
ABSTRACT

RAGHAVENDRA, RAGHUVEER. Providing Predictability for High-End Embedded
Processors. (Under the direction of Dr. Frank Mueller).

Real-Time systems require logical and temporal correctness. Temporal correctness

implies that each task running on the system has a deadline that needs to be met. To ensure

that the deadlines are met, the scheduler of a real-time system needs information about the

worst-case execution time (WCET) of each task. The task of determining the WCET of a

task on a particular architecture is called timing analysis. Analysis techniques are broadly

classified as static and dynamic. Dynamic timing analysis does not provide safe WCET

bounds. Static analysis cannot be used on modern processors with features like out-of-

order execution, dynamic branch prediction and speculative execution. Such features, while

improving the average-case performance, induce counter-intuitive timing behavior known as

timing anomalies. Hence, designers of hard real-time systems are forced to use architectures

with simple in-order pipelines.

This thesis develops and demonstrates the benefits of a hybrid timing analysis

technique (combining static and dynamic analysis) on a processor simulator and on FPGA

hardware to provide tight and safe WCET bounds. The technique makes the following

contributions:

• It enhances the realm of design for hard real-time systems by allowing the designers

to use complex out-of-order architectures that exhibit timing anomalies.

• It eliminates the need for complex prototyping of hardware for static timing analysis

since the analysis can be done directly on the actual hardware. This has the added

advantage of eliminating timing inaccuracies arising out of variations in manufacturing

technology.

• The method helps manufacturers to protect their Intellectual Property by eliminating

the need to disclose architectural details for the purpose of static timing analysis.
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Chapter 1

Introduction

A Real time system is a system that has well-defined timing constraints. A timing

constraint is a restriction, typically a deadline, imposed on the run-time of jobs or tasks

in the system. A typical example of a real-time system is an anti-lock braking system

(ABS) [1]. It is a special type of braking used in automobiles that prevents skidding of

wheels while ensuring maximum braking. It also helps the driver maintain control of the

automobile under heavy braking. It is easy to see that the ABS system has strict timing

constraints. The system is of no use if the brakes do not engage within milliseconds.

Every task or job within a real-time system has a deadline. It is the time by

which the job must complete. A deadline is considered to be a hard deadline if missing the

deadline causes catastrophic results (a brake that engages too late may result in collision).

On the other hand, missing a soft deadline may result in loss of performance of the system (a

delayed packet delivery may result in jittery video). A real time system with hard deadlines

is a hard real-time system. One with soft deadlines is a soft real time system.

A job in a real-time system is a unit of work that can be independently scheduled.

A task consists of all instances of a job. A task is typically specified using the following

parameters: phase(φ), period(p), relative deadline (D) and execution time (e).The Period

is the time difference between the release of two consecutive jobs of a task. Phase is the

release time of the first job. The Relative deadline is the time difference between the time

at which the job is released and its deadline. Execution time, also known as the worst-case

execution time (WCET), is defined as the maximum time taken by any instance of a task

to run to completion on a specific platform.
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Schedulability analysis [2] deals with checking if a set of tasks meet their deadlines.

It uses the parameters (φ, p, D, e) for each task to determine schedulability. It has to be

noted that WCETs of all tasks in the system are required for schedulability analysis.

1.1 Timing Analysis

The objective of Timing Analysis is to determine the WCET of a task. The WCET

depends on the program itself and the hardware on which it is run. The effectiveness of the

analysis is quantified by two attributes, tightness and safeness. The WCET estimate is said

to be tight if the determined worst case runtime is close to the actual worst case runtime

of the program. The WCET estimate is safe if it is greater than an upper bound of the

actual worst case runtime. For the analysis to be effective, the WCET estimate has to be

safe and as tight as possible.

Two fundamental approaches to timing analysis are static timing analysis and

dynamic timing analysis

1.1.1 Static Timing Analysis

In this technique, typically, the run time of the program is determined in a simula-

tion environment. The technique places some restrictions on the code that can be analyzed,

viz: the loop bounds have to be known at compile time, function pointers and dynamic

memory allocation that introduce non-determinism in the code cannot be used. The tech-

nique also places certain restrictions on the hardware so it can be modeled. Hardware with

features like out-of-order execution [3], dynamic branch prediction [4] and speculative ex-

ecution is typically not allowed as it cannot be modeled using static analysis. Tightness

of the estimate depends on how accurately the execution of instructions is modeled by the

tools. The technique provides safe bounds.

1.1.2 Dynamic Timing Analysis

In this technique, the program is run on the hardware to determine its execution

time. Unlike static timing analysis, this technique may be used for analyzing systems with

more complex processors featuring out-of-order execution. If the run time depends on the

program’s inputs, the program is exercised with different inputs and the worst case runtime
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is determined experimentally. Unless the entire input space is exercised, it may not be

possible to guarantee the safeness of WCET estimated using this technique.

The thesis talks about a technique that combines static and dynamic analyses to

provide safe and tight bounds, aptly called hybrid timing analysis.

1.2 Organization

The rest of the document is organized as follows. Chapter 2 provides a discussion

of timing anomalies [5] and how existing techniques fail to analyze processors that exhibit

anomalies. It also discusses some of the techniques used to analyze processors with anoma-

lies. Chapter 3 introduces a new analysis technique that combines static and dynamic

WCET analysis, called CheckerMode [6, 7]. It explains the intricacies of the technique

and how the technique addresses timing anomalies. Chapter 4 discusses CheckerCore [8],

a technique that demonstrates the use of CheckerMode on an FPGA softcore. Chapter 5

compares CheckerCore, CheckerMode with static timing analysis technique.
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Chapter 2

Motivation and Related Work

2.1 Introduction

This chapter discusses some of the drawbacks of static and dynamic analysis tech-

niques. It introduces the concept of timing anomalies and domino effects. Timing anomalies

are a phenomena that complicates the analysis of WCET and renders existing static and

dynamic techniques useless. This chapter provides examples of anomalies and discusses why

existing techniques cannot handles anomalies. It also discusses research that addresses the

issues of timing anomalies.

