
ABSTRACT

VOUK, NIKOLA. Buddy Threading in Distributed Applications on Simultaneous

Multi-Threading Processors (Under the direction of Dr. Frank Mueller)

Modern processors provide a multitude of opportunities for instruction-level parallelism

that most current applications cannot fully utilize. To increase processor core execution efficiency,

modern processors can execute instructions from two or more tasks simultaneously in the functional

units in order to increase the execution rate of instructions per cycle (IPC). These processors imple-

ment simultaneous multi-threading (SMT), which increases processor efficiency through thread-level

parallelism, but problems can arise due to cache conflicts and CPU resource starvation.

Consider high end applications typically running on clusters of commodity computers. Each

compute node is sending, receiving and calculating data for some application. Non-SMT processors

must compute data, context switch, communicate that data, context switch, compute more data, and

so on. The computation phases often utilize floating point functional units while integer functional

units for communication. Until recently, modern communication libraries were not able to take

complete advantage of this parallelism due to the lack of SMT hardware.

This thesis explores the feasibility of exploiting this natural compute/communicate par-

allelism in distributed applications, especially for applications that are not optimized for the con-

straints imposed by SMT hardware. This research explores hardware and software thread syn-

chronization primitives to reduce inter-thread communication latency and operating system context

switch time in order to maximize a program’s ability to compute and communicate simultaneously.

This work investigates the reduction of inter-thread communication through hardware synchroniza-

tion primitives. These primitives allow threads to ”instantly” notify each other of changes in program

state. We also describe a thread-promoting buddy scheduler that allows threads to always be co-

scheduled together, thereby providing an application the exclusive use of all processor resources,

reducing context switch overhead, inter-thread communication latency and scheduling overhead. Fi-

nally, we describe the design and implementation of a modified MPI over Channel (MPICH) MPI

library that allows legacy applications to take advantage of SMT processor parallelism. We con-

clude with an evaluation of these techniques using several ASCI benchmarks. Overall, we show that

compute-communicate application performance can be further improved by taking advantage of the

native parallelism provided by SMT processors. To fully exploit this advantage, these applications

must be written to overlap communication with computation as much as possible.



Buddy Threading in Distributed Applications on Simultaneous
Multi-Threading Processors

by

Nikola Vouk

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial satisfaction of the
requirements for the Degree of

Master of Science in Computer Science

Department of Computer Science

Raleigh, North Carolina

2005

Approved By:

Dr. Vincent Freeh Dr. Michael Rappa

Dr. Frank Mueller
Chair of Advisory Committee



ii

Biography

Nikola Vouk was born on April 11th, 1980. Born in Zagreb, Croatia, he moved with his

family to Raleigh, North Carolina at the age of 5. He received a Bachelor of Science in Computer

Science from North Carolina State University in 2001, and continued his graduate studies at the

North Carolina State University in Fall of 2002. With the defense of this thesis, he will receive a

Master of Science in Computer Science degree from NCSU in May 2005.



iii

Acknowledgements

I would like to thank my parents, Mladen and Maja, for being the best parents and for

supporting me throughout my school years. I would like to thank Dr. Michael Rappa for his

overwhelming support, generosity, faith and encouragement. I would like to especially thank my

advisers Dr. Frank Mueller and Dr. Vincent Freeh for their invaluable advice and guidance.

Finally, I would like to thank all of my friends: Richard, Josh, Reid, Ben, my brother Alan,

and especially Meeta Yadav for being very kind, supportive, helpful and encouraging. Without all

of you, this thesis would not have been possible.



iv

Table of Contents

List of Figures vi

List of Tables viii

1 Introduction 1

2 SMT Architecture 5
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Processor Architecture Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Pentium 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 IBM Power 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Operating System Support for SMTs . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 CMP and SMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Hardware Synchronization 16
3.1 Current Thread Synchronization Primitives . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Blocking Synchronization Primitives . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Scheduler Assisted Promotional Buddy Threading 30
4.1 Technical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Linux Kernel Buddy Threading Kernel Modification . . . . . . . . . . . . . . . . . . 31

4.2.1 Kernel Buddy System Specification . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Buddy Threading Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Promotional Buddy Scheduling and the Standard Kernel Thread Facilities . . . . . . 38
4.5 Buddy Scheduling for MPICH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 MPICH MPI Communication Library 40
5.1 Asynchronous/Synchronous and Blocking/Non-Blocking Functions . . . . . . . . . . 40
5.2 MPICH Channel P4 Code Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Modified Code Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3.1 MPICH Re-Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4.1 Synthetic Benchmark Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



v

6 ASCI Purple Benchmarks 50
6.1 Implicit Radiation Solver (IRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2 SMG2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2.2 Messaging Profile and Execution Analysis . . . . . . . . . . . . . . . . . . . . 53

6.3 sPHOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.4 SPPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.4.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.5 Sweep3d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.5.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Benchmark Evaluations 60
7.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2 Benchmark Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.2.1 IRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2.2 SMG 2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2.3 sPHOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.2.4 sPPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.2.5 Sweep 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8 Related Work 72

9 Conclusions 74

10 Future Work 76

A Build Environment Instructions 77
A.1 How to use this repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.3 Setup benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.4 Compiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.5 Distributed Compiling: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.6 Testing benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.7 Miscelanious Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Bibliography 83



vi

List of Figures

2.1 P4 SMT Internal Structure (After [BHMU02]) . . . . . . . . . . . . . . . . . . . . . 10
2.2 Power 5 processor Internal Structure (After [RKT04]) . . . . . . . . . . . . . . . . . 11

3.1 Basic Spin-Lock Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 MWAIT/MONITOR Kernel Internal Memory Design . . . . . . . . . . . . . . . . . 18
3.3 MWAIT/MONITOR System Call User Space Memory Design . . . . . . . . . . . . . 19
3.4 MWAIT/MONITOR Call User-Space Memory Design . . . . . . . . . . . . . . . . . 20
3.5 Synchronization Primitive Notify and Wait() . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Synchronization Primitive Call Overhead . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7 Synchronization Primitive Latency Test . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8 Synchronization Primitive CPU Impact: . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Promotional buddy-scheduler Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Promotional Buddy Scheduling Evaluation Kernel . . . . . . . . . . . . . . . . . . . 35
4.3 Synchronization Primitive Latency vs Number of Background Tasks . . . . . . . . . 36

5.1 Original MPICH Code Structure - High Level Design . . . . . . . . . . . . . . . . . . 41
5.2 Isend Message Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 MPICH Modification High Level Design . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 MPICH Isend overhead benefit measured in floating point operations not running in

KML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5 MPICH Isend overhead benefit measured in floating point operations with KML priv-

ileges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.6 MPI Isend() Test Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1 IRS Communcation (After [VY02]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2 SMG2000 Communcation (After [VY02]) . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3 sPHOT Communication (After [VY02]) . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.4 sPPM Communication (After [VY02]) . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.5 Sweep3D Communication (After [VY02]) . . . . . . . . . . . . . . . . . . . . . . . . 59

7.1 IRS Results (Time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2 IRS Results - Percentage Improvement over “Normal” . . . . . . . . . . . . . . . . . 62
7.3 SMG2000 Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.4 SMG2000 Results - Percentage Improvement over “Normal” . . . . . . . . . . . . . . 64
7.5 SMG2000 Results (Time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.6 sPHOT Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.7 sPHOT Results (Time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.8 sPPM Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



vii

7.9 sPPM Results (Time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.10 Sweep 3D Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.11 Sweep 3D Results (Time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



viii

List of Tables

2.1 Processor Resource Sharing Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Synchronization Primitives Notify() Call Overhead (lower is better) . . . . . . . . . 25
3.2 Synchronization Primitives Notification Latency Table (lower is better) . . . . . . . 26
3.3 Time to complete the fixed amount of work with interfering (lower times are better) 28

4.1 Promotional Buddy Scheduler Code Functions . . . . . . . . . . . . . . . . . . . . . 33
4.2 Zero Background Interference Tasks with Promotional Thread Scheduling . . . . . . 37

5.1 MPICH Channel Sending Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1 Benchmark Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



1

Chapter 1

Introduction

Transistor microprocessors have evolved through several distinct stages since the first suc-

cessful ones were built at Intel in 1971. Each new stage brought greater performance, higher clock

speeds, more dense circuitry and most importantly, greater efficiency in utilization of the whole

processor. In the beginning was the simple single-instruction scalar processor capable of process-

ing one instruction at a time. Hardware was very slow and software frequently had to wait for the

hardware to catch-up. Processors were then pipelined to prevent parts of the processor from remain-

ing unnecessarily idle when instructions were available to execute. In the 1980’s, supercomputers

improved on this single instruction execution by developing vector processing techniques (Single

Instruction Multiple Data) such as the Cray supercomputers. This allowed one instruction to oper-

ate on multiple memory values to improve efficiency. The Cray-1 introduced the next evolutionary

stage in processor design, super-scalar processors. This improved upon the basic processor by allow-

ing multiple instructions to be issued in every cycle, which improve single processor efficiency and

performance through parallelism. During the 1990’s, out-of-order execution super-scalar processors

improved primarily through die-shrinkage, processor clock increases and increased processor cache

size. Hoare, in his 1978 paper ”Communication Sequential Processes”, described how traditional

single sequential programs are sped up transparently through hardware (multiple functional units,

multiple processors) or software (I/O controllers and multiprogramming)[Hoa78].

Because most microprocessors had one program context to execute all threads and due

to the nature of current applications (word processors, web browsers, music players, Computer-

Aided-Design. programs, etc.), application were not able to utilize all the available resources. Even

those resources that were being used may be under-utilized due to memory stalls or dependences.

