
ABSTRACT

RAMACHANDRAN, SUBRAMANIAN. Distributed Job Allocation for Large-Scale Many-cores.
(Under the direction of Dr. Frank Mueller.)

As today’s manycore processors already feature over 64 cores and as tomorrow’s are slated

to contain 1000s, it is important to design operating system techniques that can efficiently

cope with this scale of resource coordination. The current state-of-the-art in manycore proces-

sor architectures has evolved from traditional bus-based architectures over rings to mesh-based

Network-on-Chip (NoC) interconnects. This implies an increasing potential for scalable message

passing. However, contemporary operating systems heavily rely on single system images with

shared memory constructs that may not scale well to large core counts. To address these chal-

lenges, we devise a distributed message passing only system comprised of so-called “pico-kernels”

per core. They are controlled by dedicated “micro-kernels” topologically centered within a set

of cores that cooperatively comprise the overall operating system in a peer-to-peer fashion.

Such a system promotes rethinking and redesigning of various operating system services focus-

ing on scalability as the primary design constraint. We consider the challenges of distributed

allocation of jobs, each comprised of a set of tasks to be mapped to disjoint cores. A naive

solution performing fragmented allocations may quickly escalate to deadlocks, where jobs hold

and wait for cores in circular dependencies. To tackle these challenges, we propose a deadlock

free distributed job allocation protocol. We have devised two policies for avoiding deadlocks,

namely active cancellation and sequencer-based atomic broadcast. The protocol and the two

policies have been implemented and evaluated on a Tilera TilePro64 processor with 64 cores

on a single socket. Results show that for sparse job allocations active cancellation provides less

job allocation overhead while for denser job allocations the sequencer-based atomic broadcast

provides less overhead.

© Copyright 2014 by Subramanian Ramachandran

All Rights Reserved

Distributed Job Allocation for Large-Scale Many-cores

by
Subramanian Ramachandran

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Computer Science

Raleigh, North Carolina

2014

APPROVED BY:

Dr. Vincent Freeh Dr. Steffen Heber

Dr. Frank Mueller
Chair of Advisory Committee

DEDICATION

To Amma and Appa.

ii

BIOGRAPHY

The author was born in Madurai, a popular city in Tamilnadu, India. He completed his schooling

at Ooty and Madurai. He went on to pursue his Bachelors in Electronics and Communication

Engineering at Madras Institute of Technology (MIT India), Anna University. After his un-

dergraduation he worked at IBM India Software Labs as a Senior Software Engineer in their

Systems and Technology Group from 2007-2011. Later he moved on to Cisco Systems, India

where he worked in their Mobile Internet Technology Group (MITG) from 2011-2012. In Fall

2012, he began his graduate studies at North Carolina State University, Raleigh in the field

of Computer Science. He started working as a Research Assistant in the Systems Research

Group under Dr. Frank Mueller from Fall 2013. During Summer 2013, Subramanian interned

at Riverbed, CA and plans to join there after graduation.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Frank Mueller for trusting in my abilities and providing

me an opportunity to work on this thesis. His constant flow of ideas, dedication and never say

give up attitude inspired me a lot. His open door policy enabled me to discuss any idea or issue,

without any inhibition. Thank you Dr. Mueller once again.

I would like to thank Dr. Vincent Freeh and Dr. Steffen Heber for agreeing to serve in my

thesis committee; providing a fresh outlook to my work and guiding me throughout this process.

I would like to thank my parents, sister and little Harini for always being my constant source

of encouragement and love. I am really blessed to have such a caring family.

I would like to thank my instructors, teachers and professors right from my childhood till

now for whatever I am today is only because of them. I would like to thank my managers and

colleagues at IBM and CISCO India who motivated me to pursue this journey.

This work would not have been possible without the help of some awesome people with

whom I had a chance to interact during my two year stint as a Master’s student here.

Chris Zimmer, thank you for the awesome code base of NoCMsg and helping me in any issue

I faced on the Tilera board. Karthik Yagna, thank you for your valuable tips and suggestions.

My friends Madhavan, Shankar, Anerudhan, Mahesh, Sandeep and Kasyap, thank you for

voluntarily helping me out in any issue, through whatever possible means. Thanks for providing

valuable suggestions and an accommodating environment to work when I needed it the most.

Last but not the least; I would like to thank all my lab mates and friends who encouraged

and motivated me to try harder till the end. Thank you everyone once again.

iv

TABLE OF CONTENTS

LIST OF FIGURES . vi

Chapter 1 Introduction . 1
1.1 Motivation . 1

1.1.1 An Era of Large-Scale Manycores . 1
1.1.2 Scalability Challenges of Large-Scale Manycores 1

1.2 Hypothesis . 2
1.3 Contributions . 2

1.3.1 PICASO system . 3
1.3.2 Distributed Job Allocation Protocol . 3

1.4 Organization . 4

Chapter 2 Design . 5
2.1 The PICASO System . 5
2.2 The Distributed Job Allocation Problem . 5
2.3 Deadlock free Distributed Job Allocation Protocols 9

2.3.1 The Main Scheduling Loop . 9
2.3.2 Deadlock Avoidance by Active Cancellation 11
2.3.3 Deadlock Avoidance by Sequencer Based Atomic Broadcast 13
2.3.4 Pattern-Based Message Propagation Schemes 13

Chapter 3 Implementation . 16
3.0.5 Global Unique Ordering . 16
3.0.6 Extensions to the NoCMsg Library . 16

Chapter 4 Evaluation Framework . 18

Chapter 5 Experimental Results . 20
5.1 Performance Analysis . 20

5.1.1 Micro-benchmark — Overhead for Sparse Job Allocations 22
5.1.2 Micro-benchmark — Job Allocation Overhead as Tile Size Increases . . . 24
5.1.3 Micro-benchmark — Worst-case Conflict Resolution Time for n Simulta-

neous Job Submissions . 25
5.2 Experiments in Real Task Mode . 26

5.2.1 Job Allocations that can execute in parallel 27
5.2.2 Job allocations which can only execute serially 27

5.3 Performance of the Pattern-Based Propagation Schemes 28

Chapter 6 Related work . 31

Chapter 7 Conclusion . 33

References . 34

v

LIST OF FIGURES

Figure 2.1 An example micro/pico kernel abstraction in a large many core processor . . 6
Figure 2.2 A probable deadlock involving two simultaneous job submissions at different

micro-kernels . 8
Figure 2.3 Periodic active cancellation procedure . 10
Figure 2.4 Steps in processing core allocation request for active cancellation 12
Figure 2.5 Pattern-based request propagation schemes 14

Figure 4.1 PICASO system within a 6 × 6 tile on Tilera TilePro64 18

Figure 5.1 Micro-benchmark — Overhead for Sparse Job Allocations where each job
requires a number of pico-kernels (cores) that is satisfied by: 21

Figure 5.2 Micro-benchmark — job allocations as tile size increases 24
Figure 5.3 Micro-benchmark — Worst-case conflict resolution time for n simultaneous

job submissions . 26
Figure 5.4 Real task mode — Parallel Job Allocations 27
Figure 5.5 Real task mode — Serial Job Allocations . 28
Figure 5.6 Comparison of different request propagation schemes 29

vi

Chapter 1

Introduction

1.1 Motivation

1.1.1 An Era of Large-Scale Manycores

Gordon Moore (co-founder of Intel) made this famous observation:

“The number of transistors incorporated in a chip will approximately double every 24 months.”

For several decades, Moore’s law [25] has held strong with continued chip performance in-

creases every 18 months, even faster than what was predicted. Yet, uniprocessor scaling has

reached its ultimate physical limits with increased power consumption and diminished perfor-

mance returns. Nonetheless, multicore/manycore processors have the potential to enjoy contin-

ued performance increases to meet future processing needs while reducing/constraining power

consumption. Hence, many chip vendors have abandoned uniprocessor scaling and have instead

resorted to doubling the number of cores per chip. With current single microprocessor chips

of up to 100’s of cores on a die [1–4] available, a 1000 core chip might soon be reality [8, 30],

and specialized computing devices, e.g., graphic processing units (GPUs), already support such

scales today.