Static timing analysis [9, 10] uses simulation without actually running the program.

Hence, it has difficulty dealing with dynamic components such as caches, branch predictors

and out-of-order components. However, researchers have found ways to analyze caches and

branch predictors using static techniques [11, 12]

Dynamic timing analysis [13] is typically considered unsafe. Wegener and Grocht-

mann [14] used evolutionary testing techniques to test temporal correctness and improve

safeness of timing bounds. A comparison of static timing analysis and evolutionary testing

is provided by [15].

Various tools and techniques used for timing analysis have been documented by

[16]. A major drawback of existing techniques is their inability to handle timing anomalies

(see below).
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2.2 Timing Anomalies

An anomaly is defined as a counter-intuitive behavior. A timing anomaly is a

phenomena in which a change in the execution time1 of an single instruction results in

counter-intuitive effects on the run time of the overall instruction sequence. It falsifies the

assumption that a local worst case (execution time of an instruction) always results in the

global worst case (run time of the program). As an example, a cache hit for a memory access

instruction in a sequence of instructions can result in an overall increase in the run time

of a sequence compared to a corresponding cache miss. This counter-intuitive behavior was

first demonstrated by Lundqvist and Stenstrom on a simplified Power PC architecture [5].

In their paper, they claim that out-of-order resources2 can cause timing anomalies. This

claim was removed from Lundqvist’s dissertation [17]. Wenzel et al. [18] show that timing

anomalies can even occur in processors having only in-order resources3.

2.2.1 Definition

Timing anomalies have been defined in a number of publications [5, 18, 19]. One

definition is provided here for reference.

Let ∆t be the change in execution time of an instruction. Let ∆T be the corre-

sponding change in the run time of the instruction sequence. A timing anomaly exists in

the following conditions:

1. if ∆t > 0 and

(a) ∆T > ∆t. The increase in instruction execution time has resulted in an even

greater increase in the run time of the sequence.

(b) ∆T < 0. The increase in instruction execution time has reduced the overall run

time of the sequence.

2. if ∆t < 0 and

1By execution time, we mean the time interval between the issue and the write-back stages of an instruc-
tion in the pipeline

2An in-order resource is one that is always allocated to instructions in program order. Allocation of
out-of-order resources need not follow program order

3Their model had two functional units, one serving a subset of the instructions served by the other
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(a) ∆T < ∆t. The reduction in execution time has resulted in an even lesser impact

on the run time.

(b) ∆T > 0. A reduction in execution time has increased the overall runtime of the

sequence.

Cases 1(a) and 2(b) result in increasing the run-time of the instruction sequence due to the

change in the execution time of the instruction. In such cases, the WCET estimate (found

using traditional methods) may no longer be safe. Please refer to section 2.2.4 for further

discussion on the topic.

2.2.2 Examples

Many publications have examples of timing anomalies [5, 17, 18, 19]. Here, I

provide examples of timing anomalies that affect WCET estimates.

Consider a processor with two functional units F1 and F2. F1 ⊂ F2, i.e., F2 can

execute a superset of the instructions that can be executed in F1.

Figure 2.1: Anomaly where ∆t > 0 results in ∆T > ∆t

Figure 2.1 shows a timing anomaly. It shows the execution of four instructions,

A, B, C and D. Instruction B can run only on F2, other instructions can run on F1 or

F2. Instruction B needs the result of A to execute and, similarly, D depends on C. All

instructions are dispatched at the beginning of cycle 1. Instructions can run whenever the

operands are ready and have available functional units. In cycle 1, A and C are issued to
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units F1 and F2, respectively. They finish execution in cycle 2 making operands ready for

instructions B and D, respectively. In cycle 3, B is issued to F2 (since it can run only on

F2) and D to F1. The sequence takes 5 cycles to execute. Now consider what happens

when A takes 3 cycles to execute instead of 2. The entire sequence takes 7 cycles. This is

an anomaly because an increase in the execution time of A by 1 cycle (∆t = 1) resulted in

the whole sequence taking 2 cycles (∆T = 2) more.

Figure 2.2: Anomaly where ∆t < 0 results in ∆T > 0

Figure 2.2 shows another anomaly. Here, reduction in the execution time of C by

1 cycle results in the whole sequence taking 1 more cycle to execute.

2.2.3 Domino Effects

Timing anomalies show that a change in the execution time of a single instruction

can impact the scheduling and, hence, the run-time of subsequent instructions in the se-

quence. However, does this impact have any upper bound? Stated another way, if we are

given a sequence of instructions and the range of execution times for each instruction in the

sequence, is there a way to figure out the maximum impact due to any timing anomaly that

may occur? If this question can be answered precisely, WCET can be estimated using tra-

ditional techniques and timing anomalies can be accounted for later on. Unfortunately, the

impact of timing anomalies cannot always be bounded, which is referred to as the domino

effect.
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A domino effect is a phenomena where a small interference at the beginning of a

sequence can result in an unbounded increase in run time. Lundqvist and Stenstrom [17]

were the first to give an example of a domino effect. Berg [20] showed that a small change

in cache state (and not necessarily the pipeline state) can result in domino effects. Domino

effects have an interesting side effect — the overall runtime of a loop cannot be extrapolated

using the run-time of the first few iterations of the loop. This is because a slight change in

instruction scheduling can affect the execution of the the rest of the loop.

2.2.4 Timing Anomalies and WCET analysis

Hitherto, I have defined and given examples of timing anomalies. In this section,

I will discuss the effects of timing anomalies on traditional WCET analysis methods.

