of Processes (Weak Scaling) . . . . . . . . 35

Table 6.5 Runtime of Benchmarks with and without Instrumentation . . . . . . . . . 36
Table 6.6 Stack-walk and Instrumentation Runtime Comparison . . . . . . . . . . . . 37
Table 6.7 Compression Runtime Comparison . . . . . . . . . . . . . . . . . . . . . . . 38

vii



LIST OF FIGURES

Figure 2.1 Data Flow Diagram of the Memory Trace Compressor . . . . . . . . . . . 6
Figure 2.2 Design of the Memory Trace Compressor . . . . . . . . . . . . . . . . . . 7
Figure 2.3 Sample Code for PRSDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 2.4 An Example of Intra-thread Compression . . . . . . . . . . . . . . . . . . 10
Figure 2.5 Design of Inter-thread Compression . . . . . . . . . . . . . . . . . . . . . . 11
Figure 2.6 Inter-thread Compression: Sample Code for EPRSDs . . . . . . . . . . . . 12
Figure 2.7 Design of Inter-thread Compression . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2.8 Inter-node Compression: Sample Code for EPRSDs . . . . . . . . . . . . . 13
Figure 2.9 Design of Inter-node Compression . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 3.1 Software Architecture of Pin . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 3.2 Sample Code to Demonstrate Stack Signatures . . . . . . . . . . . . . . . 17

Figure 4.1 EPRSD COMPRESSOR Class Example . . . . . . . . . . . . . . . . . . . 20
Figure 4.2 SIGTREE Class Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 4.3 Sample Code to Demonstrate Stack Signatures . . . . . . . . . . . . . . . 22
Figure 4.4 Signature Trees before Merging . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 4.5 Signature Tree after Merging . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 4.6 Template Class EPRSD COMPRESSOR . . . . . . . . . . . . . . . . . . . 24
Figure 4.7 EPRSD COMPRESSOR Class Instantiation . . . . . . . . . . . . . . . . . 25
Figure 4.8 Template Class EPRSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 4.9 Template Class ITERATOR . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 4.10 Template Class EPRSD DATA . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 4.11 EPRSD DATA Class Instantiation . . . . . . . . . . . . . . . . . . . . . . 27
Figure 4.12 Template Classes COMMON and INFO . . . . . . . . . . . . . . . . . . . 27
Figure 4.13 Class SIGTREE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 4.14 Class SIGTREE ITERATOR . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 4.15 Class SIGNODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 4.16 Class SIGTREEITEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 6.1 Weak Scaling-EPRSD Trace Size Comparison for Vector Addition . . . . 32
Figure 6.2 Weak Scaling - EPRSD Trace Size Comparison for Matrix Multiplication 33
Figure 6.3 EPRSD Trace Size Comparison for AMG Benchmark . . . . . . . . . . . . 34
Figure 6.4 EPRSD Trace Size Comparison for Aztec Benchmark . . . . . . . . . . . . 35
Figure 6.5 Instrumentation Overhead Comparison . . . . . . . . . . . . . . . . . . . . 37
Figure 6.6 Stack-walk and Instrumentation Runtime Comparison . . . . . . . . . . . 38
Figure 6.7 Compression Runtime Comparison . . . . . . . . . . . . . . . . . . . . . . 39

Figure A.1 Sample Code for Intra-thread Compression . . . . . . . . . . . . . . . . . 51
Figure A.2 Sample Code for Inter-thread Compression . . . . . . . . . . . . . . . . . 52
Figure A.3 EPRSD Exchange Pattern between Processes . . . . . . . . . . . . . . . . 53

viii



Figure A.4 Sample Usage of SIGTREE Class . . . . . . . . . . . . . . . . . . . . . . . 53
Figure A.5 Assembly Code Snippet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure A.6 Sample Signature Tree Generated by the SIGTREE Class . . . . . . . . . 55

ix



Chapter 1

Introduction

1.1 Background

Supercomputers are used in high performance computing due to their huge computational speed
and have been popular for a few decades. Supercomputers were first introduced in 1960s and
became popular in 1970s and 1980s. In the mid-1990s, the supercomputer market declined but
since then, the interest in supercomputing has increased significantly in the last decade. It
is a well known fact that today’s supercomputers are tomorrow’s ordinary computers. Today,
ORNL’s Jaguar is the fastest supercomputer with 1.75 peta flops, China’s Nebulae occupies
the second spot with 1.27 peta flops and Roadrunner at LANL, which was the fastest in 2008,
holds the third spot with 1.04 peta flops performance as of June 2010.

Supercomputers are used for highly computation-intensive tasks such as problems related
to quantum physics, molecular biology, weather forecasting, climate research, nuclear physics,
aeronautics, astro physics and grand-challenge problems. Supercomputers are vital for problem
solving in these domains because they not only speed up the computation but also solve prob-
lems that are otherwise unsolvable without huge computational power. Supercomputers are
extensively used in the field of fluid dynamics to better understand turbulence, which was con-
sidered an unsolved problem of classical physics. Supercomputers running Computational Fluid
Dynamics algorithms have simulated more realistic flight conditions than the highly expensive
wind-tunnel method, thus reducing the cost.

Early supercomputers were very fast scalar processors, which were succeeded by vector
processor machines. These machines were very expensive and,hence, focus shifted to massively
parallel machines composed of off-the-shelf processors called commodity clusters combined with
custom interconnects. At NC State university, the OPT cluster consists of AMD Opteron
machines [25]. Another Sony PS3 cluster [26] consists of playstation gaming consoles. The
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processors in a cluster, often called nodes, run the same program but operate on different data
sets. This model is called Single Program Multiple Data (SPMD). The clusters are programmed
using the message-passing programming model. They exchange messages for transferring data
or synchronization. MPI is the most widely used message-passing model in the HPC industry.

Due to the limitations in uniprocessor design, symmetric multi-processors (SMPs) became
popular several years ago. SMPs have multiple identical processors sharing memory and are
often interconnected by a bus. Such SMP architectures are not scalable due to bus contention,
which limits the number of processors connected to a bus. The most common programming
model used in SMPs is OpenMP. Modern day clusters are composed of individual nodes that
are in turn SMPs. This gives rise to a hybrid programming model where parallel applications
use MPI for inter-node communication and OpenMP for shared memory parallel programming.

We limit the discussion to the above two topics only though other high-performance solutions
exist in practice.

1.2 Motivation

SPMD applications employ multiple threads of execution, each on their own core operating on
different data. Such programs tend to have memory access patterns that result in large memory
traces. Effective execution on multi-cores requires efficient use of the memory hierarchy across
threads. To analyze the memory access pattern of threads, tools are required. Most of the
tools operate on excessively long memory traces. Since tools neither scale with the number of
threads (or cores) nor the problem size, their analysis capabilities are severely limited. Some
tools provide only statistical information of memory accesses in order to reduce trace size but
are lossy and hardly useful for scalability analysis. Tools combining the best of both the worlds
are desirable.

Recent research in the scalable compression of traces [1] has demonstrated that the traces
can be stored in near constant size format irrespective of the problem size or concurrency.
However, this was demonstrated with communication traces that do not reflect the memory
access patterns across threads. Memory access patterns across threads are vital in identifying
the memory bottlenecks while using memory hierarchies.

1.3 Hypothesis

We hypothesize that lossless, near-constant size memory traces that are highly scalable can be
obtained by compressing memory traces for regular SPMD programs.

Resulting traces should be orders of magnitude smaller than the conventional memory traces
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and near-constant in size irrespective of the problem size and concurrency.

1.4 Contributions

We have developed a memory trace generator, a generic trace compressor module as a C++
template library and a signature tree library in C++. These are combined to build a memory
trace compressor tool that generates near constant size memory traces preserving the temporal
order of accesses for dense algebraic kernels, irrespective of problem size and concurrency size.
Our approach is based on the PRSD abstractions [1] but more fine-grained and, hence, called
Extended PRSDs (EPRSDs). EPRSDs preserve the order of memory references and generalize
memory access patterns across processes, threads and loops. The EPRSD template library can
be reused to ease the development of other PRSD-based trace compression tools.

We have implemented a multi-level memory trace compressor involving intra-thread, inter-
thread and inter-node compression schemes. We further implemented an optimization tech-
nique, signature trees, which speeds up the trace compression process. We have also optimized
the trace generation process by implementing a per-function stack-walk approach instead of
per-instruction stackwalks.