1.1.2 Scalability Challenges of Large-Scale Manycores

The current state-of-the-art for multicore chips has evolved from traditional bus-based archi-

tectures over rings to mesh-based Network-on-Chip (NoC) interconnects between processors.

This implies an increasing potential for scalable message passing capabilities. However, to date

multicore benefits have not scaled well. The primary reason for this stems from reusing conven-

tional Single System Image (SSI) operating system designs for multicore architectures. With

SSI, resources are aggregated to present a single view of the operating system environment while

data access and communication are realized via shared memory over traditional bidirectional

1

buses. This approach delivers some performance increases in the natural evolution from single

core up to 16 cores, but it deteriorates rapidly when the number of cores increases further [33].

Despite innovative designs of caching hierarchies and protocols (shared, L1, L2, etc.), the la-

tency and contention for accessing shared memory with multiple cores limits performance gains

at scale. Cache misses and coherence updates are also extremely expensive in SSI approaches

on multicores since each core has its own cache that must be coherent with shared memory, as

well as with other cores. Recent work by Baumann et al. [6], Wentzlaff et al. [29] and Zimmer et

al. [33] show that coherent shared memory may not scale well to large core counts. They instead

promote the usage of scalable message passing for OS communication in large-scale manycores.

Modern large-scale manycore processors resemble a distributed system [7]. Hence, it is of

utmost importance that operating system techniques be revisited and redesigned to embrace

the distributed nature of these manycore processors, with scalability as one of the primary

design constraint.

1.2 Hypothesis

In this work, we attempt to address the above discussed challenges. We have devised a dis-

tributed message passing only system comprised of so-called “pico-kernels” per core. They are

controlled by dedicated “micro-kernels” topologically centered within a set of cores that cooper-

atively comprise the overall operating system in a peer-to-peer fashion. Such a system promotes

rethinking and redesigning of various operating system services focusing on scalability as the

primary design constraint.

We consider one such operating system service, namely job allocation in a distributed sys-

tem. Job allocation in such a system benefits from the delegation of scheduling capabilities to

micro-kernels but has to tackle additional challenges due to the distributed nature of job gener-

ation. A naive approach allowing fragmented allocations could quickly lead to deadlocks in the

job allocation algorithm. Distributed job allocation protocols could avoid deadlocks during the

allocation process by loosely enforcing a globally unique order. Hence, the hypothesis of this

thesis is:

A scalable approach to job allocation can be provided through a distributed protocol. Such

a distributed protocol can avoid deadlocks in the job allocation process by loosely enforcing a

globally unique order.

1.3 Contributions

Following are the main contributions of this work:

2

• We propose the Pico-kernel Adaptive and Scalable Operating-system (PICASO) to ad-

dress the scalability challenges of future manycore processors.

• We analyze the distributed job allocation problem and present a protocol with two policies,

active cancellation and sequencer-based atomic broadcast.

• We evaluate the proposed solutions on the Tilera TilePro64 through a set of micro-

benchmarks to analyze the performance and scalability.

1.3.1 PICASO system

We propose the Pico-kernel Adaptive and Scalable Operating-system (PICASO) for large-scale

manycores. PICASO is a distributed message passing system devised to meet the scalability

challenges of future large-scale manycore processors. The PICASO system consists of pico-

kernels per core. These are normal worker cores where user tasks execute. A set of pico-kernels

is managed by a micro-kernel. Micro-kernels are dedicated cores for control and management

purposes. They are topographically centered within the set of pico-kernels that it manages. An

advantage of such a system is the delegation of control and scheduling capabilities to micro-

kernels for their respective set of pico-kernels. These micro-kernels, in concert, coordinate global

scheduling in a decentralized manner across the entire manycore chip using distributed proto-

cols. Hence, the operating system becomes a distributed system by design using message passing

between cores and micro-kernels.

1.3.2 Distributed Job Allocation Protocol

We propose a novel protocol to tackle the challenges of job allocation in a distributed system.

Allocating jobs of tasks on a partitioned system is known to be NP-Hard [11,16]. The problem

is further complicated in a distributed system due to the distributed nature of job generation.

A naive approach allowing fragmented allocations could quickly lead to deadlocks in the job

allocation algorithm. Our distributed job allocation protocol with two policies, active cancel-

lation and sequencer-based atomic broadcast, takes a well disciplined approach in solving these

issues. First, we avoid deadlocks by enforcing a globally unique order to resolve conflicting job

allocations. Second, we split the job allocation problem into two subproblems: 1) query and

reserve available resources, followed by 2) find a good task-to-core mapping. We believe such

a split enables the best in class heuristics [5, 32] to tackle the NP-hard task-to-core mapping

problem while our distributed job allocation protocol reserves available cores for the job.

Though our distributed job allocation protocol is generic in scheduling any application, in

this work, we use Message Passing Interface (MPI) [26] applications as our standard workload

for the following reasons: All ranks (tasks) of an MPI job need to start execution at the same

3

time. Such a workload demands guaranteed availability of cores to start execution or waits until

they are available. This behavior enables us to model the job wait time as the overhead of the

distributed job allocation protocol.

1.4 Organization

The rest of the thesis is structured as follows:

In Chapter 2 Section 2.1, we introduce the PICASO system for large-scale manycores.

Section 2.2 describes the distributed allocation problem and the challenges in solving it. We

describe our distributed job allocation protocol in detail in Section 2.3. Chapter 3 presents

implementation details and Chapters 4 and 5 provide a detailed evaluation. We review the

related work in Chapter 6 and conclude with Chapter 7.

4

Chapter 2

Design

2.1 The PICASO System

To meet the scalability challenges of future large-scale manycores, we have designed the Pico-

kernel Adaptive and Scalable Operating-system (PICASO). PICASO features a distributed

message passing system comprised of pico-kernels per core. Pico-kernels are worker cores on

which user tasks of a job can be executed. A set of pico-kernels are managed by a micro-

kernel. Micro-kernels are dedicated cores for control purposes, such as management of a set

of pico-kernels and job scheduling in coordination with other micro-kernels. We use the term

micro-kernel domain to refer to the set of pico-kernels governed by this micro-kernel. Micro-

kernels are typically topographically centered within the set of pico-kernels that it manages.

A pico-kernel reports only to its parent micro-kernel. A micro-kernel, on the other hand,

apart from controlling its set of pico-kernels, also co-ordinates with other micro-kernels. An ad-

vantage of such a system is the decentralization of control, where each micro-kernel may engage

in fast and autonomous decisions on managing its set of pico-kernels. Since pico-kernels are

just worker cores, we use the terms pico-kernels and cores interchangeably in this work. Figure

2.1 shows how a PICASO system with micro- and pico-kernel abstraction can be organized in

a large-scale manycore system. In this figure, the available cores are partitioned into different

domains represented by different colors. Each domain has a topologically centered core chosen

to be the micro-kernel. The chosen micro-kernels shown in red are responsible for managing

their set of pico-kernels and all external interactions occur only between micro-kernels.

2.2 The Distributed Job Allocation Problem

We use the following terminology in our discussion:

5

Micro-kernels uk-1 to uk-8
Pico-kernels of uk-1
Pico-kernels of uk-2
Pico-kernels of uk-3
Pico-kernels of uk-4

Pico-kernels of uk-5
Pico-kernels of uk-6
Pico-kernels of uk-7
Pico-kernels of uk-8

Figure 2.1: An example micro/pico kernel abstraction in a large many core processor

• A task is the basic unit of execution.

• A job consists of a collection of tasks.

• The home micro-kernel of a particular job is the micro-kernel where the job submission

was initiated.

In this work, we consider jobs that require to be co-scheduled, i.e., these jobs consist of inter-

dependent tasks that need to be concurrently executed on different nodes/cores. An example

would be MPI jobs, where all associated ranks (tasks) need to start execution at the same

time. We also assume that once tasks begin execution, they will run to completion without

preemption. This assumption is in line with our vision of an era of dark silicon [22], where

cores are abundant (in the order of the number of tasks). It will enable software tasks to be

readily mapped onto cores. On such a system, scheduling of tasks amounts to core activation

rather than context switching [6, 29]. Hence, techniques for devising performance efficient job

allocations will be of importance. Such an allocation usually consists of two steps:

• Query available idle cores and reserve them for this job.