Static timing analysis takes into account the architecture (pipeline) and the in-

struction set. Given a program (usually in assembly), the technique computes the WCET

by performing pipeline analysis at the instruction and the basic block level. Later, the

WCETs of the basic blocks are combined to provide the WCET of the entire program.

Also, whenever a variable latency instruction is encountered, its execution is emulated us-

ing its maximum latency. This follows from the assumption that the local worst case always

leads to a global worst case. Similarly, if a cache access cannot be classified as a hit or a

miss, a cache miss is assumed. It has to be noted that, because of the nature of the analy-

sis, these decisions are made at the instruction or basic block level. However, with timing

anomalies, the assumption is no longer true. It is impossible to determine the exact latency

of a variable latency instruction that results in the global worst case at the basic block level4.

Also, timing anomalies manifest at run-time and the impact may be enhanced by dynamic

scheduling decisions. Such considerations are beyond the scope of static analysis. Hence,

static analysis cannot provide safe bounds for architectures that exhibit timing anomalies.

Dynamic timing analysis also has issues addressing timing anomalies. For variable-

latency instructions whose execution time depends on the actual inputs, the analysis has to

not only consider all inputs but also all combinations of inputs. Cache states also impact

analysis. It has been shown that timing anomalies and and even domino effects can occur

as a result of cache behavior [5, 20]. Current dynamic analysis techniques, typically, do

not consider cache states while determining WCET. Hence, dynamic analysis falls short of

4The decision depends on all subsequent instructions.
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providing safe bounds on processors exhibiting anomalies.

2.3 WCET techniques to address anomalies

A lot of research has been done to provide safe estimates for out-of-order archi-

tectures. One approach is the use of a Virtual-Simple Architecture (VISA) [21]. In this

technique, any task that is run on the complex processor is divided into sub-tasks and dead-

lines for the sub-tasks are verified at run-time using checkpoints. If a checkpoint is missed,

the processor is likely to miss the deadline for the task, and hence, the out-of-order processor

is switched to a simple-mode within VISA. The simple-mode provides predictable execution

using an in-order pipeline. The WCET analysis for the task is performed on the simple

VISA pipeline using traditional static timing analysis technique. Hence, the approach pro-

vides predictable execution on out-of-order architectures effectively circumventing direct

WCET analysis on them.

Jack Whitham and Neil Audsley take another approach to predictable execution

on complex architectures [22]. In their technique, execution by an out-of-order processor

is made predictable through trace-based execution. During trace based execution, the

CPU is controlled by a Virtual Trace Controller (VTC). These and other architectural

enhancements avoid timing anomalies by eliminating sources of timing noise in the pipeline

making WCET analysis safe.

2.4 Summary

This chapter defined timing anomalies and provided some examples. It also dis-

cussed why existing techniques cannot provide safe bounds on processors exhibiting anoma-

lies. It also presents other approaches to analyze out-of-order processors. The next chapter

discusses a new technique that combines both static and dynamic analysis techniques and

addresses timing anomalies on processors with statically assigned resources.
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Chapter 3

Hybrid Timing Analysis through

CheckerMode

3.1 Introduction

The previous chapter discussed the drawbacks of static and dynamic analysis tech-

niques. This chapter presents a new technique, categorized as hybrid timing analysis, that

aims at addressing the drawbacks of static and dynamic analyses. Unlike static analysis,

the presented technique can analyze out-of-order architectures. Unlike dynamic analysis,

the technique can provide safe bounds. Also, the technique can analyze processors that

exhibit timing anomalies, if resources are assigned statically.

The thesis is a continuation of prior related work [6, 23, 7]. The rest of the chapter

is organized as follows. Section 3.2 provides an overview of the technique. Section 3.3

delineates my contributions from prior work. Section 3.4 states the assumptions. Section

3.5 discusses the desing and implementation. Section 3.6 discusses how timing anomalies

are handled by the technique. Section 3.7 discusses the WCET estimates obtained using

the technique.

3.2 Overview

The new technique is called hybrid timing analysis since it exhibits the character-

istics of both static and dynamic analyses. Like the dynamic analysis technique, the WCET
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is estimated by running the task on the actual processor. Like the static analysis technique,

hybrid analysis constructs control-flow graphs and uses them to direct the actual execution

on the processor ensuring that all paths are exercised before determining the WCET. This

ensures that the WCET is safe.

In order to estimate the WCET of a task, it is run on a special mode of the proces-

sor called CheckerMode. Running a task in CheckerMode is different from running it under

the normal deployment mode (the behavior of the processor is unaltered in the deployment

mode). CheckerMode supports timing analysis and requires certain architectural enhance-

ments (Section 3.5). In CheckerMode, all paths of the task are systematically executed

and timed one after the other. Specifically, whenever a conditional branch is encountered,

the processor executes (and times) both the taken and the not-taken paths. The alternate

paths are executed in isolation from each other using snapshots. Snapshots capture proces-

sor pipeline information. When alternate paths join, the pipeline snapshots at the join are

merged to produce a snapshot that depicts the effective processor state at the join. The

largest execution time up to that point and the merged snapshot are used for timing the

rest of the task.

Figure 3.1: A Simple CFG.

Example: Consider the control-flow graph shown in Figure 3.1. It shows four

basic blocks, 1, 2, 3 and 4. In order to time the graph, CheckerMode proceeds as follows.

Execution is started from the beginning of basic block 1 and a snapshot (S1) is taken. Now,



12

execution continues through one of the paths, say 1 →2 and another snapshot, S2, is taken

at the end of it. To time the other path, snapshot S1 is restored and execution is restarted

from the beginning of basic block 1. Restoring snapshot S1 ensures pathological timing

behavior. Execution continues down the other path, 1 → 3 and another snapshot S3 is

taken. Before proceeding through basic block 4, snapshots S2 and S3 are merged to obtain

snapshot S4. Now, snapshot S4 needs to be restored before continuing down basic block

4. The two paths are timed during execution, the longer of which is used for the WCET

estimate.