1.5 Evaluation

We evaluate the compressor tool using benchmarks involving both OpenMP and MPI code.
The compressor tool is run on the OPT cluster at NC State university [25] for matrix multipli-
cation, vector addition micro-benchmarks and AMG benchmark of Sequoia MPI and OpenMP
benchmark suite. The proposed mechanism is platform independent, but due to time and
resource constraints, we compressed memory traces from up to 16 processes, each process con-
tributing one million memory references to obtain results at inter-node level. Also, the number
of OpenMP threads within each process (for microbenchmarks only) was varied to collect the
compressed traces at intra-thread and inter-thread level. Experimental results demonstrate
that the proposed mechanism compresses the memory traces in near-constant size irrespective
of the problem size and concurrency. Replay of memory traces is almost accurate except that
some additional traces are issued due to round-off errors caused by integer division.

Overall, the results indicate that memory trace compression scales with the number of
threads, processes and problem size. The compressed traces can be easily viewed for analyzing
the loop and thread dependences. The smaller trace size improves the portability and replay
can be performed without decompressing the entire trace. This can replace the complex tools
requiring large amount of memory, disk space and processing power in managing memory traces
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from many nodes.

1.6 Summary

To summarize, we propose a lossless and order preserving memory trace compressing scheme
that produces near constant size traces capturing loop, thread and process dependences for
dense algebraic kernels. We also propose optimizations to the trace compression process by
making use of signature trees.
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Chapter 2

Scalable Trace Compression

This work on memory trace compression is based on previous work on online communication
trace compression called ScalaTrace [1]. ScalaTrace showed that compressed trace file sizes could
be obtained with near constant size or, in some other cases, orders of magnitude smaller than
the original trace size irrespective of the number of nodes or application run time. ScalaTrace
recognizes loops dynamically and merges the repetitive entries into a single entity called RSD
(Regular Section Descriptor) that represents traces in constant size. PRSDs (Power Regular
Section Descriptor) represent nested loops by arranging the RSDs recursively. The challenge is
that ScalaTrace dealt with the compression of communication traces, which is not directly ap-
plicable to compressing memory traces. A separate framework had to be developed to compress
the memory traces dynamically. Our work focuses on the development of such a framework.

2.1 Instrumentation

Our memory trace compression tool builds on a freely available binary instrumentation tool
to generate memory traces of load and store instructions. We have used Intel’s Pin tool for
binary instrumentation to generate memory trace dynamically [16]. This trace consists of
instruction-type, accessed memory address, instruction-pointer, and stack signature. During
trace generation a filter is used to separate application-specific instructions from system related
instructions. This is achieved by extracting the range of addresses when the application image
is loaded. Instructions only within this address range are included in trace generation. (In-
structions executing prior to main() to initialize stack and registers are ignored as they do not
contribute to the application execution or memory analysis). This trace is fed to the compressor
module, which subsequently constructs EPRSDs to compress the traces.
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2.2 Memory Trace Compression

Our memory trace compression scheme is based on the PRSD abstractions [1][3], but is more
fine-grained and, hence, called Extended PRSDs (EPRSDs). EPRSDs preserve the order of
memory references and generalize memory access patterns across threads and processes along
with loop dependences. EPRSDs differ from PRSDs in that EPRSDs additionally represent
inter-thread dependencies. Our tool extracts complete memory traces that are orders of mag-
nitude smaller than the conventional memory traces and near-constant in size irrespective of
the problem size.

Figure 2.1: Data Flow Diagram of the Memory Trace Compressor

We rely on a binary instrumentation tool, Pin [16], to extract memory addresses from
an application. This instrumentation tool filters application-specific memory references. The
output from the binary instrumentation tool is a series of memory references, which is fed
into the compressor module that combines the memory references into a single compressor
object dynamically. The compressor module is built using the C++ EPRSD template library,
which handles the dynamic merging of incoming memory references into a near-constant size
compressed trace file. The data-flow diagram of the memory trace compressor is depicted in
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Figure 2.1.
Pin is run as a set of MPI processes, either on a single node or across multiple nodes, where

each process instruments a SPMD program separately and writes the generated memory trace
to a pipe associated with the process. Similarly, the compressor module runs in parallel as
multiple MPI processes on one or more nodes. Pin and compressor processes are identified
uniquely by their MPI ranks in their respective communication domain. The same rank is
used to uniquely name the pipes, which serve as a set of buffers between Pin and compressor
processes. Within Pin, the memory tracing tool and the instrumented SPMD application act as
a producer while the compressor process acts as a consumer. A compressor process reads from
the pipe to which the corresponding Pin process writes the memory references. For example,
Pin with rank 0 writes to a pipe named ’pipe0’ and the compressor with rank 0 reads from the
same pipe. This arrangement is depicted in Figure 2.2.

Figure 2.2: Design of the Memory Trace Compressor

The compressor module can be integrated with the Memtrace pintool to avoid copying to
and from the pipe, but development and debugging is easier when these two modules are run
as separate processes. Also, memory traces can be saved as files only once and the compressor
can be run multiple times with different precision settings without the need to instrument every
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time. This saves considerable amount of time during development. We utilize a networked file
system in the OPT cluster for experiments and all pipes/files are visible across all machines.

Each compressor process generates the EPRSDs for all the threads in the respective applica-
tion process and performs intra-thread and inter-thread merging before passing the EPRSDs to
another compressor process for inter-node merging. The name inter-node merging or inter-node
compression refers to the merging of repetitive memory access patterns (or EPRSDs) across
multiple processes of a SPMD application. The MPI compressor processes involved in inter-
node merging can be running on a single or different machines in a cluster. In some literature,
these machines are also referred as nodes (not to be confused with the term inter-node used in
this report). This results in order preserving, lossless and near-constant size memory traces,
which can be used for replay and extrapolation. Our replay tool verifies the correctness of our
compression scheme and can aid in the analysis of problem scaling. These techniques have
proved highly scalable for communication tracing in ScalaTrace [1].

2.2.1 Intra-thread Compression

Intra-thread compression is achieved by exploiting the repetitive behavior of an application.
Regular Section Descriptors (RSDs) [1] captures Load and Store instructions with in a loop in
constant-size and Power Regular Section Descriptors (PRSDs) captures RSDs nested in multiple
loops [1]. EPRSD is an extended version of a PRSD with thread dependences. For example,
RSD1 :< 1000, STB, LDA > represents alternate store and load instructions repeating 1000
times. PRSD1 :< 100, RSD1, STD, LDC > represents 100 occurrences of RSD1 loop followed
by store and load instructions with thread dependences ignored. The code snippet in Figure 2.3
corresponds to the PRSD mentioned above.

for(i = 0; i < 100; i++)
{

for(j = 0; j < 1000; j++)
{

b = a; /* load from a’s location and store to b’s location */
}
d = c; /* load from c’s location and store to d’s location */

}

Figure 2.3: Sample Code for PRSDs

The algorithm for intra-thread compression is shown in Algorithm 1. The compression
algorithm maintains a compressor object, which is a list of EPRSDs. While parsing the memory
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Algorithm 1 Merge(newref)
Require: A memory reference newref.

add newref as tailnode
rightTail = tailnode
leftTail = search matching node for tailnode
if leftTail then

current = rightTail
while current 6= leftTail.Next do

current = current.Prev
leftHead = find match for current
if leftHead == NULL then

break
else

rightHead = current
end if

end while
if current == leftTail.Next then

merge the sequence (rightHead ... rightTail) with (leftHead ... leftTail)
end if

end if

traces generated by the instrumentation tool, new entries are appended to the list if no match
is found, otherwise added to the matching window to find repetitive sequence. The compression
algorithm involves finding repetitive patterns in the input memory trace and creating an RSD
when a sequence of repetitions is found. To find the repetitive patterns, each memory reference
is compared with a set of previous memory references. The extent to which this comparison
is made depends on the size of the window used to buffer the memory references. The bigger
the window size the higher is the compression achieved and vice versa. A large enough window
size is needed to identify repetitions to achieve significant compression. To identify a loop of
N memory references, a window size of at least 2N should be used to achieve compression. For
M number of memory references, the algorithm runs in O(M2) time, if the window is not used
and all previous references are compared. If the window size is S, then the algorithm runs in
O(MS) time.