• Devise an efficient task-to-core mapping from the available cores.

Our focus in this work is on the former part. Once enough cores are reserved for a job, methods

and results from prior work [5, 32] can be applied to find the best task-to-core mapping for a

6

given job. However, the problem becomes more complicated when extended to a distributed

system due to the nature of job generation.

Conventional solutions involve a centralized resource manager that handles all job alloca-

tions. All cores continuously report their availability status to this entity. But such an approach

does not scale to a large number of cores. One reason is the contention at the centralized entity

because of the incessant status updates. The other reason is that this leads to a single point of

failure. But more importantly, it allows for only a single job submission portal. These restric-

tions are undesirable for large core counts where jobs generate allocations and queue up for

their execution at different cores of the system.

Our proposed pico-/micro kernel distributed system abstraction partitions the available

cores between different micro-kernels. This domain-specific delegation of scheduling capabilities

to micro-kernels enables jobs that can be locally satisfied within a single micro-kernel domain

to be handled by fast and autonomous decisions. For jobs requiring more cores than can be

locally satisfied, the home micro-kernel, where the particular job is submitted, co-ordinates with

other micro-kernels to devise the allocation of cores to this job. Multiple job requests submitted

at different micro-kernels could compete with each other for resources. Hence, we need a co-

ordination protocol to resolve these conflicts and to choose the next job to execute loosely based

on a globally unique order. This global unique order could be based on user-defined priority

or a First Come First Serve (FCFS) policy. Such an ordering guarantees fairness and avoids

starvation. Adhering to loose ordering rather than strict ordering allows non-conflicting job

allocations to proceed in parallel, thereby increasing the system utilization.

But a lack of such co-ordination protocols may lead to potential deadlocks. Deadlocks can

happen when multiple jobs submitted at different micro-kernels hold different subsets of cores

and wait for more cores to become available. Yet, none are able to proceed because all cores

have been allocated to jobs without meeting the full allocation request of any single job in full.

Figure 2.2 shows a possible deadlock condition with two micro-kernel domains. Each domain has

initially 8 pico-kernels (worker cores) available. In step 1, we have two job submissions requiring

12 and 16 cores, respectively. In step 2, each job first holds on to available local cores and sends

out a request for more cores. In step 3, each micro-kernel is blocked waiting indefinitely for

their job requests to be satisfied. Since none of the job requests are fully satisfied, the system

remains deadlocked.

Random back-off schemes could be used to recover in case of potential deadlocks. In such

a method, different micro-kernels yield their cores and retry their job allocations after waiting

for a randomly chosen back-off time. This probabilistically avoids a deadlock again, but fails to

guarantee a bound on completion time for the allocation algorithm. Hence, such schemes may

not be applicable to real-time systems where upper bounds on completion times are mandated.

A more serious issue is potential starvation of jobs that require large allocations as they might

7

Circular
dependency !

Job 1 submitted at uk-1
requesting for 12 cores

Job 2 submitted at uk-2
requesting for 16 cores

job1 job1 job1

job1 job1

job1 job1 job1

job2 job2 job2

job2 job2

job2 job2 job2

Step 1: Simultaneous job submissions at uk-1 and uk-2

Step 2: Grab local cores and send a core allocation request

Core allocation request from uk-1 to uk-2 for job1 asking for 4 cores

Core allocation request from uk-2 to uk-1 for job2 asking for 8 cores

job1 job1 job1

job1 job1

job1 job1 job1

job2 job2 job2

job2 uk-2 job2

job2 job2 job2

Step 3: Hold and wait for cores in circular dependencies leading to deadlocks!

uk-1

uk-1

uk-2

uk-2uk-1

uk-1 waiting for more cores to be available from uk-2, for job1

uk-2 waiting for more cores to be available from uk-1, for job2

Figure 2.2: A probable deadlock involving two simultaneous job submissions at different
micro-kernels

8

never be satisfied. Therefore, a job allocation algorithm that avoids starvation with an upper

bound on completion time is required.

2.3 Deadlock free Distributed Job Allocation Protocols

We have devised a distributed job allocation protocol for large-scale manycores. Two policies

for deadlock avoidance are proposed, namely

1. active cancellation and

2. sequencer-based atomic broadcast.

Both of these policies require that a globally unique order be established. For example, we could

use timestamps of the job submission time along with the micro-kernel identifier to devise a

globally unique job identifier, or we could use user-defined priorities in conjunction with a

method to break ties for matching priorities. For the discussion in this work, we will refer to

job priority based on a globally unique job ordering rather than a user-defined priority. In the

following sections, we examine the two different approaches, compare their capabilities and

finally conclude with a detailed performance evaluation.

2.3.1 The Main Scheduling Loop

Irrespective of the policy used, each micro-kernel runs an event-based main scheduling loop.

To implement such a main scheduling loop in an MPI-like fashion (rather than a socket based

communication framework) poses two challenges. The micro-kernel should be able to:

1. perform wild-card receives from any arbitrary micro-kernel or one of the pico-kernel it

manages;

2. receive messages of arbitrary length. To support this, messages are constructed in two

parts: a fixed sized header indicating message type and message length, followed by the

actual message body.

Algorithm 1 shows the main scheduling loop. It performs two main functions:

1. Process any incoming message, and

2. in the absence of an incoming message, schedule pending job requests submitted at this

micro-kernel.

9

Algorithm 1 Scheduling loop at each micro-kernel

while TRUE do
Post a nonblocking receive for the fixed size header
repeat
if policy == active cancellation then

call periodic active cancellation specific procedure
else if policy == atomic broadcast then

call periodic atomic broadcast specific procedure
end if

until fixed size header is received
Receive the entire message body blocking
call respective message handler routine

end while

Fetch Head of Wait
Queue

Job Satisfiable
Locally?

Spawn Job &
Execute

Change State to
RUNNING

Send Core Allocation
Request

Change State to
ALLOCATION IN

PROGRESS

Remote Job
Request?

NO

State =
COMMITTED or

READY TO
RESPOND

YES

Commit Free cores if
Available

Change State to
COMMITTED

YES

Exit Routine

NO

YES

NO

Figure 2.3: Periodic active cancellation procedure

10

The scheduling loop uses message passing as the only means of communication between

micro-kernels, and between a micro-kernel and its set of pico-kernels. There can also be architecture-

specific optimizations for micro- to pico-kernel communication, not shown here.

The significant message types of the distributed job allocation protocol are as follows:

Core Allocation Request:

Sent by the home micro-kernel of the job. The request is propagated to all micro-kernels

via an efficient request propagation scheme.

Core Allocation Response:

Sent by a micro-kernel when it commits certain cores to a particular job.

Job Spawn Request:

Sent by the home micro-kernel when it devises the best task allocation for the given job.

This request follows the same propagation path earlier traversed by the Core Allocation

Request. Micro-kernels that are not part of an allocation, release their reservations for this

job when they receive this request.

Job Cancel Request:

When the active cancellation policy is used, this message is sent by the home micro-kernel

if it determines that there is an higher priority job to be satisfied first.

Submit Job to Sequencer:

Under the sequencer-based atomic broadcast policy, all micro-kernels use this message to

submit their job requests to the fixed sequencer (see Subsection ??).

2.3.2 Deadlock Avoidance by Active Cancellation

The periodic active cancellation procedure is depicted pictorially in the flowchart shown in

Figure 2.3. In this method, any micro-kernel that launches a job requiring more than the locally

satisfiable cores sends a core allocation request to all its neighbors. This request is propagated

to all other micro-kernels via an efficient request propagation scheme as explained in Section

2.3.4. A greedy policy is employed, wherein the request to each micro-kernel always asks for

the maximum number of cores needed for the job. This policy frequently allocates more cores

than needed for a job, but guarantees a successful allocation.