Figure 3.2: CheckerMode Block Diagram.

During the timing of the entire task, the CheckerMode is assisted by a timing

analyzer (TA) and a CheckerMode driver. Figure 3.2 shows the block diagram.

The setup consists of two parts, a TA and a CheckerMode processor. The TA is

shown on the left side of the block diagram. Given a task (program) in assembly1, it breaks

down the task into basic blocks2 and constructs control-flow graphs (CFGs). The TA uses

the CFGs and generates commands, which in turn drive the execution in CheckerMode, as

shown in Figure 3.1. The TA stores the snapshots in a snapshot buffer. It times the various

paths and derives the WCET estimate. The CheckerMode architecture is shown on the

1An executable can be disassembled and used to the same effect.
2A basic block is a sequence of code that has a single entry point and a single exit point with no jump

instructions in between. The exit point may be a control-transfer instruction (branch or jump). A basic
block can contain function calls.
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right side of Figure 3.2. It consists of a driver that uses the commands issued by the TA

and drives the processor pipeline. The pipeline itself is enhanced so that the it can capture

and restore snapshots. More details of CheckerMode operation are provided in Section 3.5.

3.3 Contributions of this thesis

Hybrid timing analysis using CheckerMode has been discussed in a number of

publications [6, 23, 7, 8]. This section delineates the contributions of this thesis from

existing work.

CheckerMode [6, 23, 7] devised the initial snapshot capture, restore and merge tech-

niques and proved that the technique preservers timing anomalies. This thesis continued

the work, completing the implementation of snapshot capture on the SimpleScalar simula-

tor.Snapshot merge and restore techniques were implemented. A command language, for

the interaction between the TA and CheckerMode processor, was developed. SimpleScalar

was transformed from a program-driven processor to one that responds to the command

language described in Section 3.5.2.

3.4 Assumptions

In this research, we are concerned with analyzing out-of-order pipelines. The

behavior of caches is known to affect WCET estimates of a task [20]. However, behavior

of caches or the complete memory hierarchy in general are not considered in this work.

Similarly, the effect of branch prediction is also not not analyzed. Tasks are analyzed in

isolation.

The WCET analysis is done during pre-deployment. Overall performance of the

hardware during timing analysis is not considered critical. On the other hand, we have

tried to keep the hardware enhancements to a minimum.

During normal execution, the pipeline is driven by the program and its inputs.

However, during timing analysis, instruction execution is controlled by the TA. Since the

TA exercises all alternative paths, the memory state of the program will not be consistent.

The semantics of all load instructions have been changed so that all load instructions fetch

NaNs from memory (only during the analysis phase). The behavior of store instructions is
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not modified. It has to be noted that we are only concerned about the timing behavior of

the program (during analysis) and not about its logically-correct behavior (in terms of I/O

relations). The program needs to be tested for its logical correctness independent of timing

analysis.

3.5 Design and Implementation

This section discusses the design and implementation of the hybrid timing analysis

technique. Section 3.5.1 discusses the architectural changes required to support Checker-

Mode execution on an out-of-order processor. Section 3.5.2 discusses the timing analyzer

that generates commands for obtaining WCET bounds.

3.5.1 Hardware Enhancements: CheckerMode

As stated earlier, during timing analysis, the program analyzed is run in a special

mode of the processor called CheckerMode. Any inputs that the program takes are deemed

unknown and conceptually denoted as a special top value, NaN (not-a-number), similar to

the special value used in floating-point units. If one operand of an instruction is unknown,

the result is unknown. For example, multiply is redefined as follows:

rresult{
NaN if ra=NaN or rb=NaN
ra∗rb otherwise (3.1)

The reason for using NaNs become apparent while analyzing variable latency in-

structions (instructions whose execution time depends on their operands). Pathological

timing behavior is enforced on variable latency instructions operating on NaNs so as to

ensure safe WCET bounds.

During timing analysis, certain paths in the program are executed more than once,

and sometimes in an order not intended by the programmer. In Figure 3.1, basic block 1

is executed twice, once before the taken path and once before the not-taken path. As a

result, the memory state of the program is not coherent with its control flow. To ensure

pathological timing behavior, the load instructions were modified to always fetch NaNs

from memory. The behavior of stores was not modified. It has to be noted that we are

only concerned about the temporal behavior of the program and not its logically correct

behavior (in terms of I/O relation) during analysis.
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During CheckerMode execution, the control flow is determined by the TA and

not the program’s inputs. The behavior of certain control-transfer instructions (conditional

branches) were modified appropriately.

At the core of hardware enhancements is the ability to capture, restore and merge

snapshots. As stated before, a snapshot saves processor state along with some timing

information. A snapshot

1. preserves structural and data dependencies across instructions belonging to adjacent

basic blocks;

2. preserves timing anomalies and pathological timing behavior for static resource as-

signments;

3. provides path isolation while running alternate paths; and

4. reduces the number of combinations of paths that need to be timed in order to deter-

mine the WCET of a task.

Above, 1 and 2 are very much interrelated. Timing anomalies can be preserved

by maintaining structural and data dependencies across instructions belonging to different

basic blocks. More information about preserving timing anomalies is provided in Section

3.6.

Details of the snapshot capture, restore and merge have been published earlier [23,

7]. There is some overlap in the concepts presented, mainly for completeness of discussion.

However, the discussion provided in this thesis is more relevant to the SimpleScalar pipeline.

Snapshot Capture

It was stated earlier that snapshots contain pipeline state and timing information.

The state information includes the following:

• the PC at which the snapshot is taken;

• the state of the register file; and

• the processor cycle at which the snapshot is captured. The cycle time is used for

bounding the WCET.
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Additionally, the state information may contain any other architecture specific information

that is used to restart execution form the snapshot. For example, for SPARC architecture,

this includes the state of the register window mechanism.