An example of intra-thread compression is illustrated in Figure 2.4. The memory references
op1, op2 and op3 are added to a list and matching patterns are found dynamically. As mentioned
in Algorithm 1, on finding a matching sequence, the right portion is merged with the left portion
and the count of RSDs is incremented. This process repeats for subsequent sequences of op1,
op2 and op3 until the pattern disappears.
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Figure 2.4: An Example of Intra-thread Compression

Intra-thread compression continues while the application executes. After the application
completes execution, inter-thread memory trace compression commences. During trace genera-
tion, each instruction needs to be identified uniquely. Hence, a unique signature is computed for
each instruction by performing a stack-walk. A series of return addresses and program counter
values form the whole signature and their values are XORed to compute the XOR-signature.
XOR-signature matching is a necessary (but not sufficient) condition for EPRSD merging.
XOR-signatures are compared to speed up the matching process. Upon XOR-signature match,
a whole signature match (a pairwise stack match) decides if EPRSDs are merged. The stack-
walk mechanism for computing the signature is included in the instrumentation tool discussed
earlier. This signature is part of the memory trace fed to the compressor tool. An optimization
using a signature tree is implemented to speed up the signature matching process, which is
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explained in the later sections.

2.2.2 Inter-thread Compression

Intra-thread compression occurs on-the-fly and inter-thread compression begins after the instru-
mented application terminates. If the application is not multi-threaded, then the inter-thread
compression step is skipped and inter-node compression is started. For a multi-threaded ap-
plication, a separate compressor object maintains the RSDs and PRSDs of each thread. After
all threads of an application complete execution, RSDs and PRSDs of individual threads are
matched against each other and merged into an EPRSD when a match is found. The design
of inter-thread compression is depicted in Figure 2.5. Pin instruments a process consisting of
k threads and there are k compressor objects, one per thread, reading corresponding memory
references from the pipe and performing intra-thread compression. After reading all memory
references from the pipe, k compressor objects exchange EPRSDs, which marks the beginning
of the inter-thread merging process.

Figure 2.5: Design of Inter-thread Compression

PRSD lists are scanned for matching PRSDs with different thread-ids but with the same
signature. If regular memory access patterns are found then the base address for each EPRSD
is represented as a function of the thread-id.

For example, EPRSD1 : <(0, K, 1), (1000, 400), (100, 4), ST A> denotes 100 occurrences
of store A instruction with stride 4 and base address = (1000 + 400 ∗ thread id) such that
0 ≤ thread id ≤ K − 1. (0, K, 1) suggests that the pattern is found in K threads starting
at 0 with a stride of 1. The OpenMP code snippet in Figure 2.6 corresponds to the EPRSD
mentioned above.

Inter-thread merging follows the binary radix tree approach to merge PRSDs from multiple
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#pragma omp parallel
{

tid = omp_get_thread_num ();
for(j = 400 * tid; j < 400 * tid + 100; j++)
{

/* offset j depends on the thread identifier ’tid’ */
a[j] = j;

}
}

Figure 2.6: Inter-thread Compression: Sample Code for EPRSDs

threads into EPRSDs. This merging pattern is depicted in Figure 2.7 for four threads. As
shown in the figure, the repetitive pattern of memory references are combined into a single
entity and other copies are discarded. A thread ID’s length is incremented and its stride is
recomputed in the destination EPRSD at each stage of the merging process. The final EPRSD
< T : 0, 4, 1 > in the compressor object 0 indicates that the pattern occurred in four threads
starting at 0 with a stride of 1. The same pattern applies to larger numbers of threads. In our
experiments, the number of threads was configured to be a power of two.

Figure 2.7: Design of Inter-thread Compression

When the inter-thread compression completes, compressor object 0 has the final list of
EPRSDs merged from all the threads. From each compressor process, this single compressor
object participates in the next level of inter-node compression.
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2.2.3 Inter-node Compression

An SPMD application runs as several processes each employing one or more threads. After the
inter-thread compression, the EPRSDs of a process are merged with their matching counter-
parts in other processes. Each process has the final list of EPRSDs in compressor object 0,
which are transmitted to another process using MPI calls. The EPRSD list is scanned for
matching EPRSDs with different node-IDs but with the same signature. The binary radix
tree approach is used to merge the inter-thread EPRSDs into inter-node EPRSDs. Hence, the
inter-node compression completes in (logN) steps, where N is the total number of processes
in an SPMD application. If M EPRSDs are merged at each step, then the whole inter-node
compression algorithm runs in O(MlogN) time. The searching takes nearly constant time due
to the SPMD nature of the applications and the worst case scenario of searching the whole
EPRSD list seldom occurs.

For example, EPRSD1 :< (0, N, 1), (0, T, 1), (1000, 400), (100, 4), ST A > denotes 100 oc-
currences of store A instruction with stride 4 and base address = (1000 + 400 ∗ thread id) such
that 0 < thread id < T − 1 and 0 < node id < N − 1. (0, T, 1) suggests that the pattern is
found in T threads starting at 0 with a stride of 1 and (0, N, 1) suggests that the pattern is
found in N processes starting at 0 with a stride of 1. The MPI-OpenMP hybrid code snippet
in Figure 2.8 corresponds to the EPRSD mentioned above.

MPI_Init (&argc , &argv);
#pragma omp parallel
{

tid = omp_get_thread_num ();
for(j = 400 * tid; j < 400 * tid + 100; j++)
{

/* offset j depends on the thread identifier ’tid’ */
a[j] = j;

}
}
MPI_Finalize(MPI_COMM_WORLD );

Figure 2.8: Inter-node Compression: Sample Code for EPRSDs

The radix tree approach of inter-node compression is depicted in Figure 2.9 for four pro-
cesses. As shown in the figure, the repetitive pattern of memory references from different
processes are combined into a single entity and other copies are discarded. A process ID’s
length is incremented and its stride is recomputed in the destination EPRSD at each stage of
the merging process. The final EPRSD < P : 0, 4, 1 > in the compressor object of process 0
indicates that the pattern occurred in four processes starting at 0 with a stride of 1. The same
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pattern applies to larger numbers of processes. In our experiments, the number of application
processes and compressor processes were configured to be a power of two.

Figure 2.9: Design of Inter-node Compression

When the inter-node compression completes, compressor object 0 in process 0 contains the
final list of EPRSDs merged from all the compressor processes. This list of EPRSDs is saved
into a file that is near-constant in size independent of problem size, number of OpenMP threads
or number of MPI processes.
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Chapter 3

Memory Trace Generation

3.1 Binary Instrumentation

Binary instrumentation involves inserting additional code at certain locations in a program.
Static binary instrumentation inserts code at desired locations at compile time, whereas dy-
namic binary instrumentation inserts instrumentation code at runtime. Static binary instru-
mentation has additional overhead, even when instrumentation is turned off, as the instru-
mentation code exists with the program code at runtime. Dynamic instrumentation results in
overhead only when instrumentation is active as the code is not inserted if instrumentation is
turned off during execution. Pin [16] is a dynamic instrumentation tool that offers the flexibility
to turn instrumentation on and off dynamically without incurring unnecessary overhead.

3.2 System Overview of Pin

Pin employs a just-in-time compiler (JIT) to instrument a binary at runtime. In Figure 3.1,
the software architecture of Pin [16] is shown. Pin consists of a virtual machine (VM), a code
cache and an instrumentation API used by pintools. Pin runs on top of the operating system
and hence can instrument only user-level code. There are three binary programs while an
instrumented program is executing - pintool, pin and the application. Our memory tracing
tool, Memtrace, runs as a pintool. An MPI/OpenMP application is instrumented by Memtrace
using Pin. Memtrace instruments only load and store instructions in the application. For each
load and store instruction, an entry is added to EPRSD compressor object, which is discussed in
detail in the following chapter. While the instrumentation continues, intra-thread compression
occurs on-the-fly till the application terminates.
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Figure 3.1: Software Architecture of Pin

3.3 Stack-walk

Stack-walk is performed to obtain unique stack signature for each memory reference and helps
in matching the references during the compression phase. Stackwalker code is integrated with
the Memtrace tool. There are two different stackwalkers available in the Memtrace tool: 1)
ver0 Stackwalker - obtains a series of return addresses by naively walking the stack frames using
the current frame-pointer value returned by Pin; 2) Wisconsin Stackwalker - freely available
stackwalker library used to obtain stack signature. Only the current stack frame information
is provided during initialization. The remaining operations are managed by the library. This
option is much slower than the ver0 stack-walk, but in some cases the ver0 stackwalker fails
to identify stack frames due to compiler optimizations (e.g: Intel C Compiler), while the Wis-
consin stackwalker correctly generates accurate stack signatures. The Wisconsin stackwalker
library also helps to obtain consistent stack signature when shared library addresses vary across
machines resulting in different signatures on different machines for the same application binary.