To combat this, the processor designers pushed efficiency improvement onto the compiler writers

with the very-long-instruction-word (VLIW) architecture and later the EPIC instruction set from

Intel[HMR+00]. The compiler was tasked with scavenging the program control-flow diagrams for

enough independent instructions to be encoded into a single long instruction word which the pro-
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cessor would then decode and process more efficiently because it has many instructions at hand

to execute in a given cycle. Unfortunately, the basic blocks in most programs are too small to

efficiently fill up the pipeline with VLIW instructions. The Intel Itanium processor (an EPIC in-

struction set processor) can encode eight instructions into one long instruction, but on average the

compiler is only able to schedule 3-4 instructions together and the remaining is filled with non-

operations (NOP). As Tullsen describes in his paper ’Simultaneous Multithreading: Maximizing

On-Chip Parallelism’, ”The objective of SM[T] is to substantially increase processor utilization in

the face of both long memory latencies and limited available parallelism per thread” [TEL95]. The

new bottleneck in microprocessor performance was not the hardware itself, but the code executing

did not have enough independent instructions to take full advantage of all the processor’s resources.

The Tera computer was one of the first supercomputers to attack this bottleneck[Wal91]. The Tera

computer implemented fine-grain multi-threading with multiple contexts, register files and re-order

buffers–one for each independent thread. An instruction is fetched from each context on every clock

cycle in a round-robin order. Each context’s state and instructions are independently tracked, and

only the currently selected context may execute instructions. This solved one problem – starvation.

If one process blocks, then another process can quickly issue instructions. But, this did not solve

under-utilization of cycles by processes. Thus, Herata et al. proposed a refinement to fine-grained

multi-threading called Simultaneous Multi-threading (SMT)[HKN+92]. SMT refines fine-grained

multi-threading to one set of functional units, re-order buffers and reservation stations while dupli-

cating the processor context (register file). Multiple threads can execute simultaneously onto the

same set of functional units. This allows for maximum efficiency by allowing any running process

to issue instructions when there is an available execution slot. The problem of processor starvation

has been solved by over-subscribing threads on the same hardware to take advantage of any slack

one thread may provide.

This thesis investigates thread scheduling and pairing techniques to take advantage of si-

multaneous multi-threaded processors. We study how simultaneous multi-threaded processors can

be used to improve performance of individual distributed applications by taking advantage of in-

herent program parallelism through SMT hardware’s explicit parallelism. We study how operating

system scheduling support and specialized CPU synchronization instructions can be used to reduce

operating system synchronization latency to improve performance in conjunction with application

parallelism. We show that using the low-latency Pentium 4 Prescott MWAIT memory monitor

instruction, we can improve inter-thread communication by 70% over traditional synchronization

methods during computation while simultaneously reducing CPU resource contention. In addition,

the operating system scheduler can reduce inter-thread-latency even further through thread promo-

tion buddy scheduling, whereby a given thread is paired with a ’buddy’ thread that is always run

alongside it on the same SMT processor. This provides up to 40% improvement in thread-response

for certain applications. We describe our modifications to the MPICH MPI communications library

to seamlessly divide the communication and computation operations, and we present our results
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showing 30% improvement in certain benchmarks.

To take advantage of the communication-computation parallelism, we exploit several asyn-

chronous and synchronous communication facilities provided by the operating system and the

MPICH communication library through blocking and non-blocking system calls. It is important

to distinguish the subtle differences between asynchronous and synchronous, and blocking and non-

blocking terminology. Andrews describes that ”with asynchronous message passing, communica-

tion channels are unbounded queues of messages where...[the] execution of send does not block the

sender”[And91]. The calling function is non-blocking. This allows the calling thread to continue its

execution even though the operation has not yet been completed by the function. The completion

of the non-blocking call is handled outside the scope of the requesting task (asynchronously) by the

operating system or another independent task. Synchronous calls are defined as subroutines that

retain control until the operation is fully completed. The caller can make no other progress in the

meantime[Mil87]. A blocking operation is synonymous with a synchronous operation, because both

block until their operation completes. Non-blocking operations are those defined to not block the

calling function while the operation completes.

Examples of each type are frequently found in modern operating systems. The most ba-

sic write() system call operation is a blocking subroutine that synchronously transfers data through

sockets to a receiver. Upon complete reception, the sender is able to progress. Failure in reception of

data will result in an error. A blocking asynchronous example is a simple server performing a listen()

awaiting new connections. The application blocks until some other process attempts to connect to

the sockets being listened to. The listen() then completes and returns to the caller. A non-blocking

synchronous operation does not make any practical sense, but non-blocking asynchronous functions

are common. A select() system call polling on a set of file descriptors only informs the calling

subroutine as to the number of ready sockets available. Select() does not wait for new connections.

The operating system servicing system interrupts is a completely asynchronous event as well as a

program servicing events.

Each of these examples lends itself to different amounts of parallelism that can be taken

advantage of with SMT processors. SMT architectures are best for non-blocking asynchronous

functions, such as servicing communication activity. We take advantage of SMT processors through

the MPICH communication library. The MPICH library is a synchronous library with limited

asynchronous capabilities. We modify it to become fully asynchronous and non-blocking to maximize

overlap of communication and computation and leverage the SMT microprocessor.

In our discussions regarding synchronization primitives (the MPICH library modifications

and the Promotional Buddy Scheduler), we will frequently refer to the interaction between a pair

of involved threads that have distinct names according to their purpose. Our modified MPICH

library is divided into two distinct threads: The computation thread and the communication thread.

Sometimes the communication thread is also referred to as the helper thread, because designed the
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MPICH modification such that the communication functions should be handled by a symbiotic

helper thread. In addition, the MPICH library supports a listener thread to handle notification of

new asynchronous data connections. These threads are actual executing tasks derived from the serial

MPICH library. Our synchronization primitive kernels will frequently refer to these threads, because

they were designed to model the functions used in our modified MPICH design. The Promotional

Buddy Scheduler is in no way related to our modified MPICH library, but our library can utilize it.

The Promotional Buddy Scheduler designates two tasks as buddies. The designating task is referred

to as the master control thread while any co-scheduled tasks are buddy tasks. The most common

usage of the Promotional Buddy Scheduler with the modified MPICH library is to designate the

computation thread as the master control task and the communication thread as the buddy task,

but buddying is not required. Finally, as the Linux kernel hardly distinguishes between processes

and tasks, in this document all references to processes, threads and tasks refer to individual kernel

scheduled entities known as tasks.

This thesis is structured as follows: In chapter 2, we summarize the history of SMT archi-

tecture and the current state of research. Chapters 3, 4 and 5 describe the MWAIT instruction as an

optimal synchronization primitive, changes to the operating system to support promotional buddy

scheduling and modifications to the MPICH library to split computation and communication in the

library, respectively. Chapter 6 describes each of the benchmarks, and chapter 7 presents results of

those benchmarks using the modified MPICH, thread synchronization and pairing techniques. We

then conclude our results in chapter 9, and finally describe related work and present plans for future

work.
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Chapter 2

SMT Architecture

Simultaneous Multi-threading, as a processor hardware technique for improving thread-

level parallelism, has been shown to increase processor efficiency (IPC), decrease memory latency,

provide application-specific performance effects and to side-step performance bottlenecks and their

solutions [TEL95, Luk99, LBE+98, ST97, OSU99]. Other novel techniques to take advantage of

SMT processores explore speculative pre-computation, improved branch prediction, task scheduling

policies and starvation prevention policies. Several competing processor architectures are available

that implement many of these techniques. We compare and contrast these architectures and conclude

by investigating a complementing technology, chip multi-processing, to consider future trends in

processor design [Luk99, WCT98, HPR+02].

2.1 Background

Scientific computing has improved the performance of parallel processing applications on

shared memory and massively distributed parallel architectures by increasing processor clock fre-

quencies and creating ever larger computing clusters. Power consumption, increasingly complex

processor designs and fabrications problems are limiting processor performance. As a result, re-

cent research has focused on making more efficient use of processors by placing multiple cores on a

single chip (Chip Multi-Threading) and multiple program contexts on a single core (Simultaneous

Multi-Threading), rather than increasing processor pipelines and clock frequencies. Simultaneous

Multi-threading was developed to counter inefficient use of processor resources on super-scaler pro-

cessors by a single program creating horizontal and vertical waste, which other processes could

utilize. Horizontal waste occurs when a processor is not utilizing all the functional units available in

a given cycle, because of not enough instruction-level parallelism in the task or ready instructions.

Vertical waste occurs when the processor pipeline stalls and zero instructions are issued to the pro-

cessor in a cycle. Tullsen shows how modern super-scaler processors with minimal extra hardware
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(additional process contexts, additional instruction-fetch unit logic and additional re-order buffer

(ROB) memory) can reduce horizontal and vertical waste of resources and hide memory latencies

through transparent hardware thread-level parallelism [TEL95]. Allowing a second task to execute

on the same processor core doubles the probability that there will be available instructions to issue

in any given cycle. Even if one task’s instruction stream has stalled on memory references, then the

overall IPC of the CPU will not drop to zero, because the stalled memory references’ latencies are

”hidden” by continued execution of other tasks’ instructions. SMT architectures have been shown

to have no lower IPC than that of single context superscalar processors and on average a higher IPC

[Ros05].

With increased processor utilization, issues like functional unit contention, cache collisions,

and starvation may arise. These could lead to individual application performance slowdown, but

overall faster execution for multiple processes. This is partly a result of programs being written with

the assumption that the L1 and L2 caches are not being shared with any other process simultaneously,

and until recently, neither were modern operating system schedulers written with those assumptions

in mind. Even with proper operating system schedulers, multiple independent computationally

intensive tasks that are running on the same CPU core simultaneously would experience slow-downs

individually[RKT04] [Ros05]. Multi-threaded applications benefit from an inherent shared memory

design, but its threads could be completely independent and act similarly to independent processes.

These individual processes will likely take longer to execute. They individually will not be able to

use all available cycles for themselves as a result of overlapping execution of multiple instruction

streams and memory latency hiding. Though, overall the programs would take a less total time to

run than if run serially. Threads of execution can take advantage of another thread’s memory stalls

to execute a few more instructions without having to wait for a timer interrupt and the resulting

context switch. Other benefits of the SMT architecture include the ability to hide memory access

latency and branch mis-prediction latency hiding. When an instruction stalls in the issue queue

due to a load miss, any dependent instructions are also stalled. Even with re-order buffers of 256

instructions in size, starvation could occur because of the memory wall [WM95]. Tullsen predicts

that re-order buffers need to be three times the size of their super-scaler counterparts in order for

four to eight contexts to provide enough independent parallelism without stalling[TEL95].