The timing information in the snapshot is captured using a minimally intrusive

procedure called the Drain-Retire (DR) technique. Instead of capturing the state of each

instruction in each stage of the pipeline (which would be very intrusive), the DR-technique

captures only the retire times of each instruction. An example makes the idea clear.

Figure 3.3: Analysis Model for the DR technique

Figure 3.3 shows a pipeline that is fetching instruction r. Let instruction q be the

first instruction that is exiting the pipeline (retiring) at the same clock cycle. Instruction p

has already retired and is max instructions apart from r. Here, max denotes the length of

the pipeline. p is the oldest instruction that can affect the execution of r in the pipeline.

No instruction (dynamic) before p can still be in the pipeline. If any instruction before p

were to be still in the pipeline, r could not have been fetched due to structural hazards.

To capture the snapshot at instruction r, the DR technique stops instruction fetch after r

and saves the retire times of all instructions q through r. The technique records the retire

time stamps of at most max instructions. Figure 3.4(a) shows a graphical representation
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(a) Pipeline diagram for DR (b) Retire Reservation Station

Figure 3.4: Drain Retire Technique for Snapshot Capture

of the data captured by the DR technique. Figure 3.4(b) shows the actual data structure,

referred to as the retire reservation station.

Structural and Data Dependencies

The snapshot capture and restore mechanism has to maintain structural and data

dependencies across instructions belonging to different basic blocks so as to keep the WCET

estimates safe. An example makes the point clear. Consider Figure 3.6. It shows instruc-

tions p and q belonging two different basic blocks A and C, respectively. Let q be data

dependent on p. During normal execution, q stalls in the pipeline until p completes execu-

tion. Let ta, tb and tc be the WCET estimates of the basic block A, B and C, respectively.

Combined WCET of basic blocks A and C, without considering the stall time of

instruction q then amounts to:

(T1) = ta + tc (3.2)

Combined WCET of basic blocks A and C, taking q ’s stall time into account is:

(T1
′

) = ta + tc + δ (3.3)
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Figure 3.5: Dependencies.

Combined WCET of basic block B and C is:

(T2) = tb + tc (3.4)

Overall, WCET bound depends on q ’s stall time if:

T1 < T2 < T1
′

(3.5)

Equations (3.2), (3.3), (3.4), (3.5) build up a specific situation when the WCET

estimate would be incorrect if the data dependency between p and q is not captured. Also,

it has to be noted that the same example would hold if there were to be a structural

dependency between p and q instead of a data dependency. Hence the snapshot capture

technique must account for structural and data dependencies.

Capturing Structural Dependencies

In order to capture structural dependencies, a data structure called Issue Reserva-

tion Station, shown in Figure 3.6(a)3 is used. It captures the utilization of each functional

unit per instruction. One drawback of the design is that the program counter (PC) is used

3The numerical values used in the example are contrived.
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(a) Issue Reservation Station (b) Register Reservation Station

Figure 3.6: Capturing Structural and Data dependencies

to identify instructions. As a side effect, it is not possible to distinguish between different

dynamic instances of a single instruction in a loop. The TA will have to run only one

iteration at a time. This design was chosen in order to keep hardware extensions to a

minimum.

Capturing Data Dependencies

Data dependencies are tracked using a data structure called Register Reservation

Station shown in Figure 3.6(b)3. This data structure stores, for each register, the instruction

that updates the register (PC) and the register write cycle. In architectures that use register

renaming [24], this data structure maintains one entry for each logical register instead of

for each physical register 4.

To summarize, the snapshot capture mechanism records:

• the PC at which the snapshot was captured;

• the snapshot capture cycle;

• register file state at the end of Drain-Retire;

4During the Drain-Retire snapshot capture, the pipeline gets drained and all the logical registers get
updated. Hence, it suffices to save the information for the current set of logical registers.
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• retire times of all instructions in the pipeline (using the DR technique);

• functional unit usage times of the same set of instructions (captures structural depen-

dencies); and

• register usage information that can determine any data dependencies with future

instructions that enter the pipeline.

Snapshot Restore

It was stated earlier that a snapshot

• preserves structural and data dependencies across instructions belonging to adjacent

basic blocks; and

• preserves pathological timing behavior.

The snapshot restore mechanism uses the information recorded in the snapshot to

enforce the above conditions. Consider Figure 3.3. It has to be noted that the snapshot

capture mechanism has recorded the retire times, functional unit usage times and register

usage times of all instructions, q through r. The idea is to delay the execution of instructions

following r such that any potential structural and data hazards are maintained. This is

enforced by restarting execution from the previous snapshot5 and carefully replaying the

execution of instructions from q through r using the snapshot information. Specifically,

instructions from q through r are not allowed to exit the reservation stations earlier than as

specified by the snapshot. The instructions cannot use the register values earlier than, as

recorded in the snapshot. Instruction retire time-stamps are also enforced6. The snapshot

restore mechanism requires hardware modifications to manage the instruction flow in the

pipeline as specified by a snapshot.

Some readers may question as to how the restore mechanism is much different com-

pared to simply restarting execution at an earlier point and continuing normal instruction

execution down a specific path. There are two key differences.

5Execution may be restarted from instruction q. However, since the timing analysis is being performed
on an out-of-order architecture, restarting from q may result in loose bounds. Execution is restarted from
the previous snapshot, enabling the pipeline to fill up while the snapshot instruction is reached.

6The retire times maintain structural hazards of re-order buffer (ROB) usage
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• Snapshot/restore preserves pathological timing behavior. Between the initial run and

the replay, the pathological case is automatically considered for the WCET estimate.