3.3.1 Stack Signature

A complete stack signature for every memory reference helps to preserve the program structure,
whereas a naive approach of merging memory references based on only program counter values
results in better compression but compromises the program structure. We incorporate the
complete stack signature approach, which helps to preserve program structure. Consider the
code snippet in Figure 3.2. Each memory reference is identified by a unique stack signature.
Even though, the function bar() is executed twice, the stack signatures vary each time and
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memory references are distinguished correctly. A naive comparison of program counter values
would have incorrectly merged two different sequences of memory references A and B.

The stack signatures for memory references A and B in the trace are listed in Table 3.1.
Stack signatures obtained during instrumentation are a series of return addresses ending with
the instruction address referencing memory. EPRSDs are uniquely identified based on their
stack signature.

bar()
{

for(i = 1 to 3)
{

load A; //site 1
store B; //site 2

}
}

foo()
{

call bar (); //site 4
}

main()
{

call foo (); //site 5
call bar (); //site 6

}

Figure 3.2: Sample Code to Demonstrate Stack Signatures

3.3.2 Problems in Unique Signature Generation

The Intel X86 ISA targets CISC architectures where multiple operations are performed by
a single instruction. For example, an increment instruction performs both load and store in
the same instruction along with the add operation. This results in identical signatures for
two different memory operations. Such signatures result is false EPRSD matches and induce
error in the compression process. Such instances were detected during instrumentation. To
address this problem, their signatures were altered by XORing the instruction type with the
Program-Counter value for uniqueness.

A stack-walk need not be performed for every memory reference. It is sufficient to walk
the stack on function entry and exit points only, and, the corresponding PC values can be
appended to the signature for all memory references within the function. Pin cannot always
detect corresponding CALL and RET instructions accurately for instrumentation. We found a
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Table 3.1: Unique Stack Signatures

Sequence No. Operation Address Stack Signature
0 LOAD A 5 4 1
1 STORE B 5 4 2
2 LOAD A 5 4 1
3 STORE B 5 4 2
4 LOAD A 5 4 1
5 STORE B 5 4 2
6 LOAD A 6 1
7 STORE B 6 2
8 LOAD A 6 1
9 STORE B 6 2

10 LOAD A 6 1
11 STORE B 6 2

mismatch between the number of CALL and RET instructions instrumented by Pin. In such
cases, the signatures only reflect the partial call path skipping over potential differences that
remain undetected. For all such occurrences across all threads and processes, we can still identify
the memory references uniquely. The anomalies during function boundary detection are rare
and do not adversely affect the compression process. We have incorporated this optimization
in stack-walk (per-function). The performance speedup achieved is illustrated in the results
section.
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Chapter 4

EPRSD Template Library

We have developed a C++ template library to facilitate the rapid development of trace com-
pression tools using EPRSDs for high-performance applications. Users can derive classes and/or
define their own data types to store trace data and compress them by providing just two ob-
jects. C++ classes are designed for intra-thread, inter-thread and inter-node compression. Most
importantly, they are independent of any message-passing APIs. Users can incorporate this li-
brary in combination with any message-passing implementation. We have provided a sample
MPI implementation of intra-thread, inter-thread and inter-node memory trace compression
schemes. The source code is available for download at [27].

4.1 Design

The EPRSD library’s main component is the template class EPRSD COMPRESSOR, which
is responsible for maintaining EPRSD lists and performing sequence matches of memory refer-
ences. The EPRSD COMPRESSOR template class takes three template arguments. The first
is user-defined class to store trace information, the second is a static class implementing an
EPRSD matching function and the third is a static class defining merge-notification callback.
The EPRSD ’match’ and ’merge’ member functions declared as inline so that the C++ compiler
can generate optimized code for better performance. Static classes are used so that the tem-
plate library need not instantiate objects to invoke the ’match’ and ’merge’ member functions.
A user-defined class must be derived from the base class INFO as some data members and
member functions are internally used by the template library. The other supplementary classes
are: (a) COMMON - used to fill generic EPRSD data like signature, XOR-signature, thread-id,
node-id, etc.; (b)ITERATOR - used to iterate the EPRSD list of EPRSD COMPRESSOR type
objects. An example of using the EPRSD COMPRESSOR class to compress traces is given in
Figure 4.1.
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/* add refID , address , threadid , nodeid etc. */
while(count)
{

incr = count %5;
/* user allocates memory for signature
each time and library frees it in
the end*/
cmn = new COMMON(sign , signlen , 0x1234+incr ,
0x1001 , 101, 10, "LD_ST");
address = new MYINFO (0 xABCD9874+incr);
ecr1.add(cmn , address );
count --;

}
/* display all EPRSDs in the compressor
object */
ecr1.print ();

Figure 4.1: EPRSD COMPRESSOR Class Example

The EPRSD template library is designed such that, in a few lines of code, an intra-
thread trace compressor can be built as depicted above. For an inter-thread and inter-node
trace compressor, the user must iterate over the compressor object and exchange EPRSD
data between processes to perform merging. The EPRSD template library provides classes
EPRSD COMPRESSOR::ITERATOR and EPRSD DATA to iterate EPRSD lists and extract
EPRSD data, respectively. The user is expected to incorporate these classes to implement
inter-thread and inter-node trace compression, using the message-passing implementation of
his choice. Isolating the template library implementation from the communication mechanism
makes the library highly portable across various platforms and independent of platform-specific
communication APIs.

4.2 Signature Trees

A signature tree is constructed as a separate C++ module and the classes are used by the
EPRSD template library to incorporate signature tree functionality. The signature tree offers
faster comparison of stack signatures than the XOR signature approach during trace compres-
sion.

For any two EPRSDs, if the XOR signatures do not match, then signatures are different and
pair-wise comparison is not needed. If the XOR signatures match, then a pair-wise comparison
of signatures is needed to ascertain the match. This pair-wise comparison is costly when matches
are frequent within loops. The number of comparisons depends on the signature length. When
a signature tree is used, two EPRSDs can be compared by simply testing if they point to the
same leaf node in the signature tree. If any two EPRSDs point to the same leaf node in a
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signature tree, then they match; otherwise not. In either case, the comparison completes in
constant time irrespective of the signature length.

During inter-node compression, EPRSDs are exchanged between processes. The complete
signature list needs to be transferred for every EPRSD if XOR signatures are used. This adds
significant communication overhead and increases the runtime of the compressor. If a signature
tree is used, the signature list of every EPRSD need not be exchanged. The Signature tree
needs to be transmitted once before the inter-node merging can take place followed by the
transmission of EPRSDs with only a reference to the leaf node in the previously transmitted
signature tree. This reduces the communication overhead significantly.

sigtree ->initAdding ();

while(! SignListisEmpty ())
{

val = getNextItemFromSignList ();
leaf = sigtree ->add(val);

}
sigtree ->finishAdding ();
sigtree ->print ();

Figure 4.2: SIGTREE Class Example

The SIGTREE class is used to manage a signature tree. A SIGNODE class refers to a node
within a signature tree. An example of using the SIGTREE class to build a signature tree is
given in Figure 4.2. Each EPRSD COMPRESSOR object contains its own SIGTREE object,
which is built during the EPRSD COMPRESSOR::add() operation. The SIGTREE::print()
method prints the signature tree to stdout and its overloaded version prints the signature tree
to a file. The SIGTREE::ITERATOR class has methods to iterate through a signature tree and
extract individual nodes of type SIGNODE. These nodes are transmitted to other processes to
reconstruct the signature tree before the inter-node merging begins.

When a signature tree is transmitted between processes and reconstructed again, the EPRSDs
arriving thereafter have to be resolved to point to the newly formed leaf nodes. This is achieved
by assigning unique keys to signature tree leaf nodes before transmission, which are stored in
each EPRSD. When a new EPRSD arrives, the corresponding leaf node is found using this
unique key, and a pointer to the leaf node is restored.