The flowchart in Figure 2.4 depicts how active cancellation is triggered when a high priority

core allocation request arrives. Each micro-kernel maintains a wait queue based on the globally

unique order consisting of both the job requests it has sent out and the job requests it has

received. All incoming job requests are inserted in the wait queue as per the globally unique

ordering. If the new request happens to be the head of the wait queue, it first checks if this

11

Receive core
allocation request

Insert in Wait Queue

Is it the new head of
wait Queue?

Previous head of wait
Queue is home

request ?

Send Job Release
request for previous
head of wait Queue

Exit Routine

Duplicate
Request?

State Blocked?
YES

Change State to
READY TO RESPOND

YES NO

YES

NO

NO YES

NO

Figure 2.4: Steps in processing core allocation request for active cancellation

12

request has a higher priority than any job request it has sent out earlier. If so, it engages

in active cancellation of the lower priority job changing it to the BLOCKED state pending

a renewed request. This frees up resources otherwise allocated to unsuccessful lower priority

job requests. Finally, the micro-kernel commits how ever many cores it can afford for this job

request by responding with the committed cores to the home micro-kernel of this particular

job request. The micro-kernel contributes new cores to this commitment whenever its resources

become free. This scheme satisfies multiple job requests loosely based on the global ordering but

also offers a relaxation to this hard criteria by allowing a lower priority request to proceed if its

allocation is satisfied quickly enough before a higher priority job overrides it in the wait queue.

This relaxation is allowed under the assumption that any job using a successful allocation will

eventually complete, after which time the resources it was given becomes available for the next

high priority job in the wait queue (bounded by the longest job).

2.3.3 Deadlock Avoidance by Sequencer Based Atomic Broadcast

This method is inspired by the sequencer based atomic broadcast as explained in Xavier et

al. [13]. In this method, a micro-kernel is elected to be the single sequencer of the system.

All job requests, even if submitted at different micro-kernels, are in turn submitted to the

sequencer. The sequencer ensures the globally unique ordering and sends the request to all

the micro-kernels only when it determines which job to execute next. Our approach differs

here. Instead of broadcasting the request, we use a custom built request propagation scheme as

explained in Section 2.3.4. This ensures that the job allocations happen in order without any

collisions. Less conflicts directly translate to fewer messages compared to active cancellation.

But since each micro-kernel has to send requests to the sequencer, it leads to contention at the

sequencer and additional delays even for small allocation requests, which could have been solved

with just a few neighboring micro-kernels. As we show in Section 5, this additional overhead

translates into real performance benefits only in case of dense and large job allocations.

2.3.4 Pattern-Based Message Propagation Schemes

An efficient method for propagating request messages, such as core allocation and job spawn

requests from any given source to all other micro-kernels in a 2D mesh topology, is required.

Multi-casting messages from a given source to all micro-kernels is inefficient as this involves

sending individual messages to each micro-kernel, unless hardware support for multi-casting

exists [12]. Therefore, we have designed and implemented two alternatives: 1) a fixed pattern-

based propagation scheme and 2) an adaptive pattern-based propagation scheme. We use the

term nodes when introducing these schemes, as these schemes not only apply to micro-kernels

but any set of nodes in a 2D mesh topology. The adaptive pattern-based propagation scheme

13

(a) Fixed pattern source at
lower left

(b) Fixed pattern source at
center

(c) An example adaptive
pattern

Figure 2.5: Pattern-based request propagation schemes

has the advantage that it does not expect nodes to be arranged in a 2D mesh topology.

Fixed pattern-based propagation

When a message needs to be sent to all nodes in a 2D mesh processor NoC, the source sends

the message only to its neighboring nodes. Each neighbor in turn propagates the request to

its next set of unvisited neighbors following a predefined pattern. The pattern depends on

the placement of the initial source of the message. Consider Figure 2.5a. The source initially

sends the request to all its neighbors with an embedded information to propagate the request

toward the East direction. Each node receiving this message propagates the request as per the

embedded information. Similarly, if the source is located at bottom-right, the propagation will

be toward North; if located at the top right, toward West; and if located at the top left toward

South. Figure 2.5b shows the pattern when the source is located at the center, in which case

each arm takes the responsibility of propagating the request in all four directions. Following

such a predefined pattern avoids duplicate requests, which waste link resources and increase

processing time at the nodes.

Adaptive pattern-based propagation

This scheme involves an initialization phase responsible for forming the adaptive pattern. In

this phase, an empty message is forwarded from the given source to all its neighbors. Each

neighbor in turn broadcasts the message to all of its next set of neighbors until all the nodes

have been visited. At this point, each node has received the given message from multiple sources.

It chooses one among these sources as a preferred source and informs it. The preferred source

remembers this decision and forwards all messages it receives to this node. The criteria to choose

the preferred source can be based on various policies, e.g., the first received request or shortest

distance from the source to this node, to name a few. At the end of the first phase, every node

14

has identified its preference from which source it wishes to receive a request in the future; or,

alternatively, each node has remembered a list of neighbors to forward a message to that was

received from a particular source. This forms an adaptive pattern ensuring each node receives a

message only once. An advantage of such adaptive patterns compared to fixed patterns is that

the patterns could be adaptively rearranged in case of link failures. The initialization phase

needs to be run only once during the system startup or when recovering from faults, hence

reducing the overhead by amortizing the costs.

As an example, consider the pattern shown in Figure 2.5c for a 3 × 3 tile with numbered

nodes. This pattern is formed with 1 as the source node and forwarding paths from nodes 1 to

2 & 4, 2 to 3 & 5, 4 to 7, 5 to 8 & 6 and 8 to 9.

15

Chapter 3

Implementation

The distributed job allocation protocols are applicable to any system of inter-networked cores,

even heterogeneous cores [1, 3, 4, 12]. But for the purpose of implementation and experimen-

tation alone, the job allocator has been optimized for a 2D-mesh architecture, such as the

Tilera TilePro64 [4,30]. The Tilera TilePro64 processor has 64 tiles interconnected with a 2D-

Mesh Network-On-Chip (NoC) interconnect. Each tile has a processor engine running at 700

MHz, a switch engine for routing on the NoC over five different network interconnects and a

cache engine. The User Dynamic Network (UDN) interconnect is the only one available for

user-generated messages. We use the services of the NoCMsg [33] library. NoCMsg provides a

deadlock free, scalable and efficient low-level message passing layer over UDN with an MPI like

interface. This motivated our design choice and, hence, our scheduling loop. The protocols and

the messages were designed entirely around these MPI like interfaces. This, in itself, makes our

design generic enough to be ported to other message passing libraries as well.

3.0.5 Global Unique Ordering

For our experiments, we use an ordering based on a FCFS policy. Each tile on the TilePro64 has

synchronized clocks. Hence, we use the time-stamp of the job submission along with the unique

micro-kernel identifier of the job’s home micro-kernel as a tie breaker for job submissions.

3.0.6 Extensions to the NoCMsg Library

We extended the NoCMsg library to support the following features:

• ability to perform wild-card receives;

• ability to post multiple non-blocking sends and receives.

16

Our Main Scheduling loop requires wild-card receives. Hence, NoCMsg was extended to support

this functionality by providing MPI ANY SOURCE/ MPI ANY TAG parameters. We intro-

duce two queues, namely the unhandled message queue and unmatched request queue. When-

ever a new incoming message arrives, it is checked for a matching MPI Recv/MPI Irecv request

posted earlier by scanning the unmatched request queue; otherwise, the new message is queued

in the unhandled message queue. Similarly, all MPI Recv and MPI Irecv requests, when posted,

are checked against the unhandled message queue for a potential match. Upon a mismatch, the

request is queued in the unmatched request queue. Similarly, queues were introduced for send

operations to support multiple non-blocking send requests to the same source/tag combination.

Processing messages via these queues provides support for both our requirements.