Tullson and Eggers pioneered the research on SMT processors [TEL95]. They showed that

individual processes might not always be able to issue to all functional units (horizontal waste),

nor issue any instructions in a given cycle due to delays (vertical waste). On average, the CPU

instructions per cycle (IPC) issued may be as low as 1.5 on an 8 issue super-scalar processor. Given

enough process instruction streams, they were able to get an IPC between 6 and 7 on an 8 issue

SMT super-scalar processor. It was shown that the limiting factors for SMT processors are issue

bandwidth and cache conflicts. Eight tasks, running simultaneously, can quickly overwrite each

other’s cache contents and cause extra cache misses. It is important for issue bandwidth to match

the number of functional units to maximize IPC and for the re-order buffer to grow accordingly, but
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with increased issue bandwidth and re-order buffer size comes greater cost and design complexity.

The current Pentium 4 Prescott is a four-issue, seven functional unit processor with a 128 entry

re-order buffer[Sto01]. The average IPC on this processor is between 0.5 and 1.5 IPC [Sto02].

It is important to distinguish several distinct strains of SMT processor research and their

usage. Some research studies the effects of natural thread-level interaction occurring when random

processes simultaneously execute. They want to know, in the general case, what improvements and

limitations the additional contexts impose and how best to utilize them. Other studies focus on

application-specific research, such as SMT performance on typical work loads of certain common

tasks to determine their optimal configuration and benefit, while others study alternative applica-

tions of the hardware independent of the overlying software. Examples include improving branch

mis-prediction and dynamic cache pre-fetching, which are two primary performance limitations of

super-scalar processors [Wal91].

Many of the application-specific studies have focused on multimedia workloads using video

and audio encoding. Lo et al. studied database workload behavior on SMT processors and con-

cluded that the processor memory hierarchy is the primary limiting factor for database workload

performance[LBE+98]. Databases do have enough inherent parallelism to support increased IPC

on SMT processors, but modifications in the application memory layout and access are required

to accommodate the shared memory nature of SMT processors. Chen et al. and Oehring stud-

ied multimedia applications and found that issue bandwidth, memory layout, and SMT-unaware

algorithms are the main limitations in achieving improved performance in multimedia workloads

[OSU99, YKME+02].

Another novel technique being studied is speculative pre-execution is a dynamic runtime

form of pre-fetching that attempts to preload the cache ahead of the primary thread by skipping

ahead of some instructions or functions [PSR00, HPR+02]. Speculative pre-execution can be per-

formed on a function level, intra-function or based on array access patterns. The run-time environ-

ment or compiler spawns a thread of execution that executes slightly ahead of the main execution

thread. It executes most of the program only cycles ahead of the original program to force unpre-

dictable cache misses to be prefetched. The primary thread would benefit hundreds of cycles later

by having that data in the local L1 or L2 cache. Some problems that can occur with speculative

pre-execution include: the threads becoming out of sync by speculative threads going too far ahead

of the main thread; Speculation of a wrong execution path; The speculation thread not far enough

ahead, or falls behind causing CPU and cache conflicts. We have tested speculative pre-execution

on the Pentium processor using a technique similar to Wang et al., and found that precise control

over thread timings and code specific anomalies made using this technique very difficult.[HPR+02]

The software implementation was too coarse that results in frequent run-behinds and run-aheads.

Hence, techniques and architectures like the slipstream processor and threaded multiple execution use

processor-level threading techniques to spawn speculative pre-execution threads[PSR00, WCT98].

A side effect of these speculative threading techniques is improved branch prediction. Because there



8

is a speculative thread, the processor can determine whether a particular branch will be taken ahead

of time. Speculative pre-execution threads execute hundreds or thousands of cycles ahead of the

main application to force cache load misses to be pre-fetched just-in-time. Both techniques proved to

have limited success, but complicated designs and a need for a large number of available contexts to

reap a benefit has kept speculative pre-execution experimental. Others have used similar threading

ideas for use in fault tolerance[RM00, VkPC02]. Currently, many fault tolerant computers replicate

whole chips, memory controllers, even motherboards, but researchers have been able to show that

SMT processors can be used for fault-tolerance purposes at the CPU level by running two copies

of the same programming and comparing results. By running multiple copies of a program slightly

offset from one another and comparing results of loads and stores, the processor can determine if

a transient error has occurred and correct for it. The trailing process also benefits from active

pre-fetching and temporal locality initiated by the leading pre-execution thread.

With many papers claiming cache contention as a primary reason for decreased program

performance, Gropp et al. and others studied cache effects on SMT processors[SDR01, OSU99,

TEL95, LBE+98]. They investigated dynamic cache partitioning algorithms with varying eviction

algorithms. They concluded that the cache hierarchy is the primary issue in making programs

perform well on SMTs, because of too many cache conflicts. But, they conclude that giving threads

private allocations of the cache does not improve performance of applications. Instead, threads

should have access to the whole cache, because an application’s working set of data is frequently

larger than the allotted cache size and could fill more than half the cache. The loss of cache space and

extra misses is beneficial to too few applications for widespread implementation. These observations

may have led to IBM’s decision to use, in its first generation Power 5 processor, a combination

of hardware and software metrics monitoring L2 miss rates, instruction issue rates and instruction

groups to determine whether the threads should be co-scheduled on the same SMT processor, re-

scheduled, throttled or given other priority [Sto04].

Much of the research has focused on the simultaneity of SMT processors and on methods

to best take advantage of SMT processors with current software. These studies investigate how to

better utilize SMT techniques to overcome super-scaler processor deficiencies to get more efficient

execution. Researchers have focused on solutions to the general problem of adapting existing algo-

rithms and programs to the new shared L1/L2/Functional Unit environment. Conclusions reached

by most papers determine that individual applications, or independent threads of an application,

who simultaneously share the processor with other applications or threads may suffer individually,

but all applications will run, in total, to completion faster together than if run serially. We contend

that, aside from desktop usage, that the majority of applications run alone or expect to dominate

the environment they are executed in. Many computing facilities have long run jobs in batches,

whereby applications are queued and expect to control the computer solely. In practice, very few

jobs run simultaneously, because of unpredictable runtime performance. These opposing viewpoints

have to be resolved or accommodated in every computing facility. Given that most applications
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expect to run on a dedicated processor, innovative solutions to leverage the SMT hardware for these

applications like speculative pre-execution, scheduler interaction or processor design can be used to

boost performance [Sto04]. This thesis provides operating system and software support for indi-

vidual distributed MPI applications to covertly take advantage of the underlying SMT hardware,

while improving performance of traditionally serially run applications. The MPICH library is a

system-provided application-independent static library that can facilitate this symbiotic relation-

ship. We do not intend to make the most efficient use of the SMT processor. Instead, we promote

taking advantage of the full processor capabilities to leverage the naturally existing parallelism in

MPI programs. In addition, our operating system buddy scheduler thread promotion allows the

application to best utilize the processor completely with very low latency thread synchronization

primitives helping to mitigate inter-thread communication overhead.

2.2 Processor Architecture Design

Simultaneous Multi-threading, in broad terms, refers to having multiple architecture con-

texts attached to a single processor core that share a set of functional units. Implementing this broad

definition can take many different forms that could affect how best to optimize and implement oper-

ating systems and software for such processors. Most research into SMT processors has focused on

a modified Alpha processor that was designed, but never released. Since Intel Corporation bought

Compaq, that research will likely emerge in some future Intel microprocessor revision. The current

Pentium 4 processor implements a first generation SMT architecture that has some restrictions and

a limited number of contexts. IBM has released (September 2004) the Power 5 SMT processor. This

is a multi-core, multi-context processor that has benefited from all the research available, including

that of the Pentium 4. We focus on the Pentium 4 processor and the Power 5 processor here, as they

are the only mainstream SMT processors available now, and how operating systems and software

have been optimized to handle these underlying architectures.

2.2.1 Pentium 4

The Intel Pentium 4 processor is the first commercial SMT processor available on the

market. This first iteration is a two context processor with a claimed 5% increase in core area to

accommodate the SMT hardware. The microprocessor is a standard Pentium 4 that implements

the Netburst micro-architecture with trace cache [ia304]. This processor can run in multi-task mode

(MT), where both contexts are active and some processor resources are split, or single-task mode

(ST), where a single thread has access to all processor resources.

The modifications to the processor can be broken down into replicated, shared and par-

titioned resources. In accommodating the second context, the register renaming logic, instruction

pointer, instruction TLB cache, return stack and the register alias tables were replicated. Resources
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shared between the two tasks includes the L1, L2, L3 and trace caches, the micro-architectural

registers and the functional units. The most interesting and performance impacting feature is the

partitioning of the resources. When the processor is in MT mode, Intel logically splits the re-order

buffer (ROB) size, issue queue size, instruction queues and the L1 trace cache for each thread. Figure

Figure 2.1: P4 SMT Internal Structure (After [BHMU02])

2.1 illustrates this internal division. The purpose of this division is to prevent process starvation,

such that no one thread may starve if a greedy thread begins to consume processor resources.

The processor can dynamically partition and unpartition these queues depending on pro-

cessor state. To ameliorate the negative impact of halving the internal data structures, there are

two instructions available to unpartition the processor – MWAIT and HLT. These instructions are

frequently used in operating system idle loops to free up resources for other applications. MWAIT

triggers a quick transition to a low-power state from which the processor can wake up quickly upon

executing a write to a given address range. Transitioning back-and-forth between ST and MT mode

requires allowing one of the contexts to stop fetching and completing any waiting instructions, then

recombining the resources with the other context. The thread-imposed limits are more soft, rather

than hard limits, because queues are not physically halved, but each thread is only allowed to fill

half the slots in any order. If in MT mode, the processor alternates fetching new instructions from

both threads. The Pentium 4 can only fetch one instruction at a time from the user, but the in-

struction trace cache can issue 3 micro-operations per cycle to compensate [Sto01]. The majority

of the processor after the fetch stage is oblivious to the SMT context. Aside from the division of
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Figure 2.2: Power 5 processor Internal Structure (After [RKT04])

queues, the microprocessor treats both contexts equally.