Consider the code snippet in Figure 4.3. The signature tree of two processes running
this code is illustrated in Figure 4.4. The signature trees are constructed during intra-thread
compression by the compressor object. The signature trees are exchanged during inter-thread
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bar()
{

for(i = 1 to 3)
{

load A; //site 1
store B; //site 2

}
}

foo()
{

call bar (); //site 4
}

fun()
{

for(j=1 to 5)
{

load C; //site 3
}

}

main()
{

call bar (); //site 5

if(rank == 1)
call foo (); //site 6

else if(rank == 0)
call fun (); //site 7

}

Figure 4.3: Sample Code to Demonstrate Stack Signatures

and inter-node compression before exchanging the EPRSDs. The signature tree in Figure 4.5
shows the signature tree after merging. In the example, process 1 is sending the signature tree
to process 0 during inter-node compression.

4.3 Design Details

This section explains the design decisions taken during the development of the EPRSD template
library and the signature tree library.

4.3.1 Why Templates?

Our objective is to devise a generic framework for the rapid development of EPRSD-based trace
compressor tools. Each type of compressor has unique requirements but ad-hoc implementa-
tions are not reusable. For example, a memory trace compressor deals with memory addresses
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Figure 4.4: Signature Trees before Merging

Figure 4.5: Signature Tree after Merging
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template <class T, template <class M> class MATCH ,
template <class G> class MERGE >

class EPRSD_COMPRESSOR

Figure 4.6: Template Class EPRSD COMPRESSOR

whereas a communication trace compressor deals with message events. Each compressor tool
needs the flexibility to define its own data-types but reuse the common EPRSD compression
algorithm operating on these compressor-specific data. We decided to design a template li-
brary in C++ independent of any compressor-specific data-type. Such an implementation is
reusable for various types of trace compressors. We have built our memory trace compressor us-
ing the EPRSD template library by instantiating template classes with user-defined data-types
appropriate for memory trace compression.

4.3.2 Template Classes

(a) EPRSD COMPRESSOR

The EPRSD COMPRESSOR depicted in Figure 4.6 is the template class that implements
methods to support trace compression. The parameters to this template class are: T - a user-
defined class containing data members and methods needed by the user, MATCH - a template
class in itself implementing a user-defined EPRSD comparing method that is inline and static,
MERGE - a template class in itself implementing a user-defined callback function (inline and
static) that is invoked each time EPRSDs are merged.

The compare and merge methods are not passed as function pointers while instantiating the
EPRSD COMPRESSOR class because the functions cannot be inlined by the compiler so that
each time an actual function call is required, it would result in more overhead. Instead, the
compare and merge methods are declared as inline functions so that the compiler can optimize
the generated code. They are also declared as static so that they can be invoked without
creating objects.

An example of instantiating the EPRSD COMPRESSOR class is depicted in Figure 4.7.
The user-defined class MYINFO is derived from the base class INFO, which contains common
data members and methods required by the template library.
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class MYINFO:public INFO
{

public:
MYINFO (): INFO()
{
}
...

}

template <class T>
class MYMATCH
{

public:
inline static bool compare(T* src , T* dest)
{

...
return true;

}
}

template <class T>
class MYMERGE
{

public:
inline static void mergecb(T* src , T* dest)
{

...
return;

}
}

EPRSD_COMPRESSOR <MYINFO , MYMATCH , MYMERGE > ecr;

Figure 4.7: EPRSD COMPRESSOR Class Instantiation

(b) EPRSD

As the name suggests, the EPRSD class depicted in Figure 4.8 corresponds to an individ-
ual EPRSD. The EPRSD COMPRESSOR class maintains a doubly linked list of EPRSD
objects that is used to store and compare newly added events. This list is private to the
EPRSD COMPRESSOR class and not accessible to the user. Making the list private hides the
implementation details from the user and prevents the user from accidentally corrupting the
compressor state.
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template <class T>
class EPRSD;

Figure 4.8: Template Class EPRSD

class EPRSD_COMPRESSOR
{

template <class T, template <class M> class MATCH ,
template <class G> class MERGE >

friend class ITERATOR;
...
...
class ITERATOR
{

...

...
};

};

Figure 4.9: Template Class ITERATOR

(c) ITERATOR

The ITERATOR class depicted in Figure 4.9 is provided for the user to navigate the EPRSD
list inside the compressor object and extract information in the form of EPRSD DATA ob-
jects. Since access to the private linked list of the EPRSD COMPRESSOR class is needed,
ITERATOR is declared as a friend class inside the EPRSD COMPRESSOR class.

(d) EPRSD DATA

The EPRSD DATA class depicted in Figure 4.10 is used to extract the data portion of EPRSD
objects, which are not directly accessible by the user. The EPRSD DATA class is required to

template <class T>
class EPRSD_DATA;

class EPRSD
{

...
template <class U> friend class EPRSD_DATA;
...

}

Figure 4.10: Template Class EPRSD DATA
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copy and transfer EPRSD data during inter-thread and inter-node compression. The EPRSD
COMPRESSOR class provides overloaded member functions to add events directly or as objects
of EPRSD DATA. The class EPRSD DATA is declared as a friend class of the EPRSD class
because access to EPRSD’s private data is required while extracting the data present in an
EPRSD type object. An example of using the EPRSD DATA class is illustrated in Figure 4.11.

EPRSD_COMPRESSOR <MYINFO , MYMATCH , MYMERGE > ecr;
EPRSD_DATA <MYINFO > *data = new EPRSD_DATA <MYINFO >(...);
ecr.interthread_add(data);
ecr.internode_add(data);

Figure 4.11: EPRSD DATA Class Instantiation

(e) COMMON and INFO

The trace data is divided into two parts. They are: (i) Common information - generic data,
not application-specific and (ii) user information - application specific data.

This division of trace data prevents the user from having to manage generic data, the user
only needs to manage application specific data. The COMMON class depicted in Figure 4.12
contains the generic data mandatory for the operation of EPRSDs, such as signature, thread
details, process details, etc. The INFO class is an abstract class with one long integer data
member required to store the initial value of an EPRSD, such as a memory address, MPI call
type or File I/O call type. The INFO class is an abstract class and cannot be instantiated
directly. The purpose of INFO class is to provide a base class to derive user-defined classes for
storing application-specific information.

class COMMON;
class INFO;

Figure 4.12: Template Classes COMMON and INFO
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class SIGTREE;

Figure 4.13: Class SIGTREE

class SIGTREE
{

public:
friend class SIGTREE_ITERATOR
...
...

};

class SIGTREE_ITERATOR
{

...
}

Figure 4.14: Class SIGTREE ITERATOR

(f) SIGTREE

A Signature tree module was developed to foster re-usability. Similar to EPRSD classes, sig-
nature tree classes can be used to build, traverse, merge and display signature trees. The
SIGTREE class depicted in Figure 4.13 corresponds to a signature tree and provides methods
to perform various operations on a signature tree.

(g) SIGTREE ITERATOR

The SIGTREE ITERATOR class depicted in Figure 4.14 is provided to traverse the signature
tree nodes used for the signature tree exchange during the inter-thread and the inter-node
merging processes.

class SIGNODE;

Figure 4.15: Class SIGNODE
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class SIGTREEITEM;

Figure 4.16: Class SIGTREEITEM

(h) SIGNODE

The SIGNODE class depicted in Figure 4.15 corresponds to an individual node in signature
tree, internal to the SIGTREE class and not directly accessible to the user.

(i) SIGTREEITEM

The SIGTREEITEM class depicted in Figure 4.16 is provided to access the data portion of
individual signature tree nodes. The methods in SIGTREE ITERATOR class return objects
of type SIGTREEITEM on traversing a signature tree.

4.3.3 Memory Management

Memory management is handled entirely by the EPRSD template library. The allocation and
deallocation of memory is part of the template library and prevents the user from managing
the memory required by the compressor. The memory management is also handled completely
within the SIGTREE class and the users need to only instantiate objects of the SIGTREE
class. This design provides transparency to the user and helps to prevent memory leaks caused
due to mismanagement of user-allocated memory.
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Chapter 5

Experimental Framework

We have used the hybrid MPI and OpenMP version of the Sequoia AMG benchmark, matrix
multiplication and vector addition micro-benchmarks for the experiments. We have configured
the number of threads and processes to be powers of two for micro-benchmarks. The AMG
benchmark was executed with four OpenMP threads, the number of processes was varied from
1 to 16 keeping the problem size constant (strong scaling). Matrix multiplication and vector
addition benchmarks were executed by varying the number of OpenMP threads from 4 to 32
and proportionally varying the problem size(weak scaling).