• More importantly, once the snapshot information is captured, it may be altered (say,

by a snapshot merge technique explained below) and the restore mechanism will ensure

reliable replay as defined by the new snapshot. The snapshot merge technique enables

snapshot restore at join points as shown in Figure 3.1.

Snapshot Merge

Figure 3.7: Merge of two paths

Consider Figure 3.7. Paths blocks A and B end with Snapshots SA and SB respec-

tively. Before continuing execution of instructions from path C, SA and SB are merged to

produce snapshot SM . The merge technique will combine the pipeline timing information

from the two snapshots. The restore of snapshot SM ensures that, while executing instruc-

tions from path C, the structural and data dependencies from either paths (A and B) are

maintained. The snapshot merge technique has been proved to preserve timing anomalies

[23, 7].

The thesis describes the merge of retire reservation stations, issue reservation sta-

tions and register reservation stations for completeness. More information about snapshot

merge can be obtained from [23, 7].

Drain-Retire Merge

The merge of two retire reservation stations follows a simple algorithm described

below.

1. Find a set A of instructions that retire the earliest in one reservation station.
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Figure 3.8: Drain-Retire Merge

Figure 3.9: Merging Issue Reservation Stations

Figure 3.10: Merging Register Reservation Stations



23

2. Find a set B of instructions in the other reservation station that retire earliest (among

all instructions in the second reservation station). Each set will contain a minimum

of one instruction.

3. The union of the sets A and B now retire at the maximum of the two retire times in

the merged reservation station.

The above set of steps are applied until no instruction is left in either reservation station.

An example is provided in Figure 3.8.

The above algorithm ensures that when the merged snapshot is restored (figure

3.7), instructions from path C are automatically delayed until the longer of the paths

complete.

Merging Issue Reservation Stations

Merging of issue reservation stations is best demonstrated by an example (Figure

3.9). The maximum entry cycle and maximum exit cycle for each reservation station entry

is used in the merged result.

Merging Register Reservation Stations

Figure 3.10 shows the merge of two register reservation stations. The later of the

update times of each register is used in the merge result.

3.5.2 Timing Analyzer

The previous section (3.5.1) discussed hardware enhancements for timing analy-

sis. This section discusses the software that enables analysis. During normal execution (in

deployment mode), the processor is driven by the input program and its control flow. In

CheckerMode during analysis, it is the TA that drives the control flow. The TA divides

the program into basic blocks and constructs Control Flow Graphs (CFGs) of the program.

Using the CFGs, the TA sends commands to the CheckerMode driver to execute specific

paths of the program separately. The execution times of sub-paths are combined to gen-

erate the WCET estimate. Figure 3.11 shows an input program, its basic blocks and the

corresponding CFG.
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Figure 3.11: A Program and its CFG
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Interaction Between the timing analyzer and CheckerMode Driver

Using the CFG, the TA sends commands to the CheckerMode driver. The driver

executes the commands using the CheckerMode hardware and sends back the results. The

results are used for the WCET estimate. This section discusses the command language that

is used for communication between the TA and the CheckerMode driver.

Commands can be classified into two groups:

(I) Setup Commands: These commands populate the pipeline. No instructions are

executed in the pipeline as a result of these commands.

(II) Execution Commands: These commands trigger execution of instructions from the

current state of the pipeline. The state itself is only influenced by setup commands. Results

from the execution are returned to the TA.

Setup Commands

The setup commands are:

1. put snapshot <Snapshot ID>: This command restores a snapshot. The snapshot

to restore is identified by a unique snapshot ID. If the snapshot is not cached by

the CheckerMode driver, the CheckerMode driver obtains the snapshot from the TA

which has a larger buffer that stores all previous snapshots.

2. put timing <Snapshot ID>: This command replays a snapshot identified by

<Snapshot ID>. If the snapshot is not cached by the CheckerMode driver, it is

obtained from the TA.

3. put PC <Branch PC><Next PC><T/NT>: This command overrides the

outcome of control flow instructions and thereby forces branches to evaluate such

that control flow is directed along the desired path. It has three arguments: the

branch PC, the PC of the target instruction and the branch outcome — taken/not

taken.

These commands can be issued once they are interpreted in a sequential manner.

Multiple “put PC” commands may have to be issued to steer the pipeline through a partic-

ular path in the program. Also, multiple “put timing” commands can be issued to replay a

sequence of snapshots.
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Execution Commands

These commands result in execution of instructions through the pipeline.

1. get snapshot <Snapshot PC>: The command captures snapshots. It initiates

execution from the current “state” of the pipeline. The “state” itself is affected by

the commands above. When <Snapshot PC>is fetched from the instruction stream

a snapshot is captured and returned to the TA. Note that a PC specification does

not uniquely identify a single point during program execution. PCs repeat iteratively

within loops or when functions are called at different call sites (or within loops).

However, snapshots have to be uniquely identified with points during program execu-

tion. This is realized by ensuring that all “put PC” commands are completed before

a unique point in execution is reached and a snapshot is captured. For example, in

order to take a snapshot at the beginning of the third iteration of a loop the “put

PC” command is issued twice before the “get snapshot” command. The two “put

PC” directives steer execution into the third iteration of the loop before a snapshot

is captured.

2. get timing <PC1><PC2>: This command captures execution times for program

paths. Execution of instructions is initiated from the current “state”. Subsequently,

the time taken to execute all instructions between the specified PCs (and hence for

that particular path) is returned to the TA.