2.2.2 IBM Power 5

The IBM Power 5 processor is the latest generation in the Power processor line, and the

first Power processor to utilize SMT [RKT04]. This processor has been released after the Pentium

4. It is a dual core chip multi-processor with two contexts per core. The Power 5 relies more on

processor metrics and priorities to control program flow than brute force division of internal data

structures. Replicated resources include the program counter, the instruction queues, the return

stack, group completion table and the data cache store queue. All other resources, including branch

history tables, caches, instruction group formation, issue queues and functional units, are shared by

both threads and access to said resources is controlled by task specific priorities. This task priority

limits the number of instructions decoded from a task. This allows the other thread to utilize more

of the CPU. Each core of the Power 5 processor supports two modes: single-thread and multi-thread

similar to the Pentium 4. Single-thread mode allows one task to consume all of the CPU’s resources,

while MT mode allows both tasks to utilize the resources. Table 2.1 describes the modifications to

the processors in order to accommodate MT mode.

There are some important enhancements in the Power 5 that improve upon the Pentium 4
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Resource Type Pentium 4 HT Power 5
Replicated Register renaming logic

Instruction Pointer
Instruction TLB cache
Return Stack
Register Alias Tables

Instruction Buffer
Group Completion Table
Store Queues

Shared L1, L2, L3 caches
Functional Units
Micro-architectural reg-
isters

L1, L2, L3 cache
register files
branch history tables

Partitioned µ op queue
dispatch queues
issue queues
re-order buffer

none

Table 2.1: Processor Resource Sharing Comparison

implementation. The Power 5 implements a soft limit on the threads at the decode stage to control

thread access. The Power 5 itself monitors the behavior of each task and their behavior running

together in the resource-balancing logic. It monitors the Global Completion Table (GCT), L2 cache

miss rate and the issue queues for signs of starvation and performance impeding situations. The

Global Completion Table keeps track of completion of groups of instructions in the processor. Once

all instructions from a group have completed, they are then committed to the register files. Processes

that use more than a predefined number of GCT entries are throttled back with a lower priority.

This results in fewer instructions being decode and thereby second thread does not become starved.

If the hardware notices that a given thread incurs a predefined number of L2 cache misses, then the

resource-balancing logic throttles the thread’s instruction decoding until the cache congestion clears.

If the logic notices a backup in some issue queue, it knows that a long running instruction, like a

memory sync, has stalled the processor. The processor then flushes all the instructions of that thread

waiting to be dispatched and holds decoding till the instruction completes. The resource-balance

logic keeps the operating system up to date on changes in thread priorities, so it can attempt to

optimally schedule the threads [Sto04].

The Power 5 processor has a similar instruction to that of the MWAIT instruction on the

Pentium 4 Prescott chip, but cleverly hides it as a processor state. The ST mode is effectively

split into two modes. One mode declares the second context to be a null thread from which not to

decode any instructions. The other ST mode merely suspends decoding of the second thread until

an external or decrementer interrupt occurs [RKT04]. The dormant thread then begins decoding

and executing in MT mode.

The Power 5 processor has struck a good balance between the single context super-scalar

processor mode and the multi-context SMT processors. It can provide higher processor perfor-
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mance than an equivalently clocked Power 4, while also being able to accommodate highly threaded

applications and workloads. This provides the end user with the best of all worlds.

2.2.3 Operating System Support for SMTs

Operating systems are slowly adapting to accommodate SMT processors. All major op-

erating systems on SMT processors have made changes to optimize for the SMT processors. Due

to the sophistication of the Power 5, the AIX scheduler is the most advanced out of the Linux,

AIX and Windows schedulers compared herein. It has the advantage of having an active feedback

mechanism from a cooperative processor to work with. Settle et al. and Rossier both investigated

feedback mechanisms for the Pentium 4 processor[Set04, Ros05]. Settle focuses more on cache met-

rics, while Rossier focuses more on thread IPC for optimal performance. They both found IPC

increases from 3-10% depending upon workload. It is telling that the IBM Power 5 uses both of

these monitoring metrics to determine thread priority and scheduleability. We will look at how the

three major operating systems: IBM AIX, GNU Linux and Microsoft Windows XP each deal with

SMT processors.

IBM AIX 5 Scheduler The IBM AIX 5 scheduler seems to be the most advanced scheduler

available, because it also has the most advanced SMT architecture to work with. It, along with the

resource-balance logic, work in tandem to determine symbiotic threads and destructive threads so

it can schedule them accordingly. The Power 5 processor does its own monitoring of CPI and L2

cache misses to determine problem areas, takes evasive action and then notifies the AIX scheduler

of the change. The CPU also exposes to the user and operating system an adjustable priority that

provides flexibility in scheduling and assigning priority amongst threads. This scheduler/hardware

combination seems to be the culmination of all the research for the past ten years, and performs the

best among the studied mechanisms.

Linux SMT Scheduler The Linux scheduler has been modified slightly to accommodate SMT

processors, but not extensively. All logical processors belonging to the same physical CPU are

scheduled from the same run queue and penalties for migrating across logical CPUs were removed.

In addition, it prefers tasks to be scheduled onto contexts of the same physical CPU, before moving

across physical CPU queues. In addition, active load balancing now balances across physical CPUs,

rather than all logical CPUs. This prevents two tasks running on a single physical CPU, while no

task runs on a second physical CPU. Currently, there is no support in the scheduler, nor the default

Linux 2.6 kernel for using run-time processor metrics feedback[Lov].

The Linux 2.6 kernel goes one step further to help performance on SMT Pentium 4 proces-

sors supporting the MWAIT instruction. The MWAIT instruction is used in the idle loop instead of

halt in order to allow faster notification and processor wakeup when a task needs to be scheduled.

Even so, kernel spin-locks are still NOP loops.



14

Windows SMT Scheduler The Windows SMT scheduler has been modified by Microsoft for

the Pentium 4 HT processor. Their whitepaper does not mention if thread affinity favors moving

threads across contexts in the same processor[Not], but it does say that the scheduler attempts to

schedule to inactive real processors whenever possible. Windows has implemented kernel locks with

the PAUSE instruction. The PAUSE instruction pauses dispatch of instructions for approximately

50 ns to prevent a competing thread from starving, while another thread holds a resource and cannot

progress due to functional unit collisions. Windows XP and Windows 2003 .NET aggressively halt

the processors in order to release the shared resources of the Pentium 4. Windows does not seem to

use the MWAIT instruction.

Each of these schedulers described is meant to provide fair and balanced scheduling for

a general purpose operating system. The modifications to make the promotional thread scheduler

involve skewing this fairness into unfair rules that allow one application to dominate a processor and

the operating system to maximize performance on an SMT processor. It is possible to modify any

scheduler to grant exclusive use of a processor, our promotional thread scheduler explicitly keeps

paired threads co-scheduled together. In addition, we provide a system-call interface for the user

applications to use the special MWAIT and MONITOR instructions as synchronization primitives.

2.3 CMP and SMP

Another technique developed to increase hardware thread parallelism is chip multi-processing.

Chip multi-processing places two microprocessor cores on a single chip die. The two cores share the

same L2 cache, but are complete processors otherwise. Chip multi-processing provides for more

tight-knit multi-processing, because the distance to memory and inter-processor communication

time is reduced, but it does nothing for further improving efficiency of the individual cores. There

has been much research into the merits of chip multi-processing verses simultaneous multi-threading

[ST97, HNO97]. Chip multi-processing can provide increased performance due to increased func-

tional units and caches, but at the expense of space and cost. SMT processors have the advantage

of sharing the majority of hardware amongst the contexts with relatively low costs, but do have

the issue of cache and functional unit collision. The consensus for upcoming processors (Power 5,

Intel Pentium 4 Montecito) is to have two processing cores that are each threaded. The increased

functional unit density and shared L2 cache of chip multi-processors helps overall throughput, while

the additional contexts and shared L1 core cache helps coupled multi-threaded applications. This

seems to be the best balance between CPU efficiency and performance, while also reducing costs by

packaging more onto less silicon.
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2.4 Conclusion

There has been extensive research into SMT processors: How best to utilize existing hard-

ware; How to best schedule threads on the processors; How to best redesign current applications

to take advantage of the SMT microprocessors. We see that the Power 5 is the first in a new gen-

eration of SMT processors integrating CMP, SMT and operating support to monitor and adjust

thread execution in real time. We believe that CMP multi-processing with SMT capabilities will

become mainstream in future processor designs. Applications are becoming more multi-threaded

to further take advantage of these processors, but legacy application performance will not benefit

from the SMT architecture. We are studying a new technique to provide seamless improvement in

performance above and beyond the simple megahertz performance metric.



16

Chapter 3

Hardware Synchronization

In threaded applications, the common methods to notify threads of a change in state in

the program are condition variables, semaphores and spin locks. These common synchronization

primitives are optimized for speed, but may have sizable implementation overhead or excessive CPU

resource consumption. Blocking on a semaphore or condition variable places the waiting thread on a

wait queue and requires a reschedule to occur before the sleeping thread can be awoken. Spin locks

are meant to be fas. They cater to very tight and short pieces of code, because anybody spinning

on the lock is executing repeatedly a relatively costly memory load and a benign non-operation

(nop) without releasing the CPU. This can create two problems for other executing threads. First,

if the spinning thread loops for too long, the spinning thread will dominate whatever functional

unit executes the CPU NOP. Secondly, the thread could be penalized by the operating system

scheduler for consuming too many CPU cycles and may be rescheduled with a shorter execution

time slice. Other less disruptive synchronization primitives have been proposed to address these

problems. We study five special-purpose data synchronization structures in the Intel architecture.