We ran all the experiments on the OPT cluster at NC State University, which has 16 nodes,
each with two way SMP, dual core AMD Opteron 64 bit processors (x86 64).
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Chapter 6

Results

6.1 Compression

We report the results of our experiments in this section. Files with EPRSD compressed traces
also contain the loop and thread dependency information along with the address and reference
type. This includes memory address information (number of references within a loop, number
of iterations, starting address, address stride), thread information (number of threads, starting
thread-ID, thread-ID stride) and node information (number of processes, starting node-ID,
node-ID stride). The compressed trace file sizes were measured by including all these details.

Table 6.1: Original vs. Compressed Trace Size of the Vector Addition Micro-benchmark for
Problem Sizes Varying with the Number of Threads (Weak Scaling)

No. of OpenMP Original Trace Compressed Trace Problem
Threads Size (KB) Size (KB) Size

4 3,337 48.39 1024
8 6,662 48.42 2048

16 13,309 48.52 4096
32 26,607 48.96 8192
64 53,205 48.98 16384

Table 6.1 shows the size of the original trace files and EPRSD compressed trace files for
the vector addition micro-benchmark. Each thread operates on partitions of two large integer
arrays A and B and stores the result in another array C at the corresponding offset. The
computation is C[i] = A[i]+B[i], where i is a function of the thread id. Weak scaling is applied

31



Figure 6.1: Weak Scaling-EPRSD Trace Size Comparison for Vector Addition

by increasing the array size proportionally with the number of threads. The figure shows the
scalability of the EPRSD compression scheme for different concurrencies and problem sizes of
the vector addition micro-benchmark. The compressed trace file size did not grow linearly, but
remained nearly constant even when the problem size and number of threads were increased
proportionally.

Table 6.2 shows the size of the original trace files and EPRSD compressed trace files for
the matrix multiplication micro-benchmark under weak scaling. The figure illustrates the scal-
ability of the EPRSD approach for different concurrencies and problem sizes of the matrix
multiplication micro-benchmark. The compressed trace file size was not constant but was an
order of magnitude less than the original trace file size when the problem size and number of
threads were increased proportionally. When the number of threads were increased from 4 to
64, the original trace file size increased 55 times, but the compressed trace file size increased
only 3 times.

Table 6.3 shows the size of the original trace files and EPRSD compressed trace files for
the AMG benchmark. Each MPI process involves four OpenMP threads. The figure demon-
strates the scalability of the EPRSD compression scheme for different concurrencies of the AMG
benchmark. Strong scaling is applied by keeping the problem size steady and varying only the
number of MPI processes.

For the AMG benchmark, RSDs at the intra-thread level do not merge completely as se-
quences are separated due to branching and non-rectangular loops. The compressed trace file
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Table 6.2: Original vs. Compressed Trace Size of the Matrix Multiplication Micro-benchmark
with Problem Sizes Varying with the Number of Threads (Weak Scaling)

No. of Original Trace Compressed Trace Problem
Threads Size(KB) Size(KB) Size

4 4,739 236 10x10
8 12,307 475 14x14

16 34,421 375 20x20
32 91,918 613 28x28
64 262,518 631 40x40

Figure 6.2: Weak Scaling - EPRSD Trace Size Comparison for Matrix Multiplication

size grew linearly with the number of MPI processes so that the size was reduced by half. Better
compression can be achieved by detecting non-rectangular loops and merging them. Also user
defined matching and merging capabilities can be included to override the default procedures
to achieve better compression.

Table 6.4 shows the size of the original trace files and EPRSD compressed trace files for the
Aztec benchmark. The figure demonstrates the scalability of the EPRSD compression scheme
for different concurrencies of the Aztec benchmark. Weak scaling is applied by varying the
problem size proportionally with the number of MPI processes.

The compressed trace file size grows linearly with the number of MPI processes so that the
size is reduced by three times on average. The EPRSDs across multiple processes do not merge
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Table 6.3: Original vs. Compressed Trace Size of the AMG Benchmark with a Fixed Problem
Size and Varying Number of Processes (Strong Scaling)

No. of MPI Original Trace Compressed Trace
Processes Size (MB) Size (MB)

1 170 68
2 340 136
4 680 272
8 1360 352

16 2720 1088

Figure 6.3: EPRSD Trace Size Comparison for AMG Benchmark

as they occur in different orders, which prevents further compression.
It should be noted that the scales are logarithmic. The raw trace file size increases expo-

nentially with the number of threads. In contrast, the EPRSD trace file size remains almost
constant in case of the vector addition microbenchmark and grows sub-linearly for the matrix
multiplication microbenchmark. In case of the AMG benchmark, the compressed trace file size
increases linearly with the number of processes but trace files were compressed by 50%. In
case of the Aztec benchmark, the compressed trace file grows linearly with the number of MPI
processes though the size is reduced by 65%. From the results, we can conclude that the space
savings due to the EPRSD compression scheme is exponential and resulting traces are highly
scalable in case of dense algebraic kernels (Matrix Multiplication and Vector Addition) and
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Table 6.4: Original vs. Compressed Trace Size of the Aztec Benchmark with Problem Sizes
Varying with the Number of Processes (Weak Scaling)

No. of MPI Original Trace Compressed Trace
Processes Size (KB) Size (KB)

1 625 282
2 1327 438
4 2845 596
8 14944 6652

64 213824 72221

Figure 6.4: EPRSD Trace Size Comparison for Aztec Benchmark

linear in case of other benchmarks (AMG and Aztec).
We verified the correctness of our compression scheme by replaying the traces using our

replay tool. Vector addition and matrix multiplication compressed traces were replayed with
100% accuracy. AMG traces were replayed with 91% accuracy and Aztec traces were replayed
with 90% accuracy. In case of the AMG and Aztec benchmarks, the error is due to round-off
errors caused by integer division in the compression algorithm.
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6.2 Performance

In this section, we discuss the runtime performance of instrumentation, stack-walk and different
levels of compression. “Matmul 24x24” refers to the matrix multiplication benchmark with
four OpenMP threads operating on 24x24 matrices. “Matmul 48x48” refers to the matrix
multiplication benchmark with eight OpenMP threads operating on 48x48 matrices. “AMG
n=1” refers to the AMG benchmark with one MPI process and four OpenMP threads. “AMG
n=2” refers to the AMG benchmark with two MPI processes and four OpenMP threads in each
process.

Instrumenting an application incurs additional overhead than running a stand-alone exe-
cutable. Even when instrumentation is disabled, application runtime increases when executed
within Pin [16]. This overhead is due to the additional time required to execute Pin itself.
The difference in application runtimes within Pin with instrumentation turned on and off is
depicted in Table 6.5. This difference is due to the additional overhead involved in executing
dynamically rewritten application code snippets. The difference in runtimes with regular and
optimized stack-walk is presented in Figure 6.5. The optimized stack-walk involves tracing the
stack once per function call whereas a regular stack-walk involves tracing the stack on every
memory reference instruction. The performance speedup varied between 30% to 50%. From the
results, we conclude that an optimized (per-function) stack-walk is significantly more efficient
than a regular (per-instruction) stack-walk.

Table 6.5: Runtime of Benchmarks with and without Instrumentation

runtime inside runtime w/ runtime

Benchmark Pin w/o instrumentation and w/ instrumentation

instrumentation w/ stack-walk and w/o stack-walk

(sec) optimization (sec) optimization (sec)

Matmul 24x24 0.897195 14.016049 17.181311
Matmul 48x48 0.936515 25.797583 50.751666

AMG n=1 3.849418 106.020933 137.740902
AMG n=2 5.082595 69.658261 146.941715

Stack-walk is part of our Memtrace tool and contributes to the overall instrumentation
time. The influence of optimized (per-function) stack-walk on the overall instrumentation time
is depicted in Table 6.6. The figure shows that stack-walk (per-function) contributed only
a minor portion of the overall instrumentation time while the major overhead is due to the
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Figure 6.5: Instrumentation Overhead Comparison

instrumentation code and Pin overhead.