17

Chapter 4

Evaluation Framework

We use the TilePro64 processor [4] for our evaluation. While the TilePro64 supports 64 tiles,

at least two tiles are reserved exclusively by Tilera’s hypervisor for administrative tasks and

Input/Output operations. The maximum square tile size that can be reserved for user tasks

is 7 × 7. We choose a square tile size so as to eliminate possibilities of discrepancies due to

other asymmetric tile sizes. We support two different experimental frameworks for testing the

performance of the job allocator,

1. a real task mode, and

2. a partial simulation mode.

The real task mode, supports execution of MPI jobs, such as a subset of NAS Parallel bench-

marks (NAS-PB). Figure 4.1 shows the real task mode on the Tilera TilePro64 processor. This

small PICASO system on a 6 × 6 tile has been divided into four regions. Each region has a

topologically centered micro-kernel managing a set of eight pico-kernels. Using this platform, a

Figure 4.1: PICASO system within a 6 × 6 tile on Tilera TilePro64

18

combination of NAS-PB of power of two sizes (1,2,4,8,16 and 32) can be executed. This platform

is primarily used to assess the schedulability of real user tasks.

The limited number of usable cores on the TilePro64 constraints our scalability tests on the

real task mode. To overcome this, we have developed a partial simulation framework, where we

consider all cores in the reserved tile as micro-kernels without pico-kernels. Task execution is

simulated by timers triggering a job completion message after a certain user-defined execution

time. This simulation platform is justified by the fact that the distributed job allocation protocol

requires only micro-kernel interaction. Our results could be directly translated to the real task

mode combining them with the pico-kernel management overheads obtained in the real task

mode. This partial simulation mode provides the ability to assess our protocol with up to 49

micro-kernels on a 7 × 7 tile.

The following chapters detail the experiments/results under the real task mode and the

partial simulation mode for different job allocation mixtures.

19

Chapter 5

Experimental Results

The distributed job allocator and all user programs are compiled as applications with Tilera’s

MDE 3.03 tool chain at the O3 optimization level using Tilera’s C/C++/Fortran compilers.

5.1 Performance Analysis

To analyze the performance of the two proposed schemes, we first use the partial simulation

mode. We execute a set of micro-benchmarks. For each job, we measure the job allocation

overhead as the wait time of the job from the time of submission to the time it receives all

the resources to execute. This wait time includes both the overhead of the distributed job

allocation protocol and the time spent waiting for the earlier job allocations to terminate and

to release its cores. Our focus is to measure the overhead of the distributed job allocation

protocol in isolation. Hence, for performance tests, we use an initial state where no jobs are

active. We then trigger simultaneous job submissions from different micro-kernels as they have

the highest probability to result in fragmented allocations. This creates a workload for our

protocol triggering its deadlock avoidance subsystem. Note that all our experiments cover

cases where the job allocations require large number of cores that need more than one micro-

kernel domain to be fully satisfied. Recall that job allocations, which could be satisfied within

a single micro-kernel domain, have a constant overhead.

For all our experiments, the reported job wait times are averaged over 15 runs. The maximum

relative standard deviation observed in all these experiments was less than 20%, except for the

experiment shown in Figure 5.1b, where we observed relative standard deviations of up to 41%.

We discuss this exception and other significant experimental details in the following relevant

sections.

In our experiments, we compare both our proposed polices, active cancellation and sequencer-

based atomic broadcast, against one another. When reporting the relative performance improve-

20

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

Job1 Job2 Job3 Job4

J
o

b
 W

a
it
 T

im
e
 (

s
e
c
o
n
d

s
)

Jobs

active cancellation
atomic broadcast

(a) 3 micro-kernels

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

Job1 Job2 Job3 Job4

J
o

b
 W

a
it
 T

im
e
 (

s
e
c
o
n
d

s
)

Jobs

active cancellation
atomic broadcast

(b) 12 micro-kernels

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

Job1 Job2 Job3 Job4

J
o
b
 W

a
it
 T

im
e
 (

s
e
c
o

n
d
s
)

Jobs

active cancellation
atomic broadcast

(c) 24 micro-kernels (short runs)

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

Job1 Job2 Job3 Job4

J
o
b
 W

a
it
 T

im
e
 (

s
e
c
o

n
d
s
)

Jobs

active cancellation
atomic broadcast

(d) 49 micro-kernels (short runs)

 0.001

 0.01

 0.1

 1

Job1 Job2 Job3 Job4

J
o

b
 W

a
it
 T

im
e
 (

s
e
c
o
n
d
s
)

Jobs

active cancellation
atomic broadcast

(e) 24 micro-kernels (long runs)

 0.001

 0.01

 0.1

 1

 10

Job1 Job2 Job3 Job4

J
o

b
 W

a
it
 T

im
e
 (

s
e
c
o
n
d
s
)

Jobs

active cancellation
atomic broadcast

(f) 49 micro-kernels (long runs)

Figure 5.1: Micro-benchmark — Overhead for Sparse Job Allocations
where each job requires a number of pico-kernels (cores) that is satisfied by:

21

ment or degradation, we always follow the convention of comparing active cancellation against

sequencer-based atomic broadcast as follows:

Let the overhead of active cancellation be denoted as Oac and the overhead of sequencer-

based atomic broadcast be denoted as Oab. Then the relative performance change of active

cancellation is given by:
(Oab −Oac)

Oab
× 100%

5.1.1 Micro-benchmark — Overhead for Sparse Job Allocations

This experiment uses the partial simulation mode. Job allocation requests are generated simul-

taneously from the four extreme corners of a 7 × 7 tile. These requests can be satisfied with

just a few nearby micro-kernels even before the conflicting job requests arrive from the other

corners. Hence, in most of these cases, cancellation of the lower priority job request may not

even be required as all the simultaneously submitted jobs are satisfied without the need for

global ordering. Conversely, with sequencer-based atomic broadcast, all requests have to still go

to the single sequencer, which can only serve one request at a time so that serialization delays

impact these small job allocations. This experiment proves that active cancellation provides

best performance in scenarios where sparse job submissions can proceed in parallel.

In the following set of experiments, we consider two scenarios: Jobs that can be execute in

parallel and jobs that need to be executed serially one after another.

Jobs that can execute in parallel

Figures 5.1a and 5.1b depict the scenario where each job can proceed in parallel. For the four

jobs shown on the x-axis, their corresponding job wait times are depicted on the y-axis. The

job wait time does not include execution times of prior jobs as all these jobs execute in parallel.

Hence, the measured job wait time can be considered as the exclusive protocol overhead. We

observe a relative decrease in the job wait times for active cancellation when compared to

sequencer-based atomic broadcast.

In the first experiment (see Figure 5.1a), each job requires a number of pico-kernels (cores)

that is satisfied with available cores from 3 out of the total 49 micro-kernel domains. We ob-

served a relative performance improvement for active cancellation over sequencer-based atomic

broadcast of 23% for the first job, 76% for the second job and 83% for the third and fourth jobs.

In the second experiment (see Figure 5.1b), each job requires a number of pico-kernels (cores)

that is satisfied with available cores from 12 out of the total 49 micro-kernel domains. The

relative performance improvement of active cancellation over sequencer-based atomic broadcast

22

for the four jobs were: 21% for the first job, 58% for the second job, 73% for the third job

and 48% for the fourth job. For active cancellation, we observe a maximum relative standard

deviation of 41% in this experiment, which is explained as follows: The wait time of each

job depends on how many cancellations are required after the first job has been successfully

allocated. In some runs, we observe that a lower priority job request propagated fast enough

to succeed in its allocation before a higher priority job triggers the cancellation procedure. In

these cases, the job wait times for the lower priority jobs are reduced. They are otherwise above

average if more cancellations are involved.

Jobs that require serial execution

When jobs execute serially, job wait times depend largely on the execution times of preceding

jobs. When the execution time of prior jobs is high, this becomes the main contributor to the

job wait time. Conversely, when the execution time is lower than the minimum job allocation

overhead, then the overhead of the distributed job allocation protocol is the main contributor

to the job wait time. Hence, for the next two experiments, we consider both short and long

running jobs. Short running jobs help assess the actual overhead of the two polices. Long running

jobs demonstrate that for serially executing jobs, this performance improvement is not entirely

carried over as a reduction in the job wait times.