Four data structures are variations of a basic spin-lock (Figure 3.1) and the last is a Pthread condition

variable[NBF96].

while (WaitVariable == KnownValue) {

non-operation;

}

Figure 3.1: Basic Spin-Lock Implementation

The issues of thread synchronization can be complicated and involve knowledge about the

approximate orders of waiting time (e.g. microseconds, milliseconds, or seconds of time) required

in order to choose an appropriate synchronization primitive. It also involves understanding in what

program context the threads are running. The programmer must evaluate if any thread-interaction
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actions are required: Is one thread spinning idly for long periods while waiting for action from

another thread; Does one thread wait in general for a very short period of time, while another

does some relatively quick computation? The ultimate solution to these questions lies in finding a

synchronization primitive that can be used in any of the above situations.

We focus here on the Intel Pentium 4 Prescott processor with hyperthreading (SMT) tech-

nology [ia304]. This particular processor features several hardware instructions that can facili-

tate thread synchronization including MWAIT/MONITOR, PAUSE, NOP, FNOP, Test-and-Set,

Compare-and-Swap and HLT (HALT). We are focusing on the MWAIT and MONITOR instruc-

tions, because they are low-latency instructions allowing asynchronous hardware notification between

threads without system interaction. The other instructions are used in traditional condition vari-

ables, semaphores and spin-locks and suffer from the problems described above[Mil87, NBF96]. The

MWAIT and MONITOR instructions are fast with low-overhead, like traditional spin-locks, and

resource saving, like condition variables. When programming for the Pentium 4 SMT processor,

you must take into account that the internal processor queues are split when SMT is enabled to

prevent process starvation. Execution of an MWAIT or HALT instruction frees up these queues and

temporarily allows the other context to consume all of the processor’s resources.

In our modified MPICH implementation, we use thread synchronization in a helper thread

that waits for messages from a main computation thread. The helper thread performs quick check

of the run queue and either a single MWAIT instruction, a timeout condition variable wait, or a

single NOP or PAUSE instruction executes. If there was a requests waiting, then the helper thread

executes the request before continuing on to check for network activity and loop again.

3.1 Current Thread Synchronization Primitives

Current thread synchronization techniques have converged on condition variables, semaphores

and spin-locks. These software data structures are suported through instructions such as test-

and-set, fetch-and-add and compare-and-swap to assure atomicity and exclusiveness of locks in

an environment that normally does not provide such guarantees [And91]. Condition variables and

semaphores almost always require operating system interaction to deliver signals or schedule threads

(user-level threads excluded). We first investigate different types of synchronization primitives avail-

able in terms of their pros and cons.

Spin-Locks

Spin-locks are generally reserved for low-latency short loops that cannot suffer the cost

of being interrupted or rescheduled. The problem with spin-locks is that they rapidly consume

processor integer, fetch and issue resources due to their simplicity. They also present a known issue

whereby a spin-lock results in a memory mis-prediction that results in a processor pipeline flush. A
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basic spin-lock is shown in Figure 3.1.

MONITOR and MWAIT Pentium Instructions

MONITOR/MWAIT was designed to complement the use of HLT and PAUSE instructions

for efficient partitioning and un-partitioning of shared resources among logical processors sharing

physical resources. MONITOR sets up an effective address range that is monitored for memory

stores; MWAIT places the processor in an optimized state (this may vary between different imple-

mentations) until a write to the monitored address range occurs [ia304]. This simulates a condition

wait or spin lock on the hardware level, but notification to the waiting thread does not require

operating system intervention. As a result, this mechanism has a smaller latency than other prim-

itives for the process to ’wake-up’. The process will ’wake-up’ when any interrupt is received by

the processor, or the memory has been written to. It does not place the processor into a state as

dormant as the HALT instruction, but it does release the processor resources. If both contexts are

executing the MWAIT instruction, then the processor will go into a low power state.

The Intel Software Reference manual describes the usage of the MONITOR and MWAIT

instructions. Figure 3.2 depicts the basic design. Intel specifies that the MONITOR instruction

long monitorspin_kernel(long slot, long oldValue, unsigned long reps)

{

local_irq_disable();

do {

__monitor(&MemoryValues[slot],0,0);

local_irq_enable();

__mwait(0,0);

local_irq_disable();

} while ((MemoryValues[slot] == oldValue) && mem && reps);

local_irq_enable();

return MemoryValues[slot];

}

Figure 3.2: MWAIT/MONITOR Kernel Internal Memory Design

must be executed with interrupts disabled, and the MWAIT instruction with interrupts enabled

[ia304]. The monitor instruction arms the Pentium 4 Prescott monitor hardware with an address

range to monitor for write operations. Writes in the memory range will trigger a ’wake up’ from the

mwait suspend state. The monitor/mwait instructions are in a do..while loop, because the mwait

instruction can complete execution upon a memory write or a processor interrupt. Therefore, the

current value of the memory address must be checked against a saved original value to determine if
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a memory write has occurred or just an interrupt. If no write occurred, then another MONITOR

and MWAIT call on the same memory range must occur. These checks are made with processor

interrupts disabled to prevent race conditions.

In the first generation Prescott Pentium 4 processor, the MWAIT instruction requires ring-

0 privileges and cannot be executed from user space. We added a system call to the kernel in order

to access these instructions, but that left us with the dilemma of either having to access user memory

every time we needed to check if our condition variable had changed (Figure 3.3), or use a kernel

long monitorspin_user(long* memoryID, long oldValue, long type,unsigned long reps)

{

long buf = 0;

local_irq_disable();

do {

__monitor((void*)memoryID,0,0);

local_irq_enable();

__mwait(0,0);

local_irq_disable();

access_process_vm(CurrentTask,buf,sizeof(buf);

} while ((buf == oldValue) && mem && reps);

local_irq_enable();

return buf;

}

Figure 3.3: MWAIT/MONITOR System Call User Space Memory Design

memory space variable that is accessed from user space through system calls (Figure 3.2). The

system call implementation, refered to as MWAIT-Kernel-Space, requires both threads to execute

system calls in order to interact with the MWAIT and MONITOR instruction. The waiting thread

executes the MONITOR/MWAIT loop, as in Figure 3.2, while the setter thread may optionally call

a function to set an internal kernel variable which the waiting thread is monitoring. We refer to the

MWAIT implementation that monitors variables in user space memory as MWAIT-Call-User-Space.

In future implementations of the instruction, Intel plans to make this instruction available

at ring-3 execution privilege level. In the meantime, we discovered the Kernel Mode Linux project

developed by Toshiyuki Maeda[Mae02]. This project allows user processes to execute with kernel

(ring-0) privileges, but retains all the memory and privilege protection afforded to ’regular’ user

processes. This allows us to execute any ring-0-only instruction from our user applications and

it allows us to eliminate much of the overhead associated with normal system calls by allowing

direct execution of them. We refer to this version as MWAIT-Call-User-Space. We offer these
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results alongside MWAIT-Kernel-Space, MWAIT-SysCall-User-Space and our other synchronization

primitives. as a reference. Performance of our applications using Kernel Mode Linux (KML) can give

us a closer upper-bound to performance by bypassing normal user-process restrictions, but, as in the

case of MWAIT-Call-User-Space, we see some effects of using these instructions and their respective

overhead in standard execution environments. Figure 3.4 shows the ideal simplified design allowed

when executing MWAIT directly from the user-space process. We can now check the resulting values

directly. One caveat exists: Because user-space memory is virtual memory and, thus, can be paged

to disk, there is a chance that page-faults may occur when checking the values. Pinning the desired

pages into memory would provide the best performance, but the likelihood of getting the page fault

is less with MWAIT-SysCall-User-Space than with MWAIT-Call-User-Space, because there is no

context-switch overhead and that memory was likely recently initialized and already in the cache.

long monitorspin(long* memoryID, long oldValue)

{

local_irq_disable();

do {

__monitor((void*)memoryID,0,0);

local_irq_enable();

__mwait(0,0);

local_irq_disable();

} while (*memoryID == oldValue);

local_irq_enable();

return buf;

}

Figure 3.4: MWAIT/MONITOR Call User-Space Memory Design

There is another flaw with the current implementation of the MWAIT instruction. It

lacks feedback to the programmer as to why the MWAIT instruction completed execution. If the

instruction was to somehow distinguish between completion due to an interrupt or to that of a

memory write, then the user performing the write would not have to make an expensive system call

in the MWAIT-Kernel-Space instance nor pass the old value of the memory address being monitored.

HLT Instruction

The HLT (HALT) instruction is not generally used in synchronization primitives, but for

the operating system idle loop. We present it here to contrast its behavior with that of the MWAIT

instruction, which was also designed for use in operating system idle loops. Executing the HLT

instruction on a idle logical processor puts the targeted processor in a non-execution state. This
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requires another processor (when posting work for the halted logical processor) to wake up the

halted processor using an inter-processor interrupt. The posting and servicing of such an interrupt

introduces a delay in the servicing of new work requests. An enabled interrupt (including NMI and

SMI), a debug exception, the BINIT# signal, the INIT# signal, or the RESET# signal will resume

execution. If an interrupt (including NMI) is used to resume execution after a HLT instruction, the

saved instruction pointer (CS:EIP) points to the instruction following the HLT instruction [ia304].

We do not use the HLT instruction in our experiments, because its purpose is for placing the

processor in a halted state until the next regular interrupt occurs. Such large granularity is not

useful for synchronization primitives, especially spin-locks.

NOP/FNOP Spin-lock

The non-operation instruction NOP and its floating-point counterpart FNOP are the most

basic instructions used in spin-locks. The NOP and FNOP instructions are executed in the processor

in one cycle, but do not make any state changes to the processor context. It is a very quick operation

that can be executed in the integer and the floating-point functional units to keep the processor busy.

PAUSE Spin-lock

Intel created the PAUSE instruction to solve the problem of the NOP-spin-lock memory

mis-prediction problem[Cor04]. The PAUSE instruction causes the processor to stop issuing in-

structions in a particular context for a single pipeline length. This frees up pressure on the CPU

functional units, particularly the integer unit, and also relieves the branch prediction unit.

3.1.1 Blocking Synchronization Primitives

In this text, we refer to the Pthread versions of mutexes, condition variables and semaphores[NBF96].