3.6 Timing Anomalies and Hybrid Timing Analysis

Chapter 2 discussed the drawbacks of static and dynamic timing analysis tech-

niques. One of the major drawbacks was the inability to safely bound WCETs on processors

exhibiting timing anomalies. Detailed proofs have been published [23, 7] that show that

the snapshot capture, merge and restore techniques used in the analysis preserve timing

anomalies. This is achieved by capturing structural and data dependencies across instruc-

tions belonging to different basic blocks. By preserving the timing anomalies, the analysis

technique ensures that the effect of any existing timing anomaly is reflected in the WCET

estimate.
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However, the technique has a drawback. NaNs were introduced to handle the

timing behavior of variable latency instructions. Variable latency instructions with NaN

operands are forced to exhibit pathological timing behavior during analysis. This is done

in order to ensure safeness of the WCET bound. However, such a mechanism is a classic

example of the assumption that a local worst case leads to a global worst case, and may

produce unsafe bound in the presence of timing anomalies.

One way to solve the issue is to ensure static allocation of resources: each in-

struction in the program has to be allocated statically to the same functional unit across

multiple executions of the program. The solution follows from the Resource Allocation

Criterion (RAC) [18].

3.7 Results

The hardware enhancements from Section 3.5.1 were made to a processor simulator

called SimpleScalar [25]. SimpleScalar supports both in-order and out-of-order execution

of instructions. The processor features the PISA (Portable Instruction Set Architecture)

instruction set, which is similar to the MIPS ISA. The authors also provide a GCC cross

compiler for PISA and associated tools [26]. Enhancements were made to SimpleScalar to

capture snapshots, restore snapshots and merge them. SimpleScalar was also modified from

being program driven to being command driven.

The experimental setup is similar to the block diagram shown in Figure 3.2. The

TA generates the commands (Sections 3.5.2 and 3.5.2) and the CheckerMode infrastructure

executes the commands thus generating the WCET results. In order to restore a snapshot

(Section 3.5.1) at a particular point in the program, execution is restarted from an earlier

point and the snapshot at the point of restore is replayed. For the tightest bounds possible

using this technique, the point of restart should be far enough back to let the pipeline be

filled completely with instructions by the time the restore point is reached. However, in

this section, we restart execution from the previous snapshot for simplicity. Also, there is

no static allocation of instructions to functional units as noted in Section 3.6. Hence, the

current implementation does not preserve all anomalies.

WCET bounds were computed for 5 benchmarks – simple, toy, cnt, factorial and

fibonacci. simple is a synthetic benchmark comprised of an if-then-else block. It is the
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simplest benchmark to exercise the snapshot merge. toy consists of an if-then-else block

with a simple loop in the else block. cnt counts the number of positive and negative integers

in an array of size 10. factorial calculates 5! and fibonacci determines the Fibonacci number

of 30. cnt, factorial and fibonacci are from the C-Lab benchmark suite [27].

SimpleScalar has separate instruction and data caches at L1 stage and a com-

bined L2 cache. Both were disabled as cache behavior is beyond the scope of this work.

SimpleScalar uses dynamic branch prediction and speculative execution, which are again

non-deterministic. Since there is no simple way to turn off branch prediction, perfect predic-

tion was used. Perfect prediction works by obtaining the branch targets from a functional

simulator (within SimpleScalar) that runs ahead of the timing simulator.

Table 3.1 shows the WCET bounds for each benchmark. The benchmarks were

run in both in-order and out-of-order configurations of the simulator. Each row in the table

specifies a particular configuration. For example, row 1 (inorder2) lists the results for an

in-order configuration with a pipeline width of 2, i.e., the fetch rate, the dispatch rate, the

issue width and the retire width were all set to 2. Similarly, row 4 shows results for an

out-of-order configuration with a pipeline width of 4. All configurations use an ROB of size

64 and an issue queue of size 16.

Table 3.1: WCET bounds on CheckerMode

Configuration simple toy factorial fibonacci cnt

inorder2 444 482 498 484 1425

inorder4 420 455 475 432 1272

inorder8 416 453 471 429 1189

outorder4 202 223 180 199 578

outorder8 194 215 171 179 566

In general, the execution bounds for out-of-order execution are considerably smaller

than the corresponding in-order execution bounds. This is rather intuitive. However, we

now have a technique that can provide safe bounds on out-of-order architectures when

static allocation of instructions to execution units is enforced. As the width of the pipeline

increases, the WCET bounds become smaller. However, the decrease in WCET bounds

may be less than expected. This is an effect of the merge technique that enforces harsh

constraints for instructions right after join points.
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It may be noted that the WCET bound for cnt is considerably larger than that

of other benchmarks. The CFG of cnt features an if-then-else path within a loop requiring

a merge at the end of each iteration. Such a CFG can be considered as a worst-case input

for our analysis technique. Consequently, our technique produces relatively loose WCET

bounds for such input program.

3.8 Summary

This chapter discussed Hybrid Timing Analysis through CheckerMode. It dis-

cussed hardware enhancements required to enable the analysis. It also discussed the addi-

tional software used to support analysis. It provided a brief description of the interaction

between the hardware and software components. It then discussed results of the WCET

estimate obtained using the technique.
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Chapter 4

CheckerCore: Enhancing FPGA

Softcore for WCET Analysis

4.1 Introduction

The previous chapter discussed hybrid timing analysis through CheckerMode. One

of the criticisms of CheckerMode has been that the enhancements are made to a processor

simulator. Mohan’s dissertation [7] discusses the feasibility of hardware enhancements to

modern processors. To make a more convincing arguments about the plausibility of the

CheckerMode approach, researchers at Penn State University (PSU) and North Carolina

State University (NCSU) worked on an FPGA Soft Core enhancement that can perform

WCET analysis. Work on the FPGA soft core was done at PSU and the software compo-

nents were developed at NCSU. This chapter gives an overview of the methodology without

going into the implementation details of the hardware. For a more detailed discussion, the

readers are referred to [8]. The chapter is organized as follows. Section 4.2 gives an overview

of the CheckerCore system. Section 4.3.1 discuss the WCET analysis results.