Table 6.6: Stack-walk and Instrumentation Runtime Comparison

optimized instrumentation

Benchmark stack-walk time excluding

time (sec) stack-walk time (sec)

Matmul 24x24 0.153050 13.862999
Matmul 48x48 0.182989 25.614594

AMG n=1 7.280247 98.740686
AMG n=2 5.112795 64.545466

Table 6.7 lists the runtime of various levels of compression for the given benchmarks. First
three entries do not involve inter-node compression. Hence, only intra-thread and inter-thread
compression runtimes are considered. From the corresponding Figure 6.7, we can derive that
intra-thread compression time is almost equal to the instrumentation time listed in Table 6.5.
This is because intra-thread compression occurs on-the-fly and completes soon after the instru-

37



Figure 6.6: Stack-walk and Instrumentation Runtime Comparison

mentation terminates. Inter-thread compression runtime depends on the number of EPRSDs
in each thread’s compressor object after intra-thread compression. Its value varies widely de-
pending on the benchmark and its runtime parameters. Inter-node compression involves MPI
communication overhead in addition to the merging overhead, which depends on the number
of EPRSDs in each process’s compressor object after inter-thread compression. In the “AMG
n=2” case, inter-node compression dominates the compression time due to MPI overhead and
merging of large numbers of EPRSDs across processes.

Table 6.7: Compression Runtime Comparison

Intra-thread Inter-thread Intern-ode

Benchmark compression compression compression

runtime runtime runtime

(sec) (sec) (sec)

Matmul 24x24 14.071198 0.001632 0.000000
Matmul 48x48 25.854,444 0.008064 0.000000

AMG n=1 112.623903 4.660802 0.000000
AMG n=2 70.046435 109.836724 1,163.648747
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Figure 6.7: Compression Runtime Comparison
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Chapter 7

Related Work

RSDs were first proposed in [8] to analyze array accesses. PRSDs were used to compress
memory traces in [3] to analyze cache coherence problems in OpenMP programs. This work
did not represent addresses as function of thread IDs and did not address inter-node memory
trace compression. SIGMA [12] is a data collection framework and a set of cache analysis tools
that employs online trace compression by exploiting loops (similar to RSDs) but do not capture
thread and process level dependences.

Caches As Filters [11] is an analytical framework for analyzing and designing caches. This
work introduces TSpec notation to represent memory references in a compact format. The
TSpec notation is more complex than RSDs and represents the state of a caching system, but
the relation between memory references and threads is not gathered. Memory address trace
compression through loop detection in a multi-programmed environment was described in [10],
but it did not address the compression of traces in a cluster environment. Traces captured using
such tools do not scale with the the number of threads or processes in a HPC environment.

ScalaTrace [4] addresses intra-task and inter-node compression of communication traces,
but not memory traces. Also, ScalaTrace [4] does not involve inter-thread compression. Trace
compression discussed in [9] is based on statistical sampling and results in lossy compression
and do not preserve order.

Our work addresses lossless, order preserving intra-thread, inter-thread and inter-node com-
pression of memory traces. Imprecision is adjustable to achieve more compression by compro-
mising the accuracy and order. With imprecision disabled, our tool compresses traces without
loss of accuracy and order. We also offer an EPRSD template library developed in C++, for
the rapid development of compression tools using EPRSDs for HPC applications. Our work
incorporates an optimization to speed up the memory trace compression process by using sig-
nature trees. Also, a separate reusable C++ module, SIGTREE, was developed to assist the
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development of tools needing signature tree functionality. In our memory compressor tool, both
the XOR signatures and signature tree options are available, which can be configured at compile
time. Our tool also incorporates two different versions of Stackwalker libraries - a simple frame
pointer traversal (Ver0) and the Wisconsin stackwalker [21], configurable at compile time.

Our tool can be used along with the existing cache performance analysis tools [3][11] to
analyze the cache performance for multi-threaded applications. Our memory tracing tool can
also be integrated with communication tracing tools [4] to combine online communication and
memory trace compression of HPC applications.
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Chapter 8

Conclusion

Memory traces of multi-threaded applications on SPMD machines are very large in size and
do not easily aid in analyzing application behavior. The existing memory trace tools either
produce large lossless trace files beyond disk capacities or produce lossy concise traces with
only statistical details.

We developed a unique memory tracing framework that combines the advantages of both
the above mentioned tracing tool types. Our tool extracts full memory traces and represents
them in near-constant size regardless of the number of threads or problem sizes for dense alge-
braic kernels while preserving the memory access details along with the order in which memory
accesses were issued. The developed scheme not only compresses loops but also groups similar
memory access patterns across threads and processes into a single entity called Extended Power
Regular Section Descriptor (EPRSD), which is an enhancement over the PRSD concept. We
employ EPRSDs to compress memory traces of multi-threaded high-performance applications.
Compression is performed at three levels: (a) Intra-thread, by using memory access patterns
in loops within a thread; (b) Inter-thread, by using thread-ids to represent repetitive memory
access patterns across multiple threads; (c) Inter-node, by using node-ids (or ranks) to repre-
sent repetitive memory access patterns across multiple processes. We also developed a replay
mechanism to generate the memory traces from the compressed trace on-the-fly without ever
decompressing the trace.

We observed that the compression achieved depends on the program structure of appli-
cations. Some benchmarks used in the experiment have rectangular loops and the order in
which code is executed across multiple threads and processes is almost identical. In such cases,
the compressed trace size has remained nearly constant. In some other benchmarks, there are
non-rectangular loops and branches, hence, the order of code execution across different threads
and processes is unique. In such cases, the compressed trace size has grown linearly with the

42



problem or concurrency size. The compression achieved is an indicator of a program’s struc-
ture and its dynamic behavior. A near-constant size of compressed trace files indicates that a
SPMD application’s execution is highly synchronous. A poorly compressed trace file indicates
the irregularity in a SPMD application’s structure and execution.

As claimed in our hypothesis, we achieved near-constant size compression for dense algebraic
kernels (Matrix Multiplication and Vector Addition). For other benchmarks (AMG and Aztec),
compressed trace size grew linearly with the original trace size.

43



Chapter 9

Future Work

Recognizing Triangular Loops

The current work does not handle detection and compression of triangular loops. It could
be extended to recognize and compress triangular loops. This should help to obtain better
intra-thread compression in the AMG benchmark, which utilizes non-rectangular loops.

Lossy Compression by Noise Filtering

The current memory trace compression approach is lossless and order preserving. As observed
in the experiments, the lossless approach does not work for all applications. If a subset of
memory references only occurs within selected threads or processes, they might be treated as
“noise” and could be ignored such that only matching references can be retained. This would
result in better compression more suitable for trace analysis.

User Pluggable Compression Schemes

The EPRSD template library is customizable and users could add their own compression scheme
to override the default compression mechanism. This could be accomplished by defining the
EPRSD “match” and “merge” functions, which are passed as template parameters to the
EPRSD COMPRESSOR class to suit the user-defined compression scheme. The current im-
plementation of the compression algorithm is statically bound. The template library could be
extended so that user-plug-ins in the form of shared libraries could be linked with the template
library to customize the compression scheme.
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Integration with ScalaTrace

The ScalaTrace [4] library handles the compression of communication traces using an ad-hoc
implementation. Our EPRSD template library could be incorporated in ScalaTrace to re-design
the compression mechanism for better modularity and readability of code.
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Appendix A

Code Samples

A.1 EPRSD Merging

A.1.1 Intra-thread Merging Algorithm

Each compressor object is a list of RSDs and EPRSDs to which trace information is added as
simple nodes to the tail end and checked for matching patterns. The number of nodes searched
depends on the window size. The intra-thread compression algorithm is shown in Figure A.1.

A.1.2 Inter-thread Merging Algorithm

In our implementation, Memtrace pintool is compiled with mpicc and spawned using mpirun as
multiple processes. Intra-thread and Inter-thread trace compression occurs within a process and
no inter-process messages are exchanged. Each thread has a separate EPRSD COMPRESSOR
object and these objects exchange the EPRSDs in a binary radix tree like fashion. The algorithm
for inter-thread merging algorithm is given is Figure A.2.