Blocking semaphores may block the executing task and place it on a wait queue until some pre-

condition is met.

Mutex

The most basic concurrency control method is the mutex. The mutex provides mutual-

exclusion access to critical sections. Mutexes are made possible by special hardware instructions like

test-and-set and compare-and-swap. These instructions allow, without any race conditions present,

to execute a comparison and a memory modification in one instruction. The basic mutex creates a

lock, which is held by one task. If any other task would like to acquire that lock, then it is placed

on the wait queue by the operating system thread scheduler. These tasks will block indefinitely, or

until the task holding the lock releases it. Any tasks waiting for the lock will then wake up and a
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race condition exists to who will get the lock. Whoever executes the special hardware instruction

first gets the lock.

Semaphore

A mutex is the most basic kind of semaphore, a binary semaphore. Semaphores are basic

data structures that have non-negative values and are operated on by two basic primitives: signal()

and wait(). A semaphore is initialized to a positive non-zero value which is decremented upon every

wait() call. If a wait() is called on a semaphore with value 0, then that calling task and all future

tasks calling wait() on the same semaphore will be suspended until enough calls to signal are made

to make the semaphore value greater than zero. Semaphores are good at allowing a limited number

of tasks access to a resource.

Condition Variable

Condition variables are an improvement on the basic mutex, because they allow for fine

control over access to critical sections. A condition variable assumes the executing task has control

of a pertinent lock, and the task is awaiting some condition to be met, it can release the lock and

suspend itself onto a wait queue. At the same time, it releases the lock, without calling an unlock(),

and another process may then access the critical section. A controlling thread may then signal

this condition variable announcing to an sleeping tasks that they may re-evaluate the conditions

which they were waiting on. Once the signaling task lets go of the condition variable’s lock, one

of the waiting tasks atomically receives the lock and continues execution. This makes placing locks

around a loop safe, because you can selectively give up the lock in the middle of the loop, and then

re-evaluate safely after receiving the lock again. The overhead of having to reschedule the tasks is

low, but it is still an order of magnitude higher than using a basic spin-lock. Condition variables

are good for tasks that may wait a variable amount of time, or if many tasks are waiting.

In general, we know that the Monitor/Mwait and Pause instructions are meant to replace

tight spin-wait loops, and halt is meant to place the processor into a non-execution state. We

refer to our PAUSE spin-locks as PAUSE-Spin-Lock; NOP spin-locks as NOP-Spin-locks; MWAIT

spin-locks as MWAIT-Call-User-Space and MWAIT-Kernel-Space depending on whether we pass

MONITOR a user-space memory address or kernel-space memory address through a system call;

MWAIT-SysCall-User-Space if we are executing MWAIT and monitor in user-space executing in

kernel mode; and Condition variable primitive as Pthread-condition-variable. We do not categorize

the MWAIT instruction as a blocking instruction, because it must be executed in a loop and no

queuing occurs. The blocking of the task until a write occurs is an intended side-effect, because the

instruction itself does not complete execution until that occurs. We chose to use condition variables

over semaphores, because they were more flexible to use.
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3.2 Evaluation

We designed experiments to measure a) the tangible latency of the different synchronization

methods described above and b) the effect each synchronization method has on primary thread

performance.

3.2.1 Design

(a) Notify Function Possibilities (b) Wait Function Possibilities

Figure 3.5: Synchronization Primitive Notify and Wait()

It is important to understand the impact of sharing the same processor between multiple

threads. The spin-locks tested (Figure 3.5(a) and Figure 3.5(b)) show the design of the primitives

executing some benign operation while waiting on an indicator variable to continue. Condition

Variables, NOP spin-locks, Pause spin-locks and MWAIT spin-locks implement the non-operation

differently. Condition variables place the waiting task on a wait queue; NOP spin-locks execute a

’nop’ instruction that does nothing in the processor but uses a cycle of time within a functional unit.

The PAUSE instruction instructs the processor context executing it not to issue new instructions

until the PAUSE has retired from the processor pipeline (after about 20 to 30 stages for the Pentium

4 Prescott). MWAIT instructs the processor to go into low-power mode until a write is executed on a

particular memory address or an interrupt occurs. Condition variables require the thread to deliver

a signal to the other task and may involve system interaction. These varying techniques impose

different amounts of overhead on the processor’s resources, which may affect the performance of

other tasks running on the same processor. We study three aspects to measure their performance:

1) The latency with which the waiting thread notices a change of state; 2) The call overhead of

making the notification of change of state known to the other contexts; 3) The impact on the
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processor and resources that the waiting primitive has on the performance of other tasks on the

same processor.

We are looking for the best balance between latency and performance. These tests are

organized to reflect our ideal application model where one thread is engaged in work while another

paired buddy thread is waiting to be notified to begin communicating. Figure 3.5(a) and Figure

3.5(b) show how each of our test synchronization primitives is implemented, and Figures 3.6, 3.7 and

3.8 show the test setups. We discuss each of the kernel benchmarks, analyze each synchronization

primitive individually and then conclude.

Figure 3.6: Synchronization Primitive Call Overhead

Synchronization Primitive Notify() Call Overhead: In this test, we want to assess the im-

pact of the calling thread’s ability to maximize computation time when notifying the waiting thread.

This notification should minimize the overhead communication to facilitate more overlap with com-

putation. While the primitive-in-question is waiting for notification to continue, we measure the

time to only notify the waiting thread. Figure 3.6 shows our test kernel. The arrow indicates the

sections of code timed in the call overhead test. In our modified MPICH implementation, we want

to impede the computation thread as little as possible.

Analysis

To maximize computation time for our computing threads and minimize overhead necessary

to communicate with other threads. Table 3.1 presents our results for this test. PAUSE-Spin-lock,

NOP-Spin-lock, MWAIT-Call-User-Space and MWAIT-SysCall-User-Space have the least overhead

because they only assign a memory address. This takes about 300 to 500 nanoseconds (approximately
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Synchronization
Primitive

Synchronization Primi-
tive Notify() Overhead
(ns)

Synchronization Primi-
tive Notify() Overhead
(ns) (KML)

Percent Improvement by
KML

MWAIT SysCall
- User Space

449 330 36%

MWAIT SysCall
- Kernel Space

3,407 925 368%

Pthread Condi-
tion Variable

5,239 1576 332%

PAUSE Spin
Lock

527 317 66%

NOP Spin Lock 532 320 66%
MWAIT Call -
User Space

N/A 390 N/A

Table 3.1: Synchronization Primitives Notify() Call Overhead (lower is better)

200 cycles), which is about the time it takes to fetch an instruction, schedule it, issue and execute

the store and finally notify the other context of the store. Under KML, we see this memory overhead

reduced slightly because of savings in servicing any interrupts that may occur in the middle of the

store. MWAIT-Kernel-Space notify() must make a system call in order to adjust the memory. A

system call takes approximately 1,200 nanoseconds to call and 1,200 nanoseconds to return from

plus the memory write with some added logic overhead, which amounts to approximately the 3,407

nanoseconds that MWAIT-Kernel-Space requires. That accounts for the dramatic reduction in

call overhead. It is still three times slower than MWAIT-Call-User-Space though. The Pthread-

Condition-Variable primitive improves dramatically, too. Even though the Pthread library executes

completely in user space, it still must notify other tasks through system IPC calls. Thus, it also

incurs the system-call overhead that MWAIT-Kernel-Space does. It is clear that the overhead of

making a system call has an order of magnitude impact in speed. Ideally, we would want our

primitive to not require a system call.

Synchronization Primitive Latency: Synchronization Primitive Latency is the time from one

thread signaling a change of state in the program to the time a waiting thread registers that change.

Figure 3.7 shows our test kernel. The arrows highlight the sections of code timed in the experiment.

Latency is very important for time-sensitive functions like sending and receiving data. This test

is meant to model one aspect of our MPICH modification. In our MPICH modification, we split

up the user and system portions of sending and receiving data, while in the original version of

MPICH, the data is sent directly from the main computation thread. In our modified version of

MPICH, the computation thread enqueues a request to send or receive data using a non-blocking

communication function (MPI Isend, MPI Irecv) and then notifies the communication thread of that

request. This communication thread is waiting for new user requests by monitoring an indicator
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Figure 3.7: Synchronization Primitive Latency Test

variable. Monitoring of the indicator variable is performed in a loop that also checks for network

activity. To give the processor a small period of complete control, the communication thread executes

one of our synchronization primitives. The primitives should be quick and have low impact on the

primary thread’s performance. Latency is an important aspect in choosing the best primitive, but

we must consider all the tests together in order to conclude which primitive is the best.

Analysis

Synchronization
Primitive

Synchronization Primi-
tive Latency (ns)

Synchronization Primi-
tive Latency (ns) (KML)

Percent Change
by KML

MWAIT SysCall
- User Space

41,143 1316 32.26x

MWAIT SysCall
- Kernel Space

2,909 869 4.35x

Pthread Condi-
tion Variable

10,757 3805 3.82x

PAUSE Spin
Lock

143 135 1.59x

NOP Spin Lock 174 165 1.54x
MWAIT Call -
User Space

N/A 424 N/A

Table 3.2: Synchronization Primitives Notification Latency Table (lower is better)

Our results in Table 3.2 show that Pause-Spin-lock and NOP-Spin-lock are the fastest to

notify the waiting thread that a change of state has occurred in th KML and non-KML benchmarks.
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This is because they operate completely in user-space memory. The two threads share the same

address space, and bus communication between the processors is negligible. The overhead of the

memory write dominates the latency overhead, so the system-call benefits would have little impact.