4.2 Overview of CheckerCore

Figure 4.1 shows a block diagram of CheckerCore. It looks very similar to the block

diagram of CheckerMode. The principle parts of CheckerCore are a front-end component,

also referred to as timing analyzer (TA), and the back-end component, CheckerCore. The
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Figure 4.1: CheckerCore framework

TA is responsible for deriving the WCET of a program. It uses the program disassembly

to construct a control flow graph (CFG). The CFG is then used to drive the back-end to

measure the timing of all paths of the program. These timing values are combined to find

the longest path(s) in the program and then derive the overall WCET. The back-end is

a physical processor with support for a CheckerMode whose purpose is to support check-

pointing and restarting executions while preserving timing. In this paper, such a mode was

implemented within CheckerCore, an extension to an FPGA soft-core.

The TA used here is essentially the same that was used with the CheckerMode sim-

ulator, except for minor modifications. The CheckerMode, built on top of the simplescalar

simulator runs PISA instruction set. The FPGA softcore ran SPARC instructions. Hence

the TA was enhanced to work with SPARC programs. The standardized communication

API 3.5.2 was useful here.

The back-end is a mode-enhanced SPARC v8 soft core processor synthesized on

an FPGA. An open-source implementation of the SPARC V8, Leon 3 developed by Gaisler

Research, was used. It has a 7-stage in-order pipeline. A in-order pipeline was chosen to

keep the implementation simple. Hardware enhancements to the processor include a shadow

pipeline that is an extension to the original pipeline stages used to capture snapshot details,

a synchronization logic that coordinates the instruction flow in both pipelines, a timer block

used during capturing and restoring snapshots, a centralized Checker Core Controller that
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drives the hardware during WCET analysis, and a snapshot buffer that caches snapshots.

4.3 Experiments and Results

4.3.1 Experimental Setup

The baseline architecture is configured to support the full SPARC V8 specification,

except for co-processor and floating-point instructions. Both the I-cache and D-cache are

also turned off and, as explained previously, we stall all memory instructions for a pre-

programmed number of cycles. Cache and memory analysis is orthogonal to our framework

and can be added as part of future work.

The enhancements applied to the baseline architecture and implemented on a Xil-

inx ML505 FPGA evaluation board, which hosts a Xilinx Virtex 5 FPGA chip (XC5VLX110T).

We connect the board to a computer using the 10/100 Mbps Ethernet physical interace and

use the Ethernet debug interface shown in Figure 3.2 for communication between the front-

end and the back-end.

WCET Estimation Results

We derive the WCET estimation of 6 benchmarks. (Table 4.1): simple and toy are

synthetic benchmarks that we constructed; cnt, bs, factorial, and fibonacci are from C-Lab

benchmark suite [27]. Benchmark simple has only an if-then-else block. It is the simplest

benchmark that exercises our merge algorithm. Benchmark toy has a simple if-then-else

block and a loop of 10 iterations within the else block. The CFG of toy is a bit more

complex than simple but requires fewer snapshot merges than cnt. Benchmark cnt finds

the sum of positive and negative numbers in an array of size 10. Benchmark bs is a binary-

search in an array of size 15 elements. Benchmark factorial finds 5! using an iterative loop.

Benchmark fibonacci finds the fibonacci number of 30 using an iterative loop. To execute

each benchmark, we first fast-forward to the start of the “main” function, and then start the

process of capturing the WCET until the end of that function. Fast-forwarding is enabled

by CheckerCore. A new command to initiate fast-forwarding is added to the driver besides

those mentioned in the command language API (Section 3.5.2).

Table 4.1 lists the results (worst execution cycles) for each benchmark. In our

experiments we varied the programmed memory stall cycles, and for each value we obtain a
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set of results to study the impact of memory latency. Rows 2-5 of the table show four sets

of results corresponding to the memory stall cycles of 0, 8, 16, and 32, respectively. This

is carried out for all six benchmarks. We notice that for all the benchmarks the WCET

increases, as expected, with the increased memory latency.

Table 4.1: WCET bounds on CheckerCore

Stall
simple cnt bs factorial fibonacci toy

Cycle

0 173 6610 2029 467 623 2139

8 188 7258 2134 563 886 2434

16 224 8500 2682 722 936 3022

32 309 11484 3874 1066 1336 4189

We see that CheckerCore is able to calculate the WCETs for embedded benchmarks

without requiring the use/development of a timing accurate simulator. This also shows that

the proposed architectural enhancements are realistic and impose low overhead.
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Chapter 5

Conclusion

Static timing analysis provides safe and tight bounds for simple in-order pipelines

but fails for more complex processors with out-of-order and speculative execution. Dynamic

timing analysis can analyze such complex processors but fails to provide tight bounds.

Neither of the analysis techniques is applicable to processors that exhibit timing anomalies.

This thesis discusses a hybrid timing analysis technique that aims to provide safe and tight

bounds for complex out-of-order processors that exhibit timing anomalies.

Hybrid timing analysis technique involves both hardware and software enhance-

ments. Hardware enhancements included the ability to:

• capture, restore and merge snapshots; and

• steer execution by a combination of control-transfer instructions and external com-

mands.

The software, also called the timing analyzer, divides the program into control-flow

graphs and uses them to systematically execute and time alternative paths in the program

to calculate the WCET bounds.

In order to make a more convincing arguments about the plausibility of the Check-

erMode approach, the thesis demonstrated timing analysis using CheckerCore, a mode en-

hanced FPGA soft-core.

Hybrid timing analysis through CheckerMode is not without drawbacks. Even

though the snapshot capture, restore and merge techniques have been proved to preserve
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timing anomalies, the handling of NaNs in the pipeline may result in unsafe bounds in the

presence of anomalies. One solution to this problem has been discussed.

The thesis demonstrates that, through careful design of hardware enhancements

and software techniques, safe and tight timing analysis on complex processors that exhibit

timing anomalies becomes feasible.
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