Short Running Jobs: We set the job execution times to 0.001 seconds, which is below the

minimum overhead observed. Figure 5.1c depicts a case where each job requires a number of

pico-kernels (cores) that is satisfied by exactly 24 out of the total 49 micro-kernel domains.

Hence, two out of the four jobs can run in parallel. As not all jobs can run in parallel, allo-

cations of the lower priority jobs require cancellation so that the allocation of higher priority

jobs is satisfied. This results in an additional overhead for active cancellation compared to

sequencer-based atomic broadcast of around 17% and 12%, respectively, for the first two jobs,

but considerably less for the next two jobs (7% and 4%, respectively). Figure 5.1d depicts

the case where all jobs require a number of pico-kernels (cores) that is satisfied by exactly all

available 49 micro-kernel domains and, hence, execute serially one after another. Here, active

cancellation incurs an additional overhead as lower priority job allocations need to be canceled

to enforce the globally unique order. This additional overhead for active cancellation is around

12% for the first job and reduces considerably to 4% for the second job, and then to around 1%

for the fourth job.

Long Running Jobs: For these experiments, we set the job execution times to 0.5 seconds,

which is much higher than the overhead of the distributed job allocation protocol. Hence, in

these cases, the execution time is the main contributor to the job wait time. During the initial

execution delay for the spawned jobs, the job allocation protocol reorders the job wait queue.

23

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

2x2 3x3 4x4 5x5 6x6 7x7

jo
b

 w
a

it
 t

im
e

 (
s
e

c
o

n
d

s
)

tile size (nxn), with n job submissions

active cancellation first job
atomic broadcast first job
active cancellation last job
atomic broadcast last job

Figure 5.2: Micro-benchmark — job allocations as tile size increases

Therefore, subsequent jobs are spawned as soon as the earlier jobs complete with a minimal

overhead. Figure 5.1e depicts a case where each job requires a number of pico-kernels (cores)

that is satisfied by exactly 24 out of the total 49 micro-kernel domains. Hence, two out of the

four jobs can run in parallel. Job wait times are depicted on the y-axis on a logarithmic scale.

Here, active cancellation incurs an additional overhead of 17% and 13%, for the first two jobs,

respectively. The additional overhead for the next two jobs is very minimal (0.03% to 0.05%).

Figure 5.1f depicts the case where all jobs require a number of pico-kernels (cores) that is

satisfied by exactly all available 49 micro-kernel domains and, hence, execute serially one after

another. Job wait times are depicted on the y-axis on a logarithmic scale again. Here, active

cancellation incurs an additional overhead of around 12% for the first job, but very minimal for

subsequent jobs (0.01% to 0.04%). Hence, the above experiments show that for long running

jobs, which execute serially one after another, the performance gain achieved by sequencer-based

atomic broadcast is minimal.

5.1.2 Micro-benchmark — Job Allocation Overhead as Tile Size Increases

In this experiment, we scale the tile size (n×n) from 2 × 2 to the maximum supported size of

7 × 7. For each tile size, we generate n simultaneous job requests, each requiring pico-kernels

(cores) that is satisfied by exactly n micro-kernel domains. For example, in a tile size of 2 × 2,

24

there will be 2 simultaneous job requests requiring pico-kernels (cores) that is satisfied by 2

micro-kernels each, and in a tile size of 7×7, there will be 7 simultaneous job requests requiring

pico-kernels (cores) that is satisfied by 7 micro-kernels each. Thus, this experiment shows the

additional overhead for jobs that can ideally execute in parallel. The results depicted in Figure

5.2 compare the job wait times of the first and last jobs for active cancellation and atomic

broadcast. Here, the job wait times are depicted on the y-axis for different tile sizes on the

x-axis. We observe that the wait time for the first among the n jobs is consistently lower

for active cancellation as it does not incur the overhead of submitting all job requests at the

sequencer. We observe a reduction in the job wait time of the first job from 6% for a tile size of

2×2 to up to 60% for a tile size of 7×7. For the sake of analysis, let us assume that the highest

priority job overrides all other jobs in their home micro-kernels before any of the lower priority

jobs gets a chance to execute. In this case, there will be one initial request sent for the highest

priority job. For all other lower priority jobs, there will be n−1 initial requests plus n−1 cancel

and finally n − 1 repeat requests sent in total. Thus, all subsequent jobs incur this additional

overhead. Notice that significant performance gains in spawning the first job compensates for

this additional overhead for subsequent jobs to a large extent. When compared to sequencer-

based atomic broadcast, we observe a slight increase in the job wait times for active cancellation

(in the range of 1% to 12% for smaller tile sizes, i.e., 2×2 and 3×3). But for larger tile sizes, we

observe a more significant reduction in the overhead for active cancellation of up to 15%. This

experiment reinforces our earlier finding that as long as multiple simultaneous job submissions

can execute in parallel, active cancellation has a lower overhead compared to sequencer-based

atomic broadcast.

5.1.3 Micro-benchmark — Worst-case Conflict Resolution Time for n Si-

multaneous Job Submissions

In this experiment with n simultaneous job submissions, we measure the conflict resolution

time for the first job to execute. We use a fixed tile size of 7 × 7 in the partial simulation

mode. As all the cores are considered to be micro-kernels in this mode, a maximum of 49 micro-

kernels are available. All job submissions require a large number of pico-kernels (cores) that

can only be satisfied by the cores available in all the 49 micro-kernel domains. In this worst-

case scenario, the sequencer-based atomic broadcast scheme provides the best performance. The

sequencer-based atomic broadcast scheme just has to wait for the job allocation request with

the highest priority to arrive. It can then send out core allocation requests one after another.

The maximum overhead occurs when the highest priority job request is the one that reaches

the sequencer last. Compare this to the considerable overhead in active cancellation. Here, in

the worst-case, the n − 1 lower priority job requests together could have reserved all available

25

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0 5 10 15 20 25 30 35 40 45 50

C
o
n
fl
ic

t
re

so
lu

ti
o
n
 t

im
e
 (

se
co

n
d

s)

n - number of simultaneous job submissions on tile size 7x7

active cancellation
atomic broadcast

Figure 5.3: Micro-benchmark — Worst-case conflict resolution time
for n simultaneous job submissions

cores in all micro-kernels. But none would have reserved enough to proceed executing. Hence,

for the highest priority job request to execute, it has to override each of the lower priority

job request in all other micro-kernels by sending job cancel requests. In the worst-case, n − 1

cancellation requests need to be sent before the first job can get enough cores for its allocation

to be satisfied. We see this reflected in Figure 5.3. The wait time for the first job is shown

on the y-axis and x-axis depicts n, the number of simultaneous job submissions. We observe

that the worst-case performance is better for the sequencer-based atomic broadcast scheme once

the number of micro-kernels simultaneously requesting allocations exceeds 1/4th of the total

number of micro-kernels.

5.2 Experiments in Real Task Mode

The real task mode on the TilePro64, introduced in Section 4, consists of 4 micro-kernels, each

managing a set of 8 pico-kernels. We can execute jobs that require a maximum of 32 cores

in this mode. To confirm the pattern observed under the partial simulation mode, we conduct

similar, yet scaled down experiments in real task mode.

26

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

Job1 Job2

J
o
b
 W

a
it
 T

im
e
 (

s
e

c
o
n
d
s
)

Jobs

active cancellation
atomic broadcast

Figure 5.4: Real task mode — Parallel Job Allocations

5.2.1 Job Allocations that can execute in parallel

In this experiment, two jobs (NAS Parallel Benchmark FT Class=S size=16) run in parallel in

two different micro-kernel domains. Each job requires 16 cores, which can be satisfied in parallel.

We measure the average job wait time. Here, the wait time is exclusively due to the protocol

overhead as it does not include any resource wait time. This experiment is an approximation of

the sparse job allocations explained in the context of the partial simulation mode. We observe

results following the same pattern: Under active cancellation, less overhead is incurred compared

to sequencer-based atomic broadcast. These results are shown in Figure 5.4 where y-axis depicts

the job wait time in seconds for the two jobs executing in parallel (on the x-axis).