It is interesting to note that the latency of the notify() for Pause-Spin-Lock and NOP-Spin-Lock

is faster than the notify() call overhead shown in 3.1. Because the processes are sharing the same

processor, the processor may notify the pending register load in the spin-lock that the value has

changed right after executing the memory-store instruction on the indicator variable instead of

waiting for write-back to the register table. MWAIT-Call-User-Space performs almost as fast as

NOP and PAUSE spin-locks, but the overhead of putting the context to sleep and waking it up plus

the latency for delivery of notification of a memory-store account for the extra nanoseconds delay over

PAUSE and NOP. The most important observation is the improvement MWAIT-Call-User-Space has

over MWAIT-Kernel-Space. We see that the latency is cut in half with the system-call overhead

removed. MWAIT-Kernel-Space improves three-fold under KML. Under non-KML conditions, the

waiting thread is engaged in a system call so that, at a minimum, it incurs the cost of exiting a system

call. It also must possibly complete the MONITOR/MWAIT and interrupt disable and enable plus

a comparison to verify that the value in memory has changed. Even with this overhead, MWAIT-

Kernel-Space is at least 3 times faster than Pthread-condition-variable under KML or non-KML. A

task waiting on a condition variable is placed in a wait queue that must be notified, rescheduled

and re-assigned the lock, which partly involves system functions. Pthread-condition-variable is

still four times faster than MWAIT-SysCall-User-Space. MWAIT-SysCall-User-Space has the worst

performance primarily due page faults and accesses crossing over between kernel and user memory.

Because MWAIT-SysCall-User-Space accesses user-space memory from kernel-space, it must add

those pages to the kernel page table, access user memory, and it will frequently incur a page-fault.

Using promotional paired scheduling and memory locking, it is possible to reduce this latency to

approximately 15,000 nanoseconds under non-KML conditions. We see that KML reduces this to

almost zero. Any interrupts needed to access user memory are handled without context switching

and, thus, a 3,000% (32x) improvement over the non-KML version occurs under KML. The results

demonstrate how important system overhead is to the performance of the functions. Any system

calls degrades performance by an order of magnatude immediately for these micro-benchmarks. Our

ideal primitive should not have to make system calls at all. PAUSE-Spin-lock and NOP-Spin-lock

still look like the best primitives, and MWAIT-Call-User-Space is the second best.

Contention of Synchronization Primitives with CPU Bound Work: This test demon-

strates the resource impact the synchronization primitives have on the performance of the com-

putation thread. Figure 3.8 shows our test kernel. The arrow highlights the code timed in this

experiment. The primary thread executes a fixed number of floating-point instructions (work) while

the helper thread waits for the indicator variable to change. We use floating-point instructions to

simulate the work because we want to emulate our ideal compute-communicate model. The faster
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Figure 3.8: Synchronization Primitive CPU Impact:

Synchronization
Primitive

Fixed Work Comple-
tion (Workload) (ns)

Fixed Work Comple-
tion (Workload) (ns)

Percent Improve-
ment by KML

MWAIT SysCall
- User Space

36,489 35,342 3.25%

MWAIT SysCall
- Kernel Space

39,339 35,267 11.54%

Pthread Condi-
tion Variable

41,565 36,128 15.05%

PAUSE Spin
Lock

61,284 58,865 4.11%

NOP Spin Lock 62,063 58,908 5.36%
MWAIT Call -
User Space

N/A 34,641 N/A

Table 3.3: Time to complete the fixed amount of work with interfering (lower times are better)

the work completes, the less interference the helper thread imposes. This experiment also mirrors

our modified MPICH implementation. The helper thread waits for the main thread to enqueue a

function call while the main thread is performing computations. The helper thread should impede

the main thread as little as possible while occupying as few resources as possible.

Analysis

In looking at the results under work-load conditions (Table 3.3 ), we observe that NOP

and PAUSE spin-locks impose greater processor overheads than any of the other primitives. They

are twice as slow at executing the work-load. Between MWAIT-Call-User-Space, MWAIT-SysCall-
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User-Space , MWAIT-Kernel-Space and Pthread-Condition-Variable, there is very little difference

in processor impact, but Pthread-Condition-Variable always has the highest time to completion

most likely due to the extra logic required. Again, we see MWAIT-Call-User complete quicker

than any other primitive indicating that it has the least processor impact and least overhead of

all. The performance improvements of the KML versions are due to reductions in system overhead

and quicker interrupt processing. Each of these constructs is aimed at minimizing impact on the

processor’s resources. MWAIT spin-locks act like a multi-cycle PAUSE instruction with the added

benefit of re-joining the internal queues while the task waiting on the condition variable is taken

out of the scheduling rotation and remains in a wait queue. NOP-Spin-Lock and PAUSE-Spin-Lock

perform the worst because they are active constructs consuming resources every processor cycle

thus reducing performance of any other threads executing concurrently. Even though the NOP and

PAUSE instructions are executed by integer functional units and the master thread was executing

floating point units, the slowdown could occur because of extra pressure on the issue and fetch units.

Our ideal primitive should minimally affect the performance of other threads.

3.3 Conclusions

Even though NOP and PAUSE spin-locks have low notification overhead and small laten-

cies, we see from our final workload test that NOP and PAUSE spin-locks consume the most CPU

resources. The NOP and PAUSE spin-locks perform worse primarily due to interference with the ex-

ecution of the primary communication thread. MWAIT-SysCall-User-Space has a high notification

overhead combined with high latency in a non-KML environment, which makes it highly unsuit-

able. With KML and no system overhead, MWAIT-SysCall-User-Space has slightly higher latency

and overhead than MWAIT-SysCall-Kernel and MWAIT-Call-User-Space. It is not a good choice

for our ideal candidate because of too much overhead. Pthread-condition-variable provides solid

middle-of-the-road performance. That is why it is the choice for most synchronization situations.

It has good latency, low overhead and minimal processor impact. But MWAIT-Kernel-Space out

performs Pthread-condition-variable. It has less call overhead and low impact on other concurrent

threads. It is faster than MWAIT-SysCall-User-Space because it does not have to access user-space

memory repeatedly, but suffers in notify() call overhead requiring a system call. KML improves

MWAIT-SysCall-Kernel performance incrementally, but MWAIT-Call-User-Space is the best syn-

chronization primitive to use. It has very low notification overhead, just slightly less than a plain

memory store. In addition, it has very low notification latency. It is faster than any other MWAIT

primitive and Pthread-condition-variable. Finally, it has the lowest overall impact on the processor

allowing for the best performance of the master thread using MWAIT-Call-User-Space.



30

Chapter 4

Scheduler Assisted Promotional

Buddy Threading

”Buddy threading” is a novel concept developed in this thesis that forces co-scheduling of

processes to ensure that they run simultaneously at all times. Some processes have a symbiotic or

dependent relationship requiring frequent data interaction. Due to the nature of their execution,

these types of threads should to be scheduled simultaneously to improve parallelism, reduce IPC

latency, reduce system overhead and possibly exploit certain shared resources such as processor

cache.

To facilitate buddy threading, one process of the co-scheduled pair is designated as master

control thread by the programmer. This control thread assigns itself threads (also called ’buddies’)

guaranteeing that they be co-scheduled together. The buddy threads will always run as long as the

control thread runs, unless the buddy thread transitions off the run queue due to a sleep, forced

preemption or other I/O related call. The control thread is not guaranteed to be executing always

when the buddy thread is running. In addition to being run together, the buddy task runtime

metrics were modified such that it would receive maximum sized time slices, no penalty and always

first priority when the primary thread was also actively executing. In effect, the buddy monopolizes

the particular context it is assigned to. This could lead to excessive unnecessary use of resources,

so the buddy thread should endeavor to sleep or use the MWAIT, HALT or PAUSE instructions to

relieve CPU resource contention when not engaged in computation. The Linux 2.6 operating system

scheduler was modified to support this promotional buddy-threading behavior. This scheduling

policy moves away from the classical round-robin weighted average scheduling policy built-in to the

Linux Kernel. Instead, its intended behavior is to provide an unfair share of processor time to

certain co-scheduled processes to facilitate lower Inter-Process Communication latency and quicker

process execution. By unfairly promoting a particular process buddy, any tasks assigned to that

thread should complete in less time than when being scheduled amongst other threads on the same
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processor. There is an additional benefit to threaded applications that may be sharing the CPU.

Each co-scheduled application will run with the complete processor at its disposal.

The benefits of having two processes running simultaneously are two-fold: They are able to

take advantage of temporal and spatial locality; and running simultaneously, there is effectively zero

system overhead in inter-thread and inter-process communication. Buddy scheduling eliminates the

latency of a buddy thread having to be co-scheduled with the master thread and minimizing IPC

between the master thread and its buddy thread.

4.1 Technical Details

The current 2.6 Linux kernel does recognize and support SMT-enabled processors as de-

scribed, but there is only limited scheduler support implemented to accommodate the special resource

contentions of processes running on SMT-enabled processors. These modifications affine processes

to stay on the same real and virtual processor. This works well to keep caches valid, but our need

is to assign pairs of processes to always run co-scheduled on the same real processor and to remain

scheduled together. Processes may not run co-scheduled if the control thread is servicing interrupts,

sleeping in the I/O queue, or otherwise not executing actively on the processor.

Modifying the scheduler entailed adding two elements: a Linux task pointer to a processor

buddy and a task pointer to the master thread. Control threads identify their corresponding buddy

task by the buddy tasks assigned to themselves. A buddy task has a master thread if one is defined

in its task structure. Our test program calls our custom system call to manipulate these variables

and assigns tasks to be co-scheduled. Whenever the scheduler (running on CPU 0) schedules a task

that has a buddy thread associated, it will migrate that buddy task to another context on the same

processor, and, if necessary, interrupts that CPU in order to execute that CPU’s scheduler. Once

signaled, the buddy thread’s CPU scheduler will always promote the buddy thread to the top of

the run queue while the master task is executing. But if a control thread is not set or currently

executing, then the scheduler will schedule the next task using the default scheduling algorithm.

We rely on the scheduler load balancer to prevent non co-scheduled processes on buddy dominated

CPUs from being starved.