A.1.3 Inter-node Merging Algorithm

After the inter-thread compression, each process sends the EPRSDs to another process for
merging. This communication pattern is designed such that the process with the lowest rank
completes the final merging. This communication pattern is depicted in Figure A.3, where eight
processes (N = 8) are involved in the inter-node memory trace compression. The direction of
the arrows shows the direction of EPRSD transmission. A similar pattern is applicable for
higher values of N. The inter-node merging steps are similar to inter-thread merging shown in
Figure A.2, but uses MPI calls to transmit signature tree and EPRSD data between processes.
EPRSD COMPRESSOR class implements internode XXXX methods to perform inter-node
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EPRSD_COMPRESSOR ::add(EPRSD neweprsd)
{

addToTail(neweprsd );
repeat = true;

while (1)
do

repeat = false;
match = NULL;
rmatchbegin = rmatchend = lmatchbegin = lmatchend = NULL;
match = findLastMatch ();

if(match)
then

rmatchbegin = rmatchend = listtail;
lmatchbegin = lmatchend = match;

while(lmatchend != rmatchbegin ->prev)
do /* search for matching sequence */

if(lmatchbegin ->prev && rmatchbegin ->prev)
then

if(isSignMatch(lmatchbegin ->prev , rmatchbegin ->prev))
then

lmatchbegin = lmatchbegin ->prev;
rmatchbegin = rmatchbegin ->prev;

else /* matching stops */
break;

endif
else /* beginning of list reached */

break;
endif

end while

if(lmatchbegin && lmatchend && rmatchbegin && rmatchend)
then /* matching sequence found , merge */

if(lmatchend == rmatchbegin ->prev)
then

if(mergeLeftRightPortions () == SUCCESS)
repeat = true;

else
repeat = false;

endif
end if

endif

else /* match not found */
repeat = true;

end if

if(repeat == false || match == NULL)
break;

endif
end while
rmatchbegin = rmatchend = lmatchbegin = lmatchend = NULL;
return;

}

Figure A.1: Sample Code for Intra-thread Compression
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/* reduce the stride such that the first object in the array accumulates
all the EPRSDs in the end */

for(stride = N_THREADS /2; stride > 0; stride = stride /2)
{

/* merge the EPRSDs of threads with a given stride of thread id */
for(dest = 1; dest <= stride; dest = dest + 1)
{

if(cmprsr[dest] == NULL || cmprsr[dest+stride] == NULL)
{

break;
}
/* number tree nodes uniquely before merging signature trees */
/* merge (dest+stride) compressor object ’s sigtree and EPRSDs to

(dest) compressor object */
/* dest+stride is also the thread id */
cmprsr[dest+stride]->ecr ->numberSigTree(dest+stride , myrank );
cmprsr[dest]->ecr ->mergeSigTree(cmprsr[dest+stride]->ecr);
/* copy unique keys of leaf nodes to the dependent EPRSDs */
cmprsr[dest+stride]->ecr ->assignUniqueKeys ();
/* iterate the EPRSD list of ’dest+stride ’ object and add them to

’dest’ object */
iter = new EPRSD_COMPRESSOR <MYINFO , MYMATCH , MYMERGE >:: ITERATOR

(cmprsr[dest+stride]->ecr);
cmprsr[dest]->ecr ->newEPRSDSetBegins ();
iter ->begin ();
while (1)
{

cur_prsd = iter ->getNext ();
if(! cur_prsd)

break;
tmpdata.copy( (CODE )(0 xFFFF & cur_prsd ->code), cur_prsd ->attr ,
cur_prsd ->det , cur_prsd ->det_len , cur_prsd ->cmninfo ,
cur_prsd ->userinfo );
cmprsr[dest]->ecr ->intertask_add (& tmpdata );

}
delete iter;
iter = NULL;

}
}

Figure A.2: Sample Code for Inter-thread Compression
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compression.

Figure A.3: EPRSD Exchange Pattern between Processes

A.2 Signature Tree

Code sample to use the SIGTREE class is given below.

SIGTREE *sigtree = new SIGTREE ();
SIGNODE *leaf = NULL;
void *val = NULL;
sigtree ->initAdding ();
/* assume signature list is 0x36364545 0x8090 0x7060 0x5040 0x1234 -
where 0x1234 is the PC and the rest are return addresses */
while(! SignListisEmpty ())
{

val = getNextItemFromSignList ();
/* leaf contains the pointer to a tree node
at which val is added */
leaf = sigtree ->add(val);

}
sigtree ->finishAdding ();
/* after the loop terminates , l e a f contains the pointer to leaf node
of the signature tree at which the above signature was added. Leaf node
contains the PC 0x1234 and the upper levels contain the return addresses */
sigtree ->print (); /* prints the signature tree to stdout */

Figure A.4: Sample Usage of SIGTREE Class

Figure A.6 depicts the signature tree for the assembly code shown in Figure A.5. The
signature tree is built using the signatures of load/store instructions only. The root of the
signature tree is a dummy node used only for reference. The program initialization code is not
shown for brevity.
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0000000000400474 <bar >:
400474: 55 push %rbp
400475: 48 89 e5 mov %rsp ,%rbp
400478: c7 45 fc 00 00 00 00 movl $0x0 ,-0x4(%rbp)
40047f: c7 45 fc 00 00 00 00 movl $0x0 ,-0x4(%rbp)
400486: eb 0d jmp 400495 <bar+0x21 >
400488: 8b 45 fc mov -0x4(%rbp),%eax
40048b: 89 05 5f 04 20 00 mov %eax ,0 x20045f (%rip)
400491: 83 45 fc 01 addl $0x1 ,-0x4(%rbp)
400495: 81 7d fc 9f 86 01 00 cmpl $0x1869f ,-0x4(%rbp)
40049c: 7e ea jle 400488 <bar+0x14 >
40049e: c9 leaveq
40049f: c3 retq

00000000004004 a0 <jam >:
4004a0: 55 push %rbp
4004a1: 48 89 e5 mov %rsp ,%rbp
4004a4: b8 00 00 00 00 mov $0x0 ,%eax
4004a9: e8 c6 ff ff ff callq 400474 <bar >
4004ae: c9 leaveq
4004af: c3 retq

00000000004004 b0 <foo >:
4004b0: 55 push %rbp
4004b1: 48 89 e5 mov %rsp ,%rbp
4004b4: b8 00 00 00 00 mov $0x0 ,%eax
4004b9: e8 e2 ff ff ff callq 4004a0 <jam >
4004be: c9 leaveq
4004bf: c3 retq

00000000004004 c0 <main >:
4004c0: 55 push %rbp
4004c1: 48 89 e5 mov %rsp ,%rbp
4004c4: b8 00 00 00 00 mov $0x0 ,%eax
4004c9: e8 e2 ff ff ff callq 4004b0 <foo >
4004ce: b8 00 00 00 00 mov $0x0 ,%eax
4004d3: c9 leaveq
4004d4: c3 retq
4004d5: 90 nop
4004d6: 90 nop
4004d7: 90 nop
4004d8: 90 nop
4004d9: 90 nop
4004da: 90 nop
4004db: 90 nop
4004dc: 90 nop
4004dd: 90 nop
4004de: 90 nop
4004df: 90 nop

Figure A.5: Assembly Code Snippet
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Figure A.6: Sample Signature Tree Generated by the SIGTREE Class
(nil)

0x400395
0x40039d
0x40039e
0x4003b4
0x400380
0x400386
0x400370
0x400303
0x400376
0x3e11e1eab0

0x4004f0
0x4004f5
0x400508
0x40050d
0x400512
0x400517
0x400530
0x400578

0x40035c
0x4003c0
0x400535

0x400361
0x4003d2
0x400361

0x400366
0x400450
0x400458
0x400470
0x400471
0x400366

0x40036b
0x400580
0x400584
0x400589
0x4005b3
0x4005b4
0x4005b5

0x40036f
0x400556
0x40055b
0x400560
0x400565
0x40056a
0x40056f

0x3e11e1eb1d
0x4004c0
0x4004c9
0x4004ce

0x4004b0
0x4004b9
0x4004be

0x4004a0
0x4004a9
0x4004ae

0x400474
0x400478

55



0x40047f
0x400495
0x400488
0x40048b
0x400491
0x4004e2
0x40049e
0x40049f
0x4004ae

0x4004af
0x4004be

0x4004bf
0x4004d3

0x4004d4
0x4005bc
0x4003e0
0x4003e4
0x4003e9
0x4003f7
0x400436
0x400441
0x400442
0x400443
0x3e11e1eb24

0x3e11e35b82
0x3e11a0e69c

0x4005c5
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