5.2.2 Job allocations which can only execute serially

In this experiment, four jobs (NAS Parallel Benchmark FT Class=S size=32) requiring all

the 32 cores available from all of the four micro-kernels are submitted simultaneously. These

job submissions compete for all resources and are eventually serialized to execute one after

another. Thus, this experiment is similar to the partial simulation mode experiment in Section

5.1.3, which measured the worst-case conflict resolution time for n simultaneous job submissions.

We obtain similar results, where sequencer-based atomic broadcast performs much better than

active cancellation. Figure 5.5 shows these results with the exclusive job wait time on the y-axis

for the four jobs on the x-axis. Exclusive job wait time is calculated here as the actual job wait

27

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

Job1 Job2 Job3 Job4

J
o
b
 W

a
it
 T

im
e
 (

s
e

c
o
n
d
s
)

Jobs

active cancellation
atomic broadcast

Figure 5.5: Real task mode — Serial Job Allocations

time minus execution times of all prior jobs. This metric provides the job allocation overhead

in isolation.

5.3 Performance of the Pattern-Based Propagation Schemes

To evaluate the pattern-based message propagation schemes, a simple experiment was devised.

A request is broadcasted to all nodes (cores in this case) in a 7 × 7 tile (maximum nodes =

49). The time spent to broadcast this request and to receive a reply from all endpoints in the

reverse path of broadcast is measured. The results in Figure 5.6 compare the time taken on

the y-axis against the number of nodes to which the message is broadcast on the x-axis. Four

different schemes are compared:

1. A naive broadcast scheme: The source sends m individual messages to m recipients.

2. Distributed flooding: The source sends the message to all its neighbors and each node

receiving the message again multi-casts the message to all its neighbors until all the

nodes have received the message.

3. Fixed pattern-based propagation: Explained in Section 2.3.4.

4. Adaptive pattern-based propagation: Explained in Section 2.3.4.

28

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 5 10 15 20 25 30 35 40 45 50

b
ro

a
d

ca
st

 t
im

e
 (

se
co

n
d

s)

number of nodes

naive broadcast
distributed flooding
Adaptive pattern-based
Fixed pattern-based

Figure 5.6: Comparison of different request propagation schemes

For our analysis, let us assume a tile size of n×n. One sender needs to broadcast the message

to the remaining n2 − 1 recipients.

Among the different schemes, the naive broadcast scheme tends to be the most time con-

suming. In this scheme, a single source node sends the message to all the recipients and waits

for replies from each of them. This increases the load on the single source. The number of indi-

vidual end-to-end messages on the NoC equals the number of recipients of the broadcast, i.e.,

n2 − 1. But it is important to note that, on a 2D mesh topology with X-Y dimension ordered

routing, the messages are sent over the same link multiple times resulting in unnecessary link

utilization. We can easily observe that as the same X-Y path is traversed multiple times, there

is heavy contention on a few links that become the bottleneck.

Distributed flooding performs slightly better. In this method, the load on the single source

node is reduced as all nodes contribute to forwarding the message. Also, the message is sent

exactly once over each link. But the number of individual messages on the NoC is comparatively

larger than that of the naive broadcast scheme. For a tile size of n × n, the total number of

messages equals the total number of links on the NoC, i.e., 2∗n∗(n−1). Hence, after a threshold

point, the cost of distributed flooding tends to increase and is as costly as the naive broadcast

scheme. This trend was observed in Figure 5.6, when the number of nodes is greater than 43.

Fixed pattern-based propagation, where messages propagate in a predefined pattern, uses

the least number of individual messages, namely n2 − 1. The fixed pattern reduces the number

of links used to n2 − 1 and the message is sent exactly once on each link. Also, the load on

29

the single source node is considerably reduced as each recipient forwards the message further.

Hence, pattern-based propagation consumes the least amount of time (see Figure 5.6).

In the adaptive pattern-based propagation scheme, the number of individual messages is

n2 − 1, which is the same as in the fixed pattern-based scheme. Also, the scheme ensures that

the message is sent only once per link. Even the additional cost in setting up the adaptive

pattern is amortized over multiple runs. Hence, the adaptive pattern-based scheme performs as

good as the pattern-based scheme (see Figure 5.6). The adaptive pattern-based scheme is only

slightly costlier than the fixed pattern-based scheme. This is explained as follows: Depending

on the adaptive pattern formed, certain nodes may need to forward the message to more than

one recipient (unlike the fixed pattern-based scheme). For example, nodes 2 and 5 incur this

additional processing time in Figure 2.5c.

30

Chapter 6

Related work

There has been renewed research interest in academia and industry in redesigning operating

systems for the future manycore architectures [6, 7, 9, 15, 21, 23, 29]. Among these, the most

closely related work to ours is that of the Factored Operating Systems (FOS) [29] and the

Barrelfish multikernel [6], which share our vision of redesigning the operating system services

by embracing the distributed nature of future large-scale manycore processors. Our micro-kernel

and pico-kernel abstraction is inspired by FOS [29], where application and operating system

services run on physically separate cores. But our work differs from FOS in that we benefit

more from spatial locality as pico-kernels (cores) only need to communicate with their parent

micro-kernel. The parent micro-kernel engages in scheduling and/or other control decisions in

concert with its peer micro-kernels. We show that this delegation of control (e.g., scheduling

capabilities) to micro-kernels enables fast and autonomous decisions in managing the set of the

cores belonging to a single micro-kernel domain. We follow the core of the design principles

postulated by Peter et al. [24] for designing multi-core schedulers. We even go one level further

and take a purely distributed message passing approach as the primary means of communication

enabled by our adoption of NoCMsg [33] as our low-level messaging library.

The compute chip in the BlueGene/Q [10, 17] supercomputer has 16 cores for executing

application tasks, one core dedicated for operating system services and one core for redundancy.

This is similar to our approach of dedicated micro-kernels for operating system services and

applications. Our design differs here as we propose multiple dedicated micro-kernels managing

the cores in a manycore chip rather than across nodes.

Job schedulers for HPC clusters, such as the TORQUE resource manager [27], SLURM [31]

and the Maui scheduler [19], use similar algorithms for resource allocation and employ backfilling

algorithms to increase utilization. Though these schedulers in principle tackle similar problems,

these solutions to HPC systems do not directly apply to large-scale manycore systems due to

completely different communication to computation ratios, job completion deadlines and the

31

type of applications used.

Job co-scheduling for High-end computing (HEC) systems often use a single job submission

portal [18, 20]. But such approaches using a centralized resource manager do not scale. Tang

et al. [28] propose a distributed job co-scheduler for HEC systems. They propose to resolve

deadlocks by yielding the resources after a predefined wait time. Though such a mechanism

might be acceptable for HEC systems, this approach will tend to have the same starvation

issues as the random-back off scheme on a large-scale manycore system with real-time deadlines

(see Section 2.2). Our approach differs as we avoid deadlocks in job allocation and guarantee a

definite completion time for the distributed job allocator.

Some NoC architectures, such as the Kalray MPPA-256 [12], have specialized support for

multi-casting. The performance of our distributed job allocation protocol can vastly improve

on such architectures as the job requests can be propagated fast leading to fewer cancellations

in the active cancellation scheme. But most other NoC architectures ([3, 4]) lack hardware

support for multi-casting while our efficient pattern-based request propagation schemes can be

applied to them.

32

Chapter 7

Conclusion

We introduce PICASO, a distributed message passing system, to meet the scalability challenges

of future manycore processors and demonstrate the ease and usability of such a system in man-

aging large numbers of cores on a single chip. We study the distributed job allocation problem

and propose a protocol with two policies, active cancellation and sequencer-based atomic broad-

cast. Both of these policies avoid fragmented allocations that would otherwise lead to deadlocks

and provide guaranteed allocation loosely following a global order. Experimental results on the

Tilera TilePro64 platform indicate that for sparse job allocations the active cancellation scheme

provides lower overhead while for denser job allocations the sequencer-based atomic broadcast

scheme provides lower overhead. The results obtained show that our distributed job allocation

protocol is scalable and avoids deadlocks during the job allocation process, which confirms the

hypothesis.

33

REFERENCES

[1] Adapteva processor family. www.adapteva.com/products/silicon-devices/e16g301/.

[2] SCC External Architecture Specification (EAS) Revision 0.94.

[3] Single-chip cloud computer. blogs.intel.com/research/2009/12/sccloudcomp.php.

[4] Tilera processor family. www.tilera.com.

[5] T. Agarwal, A. Sharma, and K. Kale. Topology-aware task mapping for reducing commu-

nication contention on large parallel machines. In International Parallel and Distributed

Processing Symposium, April 2006.

[6] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca Isaacs, Si-

mon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania. The multikernel:

a new os architecture for scalable multicore systems. In Proceedings of the ACM SIGOPS

22nd symposium on Operating systems principles, Symposium on Operating Systems Prin-

ciples, pages 29–44, 2009.

[7] Andrew Baumann, Simon Peter, Adrian Schüpbach, Akhilesh Singhania, Timothy Roscoe,

Paul Barham, and Rebecca Isaacs. Your computer is already a distributed system. why

isn’t your os? In HotOS, 2009.

[8] Shekhar Borkar. Thousand core chips: a technology perspective. In Proceedings of the 44th

annual Design Automation Conference, pages 746–749. ACM, 2007.

[9] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, M Frans Kaashoek, Robert

Morris, Aleksey Pesterev, Lex Stein, Ming Wu, Yue-hua Dai, et al. Corey: An operating

system for many cores. In OSDI, volume 8, pages 43–57, 2008.

[10] P Boyle. The bluegene/q supercomputer. PoS LATTICE2012, 20, 2012.

[11] Robert I Davis and Alan Burns. A survey of hard real-time scheduling for multiprocessor

systems. ACM Computing Surveys (CSUR), 43(4):35, 2011.

34

www.adapteva.com/products/silicon-devices/e16g301/
blogs.intel.com/research/2009/12/sccloudcomp.php
www.tilera.com

[12] Benot Dupont de Dinechin, Pierre Guironnet de Massas, Guillaume Lager, Clment Lger,

Benjamin Orgogozo, Jrme Reybert, and Thierry Strudel. A distributed run-time environ-

ment for the kalray mppa-256 integrated manycore processor. Procedia Computer Science,

18(0):1654 – 1663, 2013. 2013 International Conference on Computational Science.

[13] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and multicast

algorithms: Taxonomy and survey. ACM Computing Surveys (CSUR), 36(4):372–421, 2004.

[14] Yoav Etsion and Dan Tsafrir. A short survey of commercial cluster batch schedulers. School

of Computer Science and Engineering, The Hebrew University of Jerusalem, 44221:2005–

13, 2005.

[15] Benjamin Gamsa, Orran Krieger, Jonathan Appavoo, and Michael Stumm. Tornado: Max-

imizing locality and concurrency in a shared memory multiprocessor operating system. In

OSDI, volume 99, pages 87–100, 1999.

[16] Michael R. Garey and David S. Johnson. Computers and Intractability – A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[17] Ruud A Haring, Martin Ohmacht, Thomas W Fox, Michael K Gschwind, David L Sat-

terfield, Krishnan Sugavanam, Paul W Coteus, Philip Heidelberger, Matthias A Blumrich,

Robert W Wisniewski, et al. The ibm blue gene/q compute chip. Micro, IEEE, 32(2):48–60,

2012.

[18] Eduardo Huedo, Ruben S Montero, and Ignacio M Llorente. A framework for adaptive

execution in grids. Software: Practice and Experience, 34(7):631–651, 2004.

[19] David Jackson, Quinn Snell, and Mark Clement. Core algorithms of the maui scheduler.

In Job Scheduling Strategies for Parallel Processing, pages 87–102. Springer, 2001.

[20] Subramanian Kannan, Mark Roberts, Peter Mayes, Dave Brelsford, and Joseph F Skovira.

Workload management with loadleveler. IBM Redbooks, 2:2, 2001.

35

[21] Rose Liu, Kevin Klues, Sarah Bird, Steven Hofmeyr, Krste Asanovic, and John Kubia-

towicz. Tessellation: Space-time partitioning in a manycore client os. HotPar09, Berkeley,

CA, 3:2009, 2009.

[22] M. Muller. Dark silicon and the internet. Keynote at EETimes Virtual Conference: De-

signing with ARM, March 2010.

[23] Edmund B Nightingale, Orion Hodson, Ross McIlroy, Chris Hawblitzel, and Galen Hunt.

Helios: heterogeneous multiprocessing with satellite kernels. In Proceedings of the ACM

SIGOPS 22nd symposium on Operating systems principles, pages 221–234. ACM, 2009.

[24] Simon Peter, Adrian Schüpbach, Paul Barham, Andrew Baumann, Rebecca Isaacs, Tim

Harris, and Timothy Roscoe. Design principles for end-to-end multicore schedulers. In 2nd

Workshop on Hot Topics in Parallelism, Berkeley, CA, USA, 2010.

[25] Robert R Schaller. Moore’s law: past, present and future. Spectrum, IEEE, 34(6):52–59,

1997.

[26] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra. MPI:

The Complete Reference, volume 1. MIT Press, 2 edition, 1998.

[27] Garrick Staples. Torque resource manager. In Proceedings of the 2006 ACM/IEEE con-

ference on Supercomputing, page 8. ACM, 2006.

[28] Wei Tang, Narayan Desai, Venkatram Vishwanath, Daniel Buettner, and Zhiling Lan. Job

coscheduling on coupled high-end computing systems. In ICPP Workshops, pages 317–326,

2011.

[29] David Wentzlaff and Anant Agarwal. Factored operating systems (fos): the case for a

scalable operating system for multicores. SIGOPS Oper. Syst. Rev., 43:76–85, April 2009.

[30] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Edwards, Carl

Ramey, Matthew Mattina, Chyi-Chang Miao, John F. Brown III, and Anant Agarwal.

On-chip interconnection architecture of the tile processor. IEEE Micro, 27:15–31, 2007.

36

[31] Andy B Yoo, Morris A Jette, and Mark Grondona. Slurm: Simple linux utility for resource

management. In Job Scheduling Strategies for Parallel Processing, pages 44–60. Springer,

2003.

[32] Christopher Zimmer and Frank Mueller. Low contention mapping of real-time tasks onto

tilepro 64 core processors. In Real-Time and Embedded Technology and Applications Sym-

posium (RTAS), 2012 IEEE 18th, pages 131–140. IEEE, 2012.

[33] Christopher Zimmer and Frank Mueller. Nocmsg: Scalable noc-based message passing. In

International Symposium on Cluster, Cloud and Grid Computing, 2014.

37

	LIST OF FIGURES
	Introduction
	Motivation
	An Era of Large-Scale Manycores
	Scalability Challenges of Large-Scale Manycores

	Hypothesis
	Contributions
	PICASO system
	Distributed Job Allocation Protocol

	Organization

	Design
	The PICASO System
	The Distributed Job Allocation Problem
	Deadlock free Distributed Job Allocation Protocols
	The Main Scheduling Loop
	Deadlock Avoidance by Active Cancellation
	Deadlock Avoidance by Sequencer Based Atomic Broadcast
	Pattern-Based Message Propagation Schemes

	Implementation
	Global Unique Ordering
	Extensions to the NoCMsg Library

	Evaluation Framework
	Experimental Results
	Performance Analysis
	Micro-benchmark — Overhead for Sparse Job Allocations
	Micro-benchmark — Job Allocation Overhead as Tile Size Increases
	Micro-benchmark — Worst-case Conflict Resolution Time for n Simultaneous Job Submissions

	Experiments in Real Task Mode
	Job Allocations that can execute in parallel
	Job allocations which can only execute serially

	Performance of the Pattern-Based Propagation Schemes

	Related work
	Conclusion
	References