4.2 Linux Kernel Buddy Threading Kernel Modification

4.2.1 Kernel Buddy System Specification

Kernel buddies are sets of tasks that are scheduled to run simultaneously at all times

with a process’ control thread. These tasks are co-scheduled together, and execute together as

long as the control thread has not blocked or been descheduled. Kernel buddies are designed for

threaded or multi-processed applications that would benefit from having certain threads always



32

loaded together on separate processors or contexts. Our primary focus is on simultaneous multi-

threading applications wanting to benefit from cache localities and minimizing inter-thread/process

communication. A running control thread designates another thread as a ”buddy”. This buddy

thread has the following properties:

1. Whenever the control thread is running, the buddy thread should also be running. Preferably

in a context of the same processor;

2. If a control thread is executing and the buddy thread is not executing, then the buddy thread

should be scheduled next to run on the same processor. if possible) in a separate context;

3. Multiple threads can assign the same thread to be its buddy, but each thread may only have

one buddy;

4. A buddy thread may not have a buddy of its own and have only as many buddies as available

contexts on the system;

5. A buddy thread is not required to run, unless a minimum of one of its control threads is

running;

6. A buddy is distinguished by its Process ID number (PID);

7. A buddy thread is defined by the control thread. If a thread has a valid task assigned to its

control thread value, it is considered a buddy. Once that value is cleared or the control threads

becomes invalid, the thread ceases to be a buddy.

8. Self-buddying is not allowed;

4.2.2 Implementation Details

We implemented the promotional buddy scheduler in the Linux 2.6 kernel scheduler frame-

work. We added several system calls to access the promotional buddy scheduler, and we used several

built-in system calls to manipulate schedulers and tasks. Table 4.1 outlines the main functions we

used. Hyperpin() and getrpid() are the two system calls we specifically added.

Formally, all threads are assigned a unique process id and treated as separate processes in

the Linux kernel. An Application passes the system call ’hyperpin()’ a pair of process id numbers

(PID) and a base processor number. The first argument is the master thread PID, and the second

argument passed is the buddy thread’s PID. Each function can set for itself one master thread or

one buddy thread, but threads with both enabled are treated as a buddy in the current implemen-

tation. This can easily be extended to multiple buddies and control threads, but at the expense of

scheduling overhead. In addition to the buddy and control thread specification, a base processor id

is passed to the kernel to which the control thread will be pinned to. If possible, the buddy thread
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Table 4.1: Promotional Buddy Scheduler Code Functions

Function Name Purpose
smp processor id() Returns which processor the current process is running on

set task cpu() Affines a task to a processor
deactivate task() Takes a scheduler off of the run queue and places it onto

the wait queue
sched find first bit() Looks for Highest Priority Queue with available task

task rq lock()/task rq unlock() Locks and unlocks the run-queue of the given task
preempt disable()/preempt enable() Disables and enables interrupts

smp send reschedule() Send a CPU interrupt to reschedule
hyperpin() Designates and initiates scheduling of control and buddy

tasks
getrpid() Returns to the process the true process id number of the

calling task

will be pinned to a context on the same physical processor in order to benefit from locality. Cur-

rent processor identification techniques count logical processors sequentially from physical processor

numbers. Future iterations will let threads roam across logical processors of a physical CPU.

The PID is unique task identifier in Linux, but hidden by recent POSIX compliant Linux

C libraries[DM03]. Processes have access to their thread-specific PID through a custom system

call getrpid() which they pass when calling the hyperpin function. This sets variables inside the

calling task structure and buddy task structure defining each other as buddies. It also assigns the

processes to particular logical processors. When a master thread is scheduled, the buddy task is

promoted to the head of the run queue and has its time slice and priority increased (by lowering

the priority value) and if it is not executing, the scheduler is called on that logical processor. Every

time the buddy thread time slice runs out, the scheduler first checks to verify that the master

thread is still running. If so, then that buddy task is immediately re-scheduled, re-prioritized and

continues execution. Keeping the process timeslice high and the priority high allows the process to

minimize system overhead during the master thread’s execution. Figure 4.1 shows a code-fragment

of the scheduler code exhibiting the modifications. The Linux scheduler is a modified Priority Queue

Scheduler with constant time task selection. Each process priority ranges from 1 to 140. Priorities

above 100 are assigned to user tasks and those below 100 are for real-time and system tasks. The

system will call schedule() whenever a task time-slice runs out, an interrupt occurs, a process blocks

in some system call or a process voluntarily gives up the CPU. Each task has a pointer to its owner

and that of a buddy thread to be paired with. Only one of these is used at any given time. Before

choosing a new task, we check if the current task is a buddy task and whether its new state is on

the run queue. If so and if the task is running on the correct processor, then any preempted task

or I/O blocked task is not scheduled again. Instead, another task is chosen according to the default

scheduling policy. Once a new task is chosen, it is checked for any buddies assigned to it. If there
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Figure 4.1: Promotional buddy-scheduler Code

is a buddy assigned and that buddy is in the run queue, then that task is awoken by sending that

task’s CPU a reschedule() signal. If the newly selected task is not on the correct CPU, then it is

rescheduled and new task is chosen.
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Figure 4.2: Promotional Buddy Scheduling Evaluation Kernel

4.3 Buddy Threading Performance Results

We evaluated the promotional buddy scheduler using the kernel in Figure 4.2. The areas

marked with vertical bars indicates the timed portions of code. This benchmark demonstrates the

benefits of promotional buddy-scheduling on loaded systems. We start with a master control thread

and a buddy thread that are bound to their respective contexts, and then add zero to five CPU-

bound background interference tasks that are bound to the buddy thread’s context. The buddy

threads must compete with a varying number of interference threads all contending for access to the

CPU. The interference tasks are executing the same work load that the buddy task executes. This

experiment simulates our modified MPICH environment sending data. The task’s data or resource

requirements will conflict with that of another interfering task. We evaluate how well the promotional

scheduler co-schedules the buddy task with the master task and the effects of the co-scheduling on

the latency.

For comparison with already user-available performance-enhancing scheduling techniques,
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we completed the same latency test by setting the buddy task’s nice level to -20, which is the

highest priority a user can assign himself. Evaluating the results of promotional-scheduling against

that of regular scheduling (Figure 4.3), we see that promotional-scheduling out-performs regular

scheduling and increased priority scheduling in all cases except for the zero background task case,

which we discuss later. Figure 4.3 refers to a non-KML implementation. The KML kernel results

reflected those of Figure 4.3 and are not presented here. We see from Figure 4.3 that promotional
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Figure 4.3: Synchronization Primitive Latency vs Number of Background Tasks

buddy-scheduling is almost always beneficial. The greatest benefit occurs when only one other

task attempts to run alongside the co-scheduled tasks. This third background interference task is

effectively locked out of the system by the master control task and its buddy task. In practice, the

spare background threads may get rescheduled onto the master’s processor and preempt the master

thread. The promotional buddy scheduler does not provide behavior as in a two executing task

test, because the the master task must be preempted to service interrupts and other system tasks.

The interference tasks can then be scheduled to run. When the control thread is scheduled again

to run, the background task will be interrupted to allow the buddy task to execute, but this will
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require an interrupt to be serviced and an smp send reschedule() to be issued. This is one reason the

efficiency of promotional buddy-scheduling may degrade. It is designed not to lock out other tasks

from running on the system, but to give certain tasks priority access to all the hardware available.

Table 4.2 displays the zero background interference task data. We see that with zero background

Synchronization
Primitive

Normal
Scheduling
(ns)

Promotional
Buddy Schedul-
ing (ns)

Normal
Scheduling
(ns) (KML)

Promotional
Buddy Schedul-
ing and Percent
improvement
(ns) (KML)

MWAIT syscall
User Space

41,143 12,650 (325%) 1316 22,018 (1,674%)

MWAIT from
Kernel Space

2,909 3,100 (-7%) 869 8,308 (-956%)

Pthread Condi-
tion Variable

10,757 43,843 (-416%) 3805 22,000 (-578%)

PAUSE Spin
Lock

143 10,626 (-7,430%) 150 7,627 (-5,084%)

NOP Spin Lock 174 10,629 (-6,109%) 180 7,502 (-4,168%)
MWAIT Call
User Space

N/A 424 N/A 7,763

Table 4.2: Zero Background Interference Tasks with Promotional Thread Scheduling

interference tasks, all synchronization methods are penalized except MWAIT user-memory. The

NOP and PAUSE spin-locks perform the worst relative to their normal-scheduling times, but in

all other tests the PAUSE spin-lock performs exceptionally well. We are not sure why most of

the synchronization methods perform worse for the zero background interference task case, but we

suspect that this is due to the scheduler penalizing the threads for consuming too much of the CPU,

or because MWAIT-SysCall-User-Space it causes many interruptions and reschedules that allow for

quicker servicing of interrupts.

The MWAIT-SysCall-User-Space method performs three times better with promotional

buddy scheduling because the extra system interrupts involved in servicing the user-to-kernel mem-

ory copies get quicker service. We saw a similar improvement when testing MWAIT-SysCall-User-

Space latency in conjunction with promotional thread scheduling. MWAIT-SysCall-User-memory

improved 325% while the other synchronization primitives performed poorer than without promo-

tional thread scheduling (in the zero background interference task case) while the same MWAIT-

SysCall-User-Space test performs worse in the KML test.

There is quite a large improvement in performance with promotional buddy-scheduling after

the addition of one task. We see a relative linear improvement for every additional interference task

added. Finally, with five background interference tasks, the performance improvement decreases

dramatically over that of the four background task case. At this point, the processor may be
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saturated. The exact reasons are left for future work. MWAIT-Kernel-memory has the lowest

performance increase because it dominates the CPU by blocking interrupts and thereby preventing

the system from interrupting the processor. As more background interference threads are added,

the additional benefit decreases because the other threads are scheduled when the main thread is

running. The performance benefit degrades with additional tasks, presumably because the other

tasks are allowed to run while the buddy task is engaged in I/O or on the wait queue. NOP and

PAUSE do well because they do not require operating system assistance.

The investigation into the causes of the poor zero background interference task performance

are subject to future work. In our modified MPICH experiments, we are dealing with only two

threads on the processor at any time. Thus, based on these results, we are not going to test

promotional threading in our MPICH evaluation benchmark experiments. In addition, we are looking

into the possibility of improving promotional scheduling by adjusting the task’s time-slice upon

reschedule to avoid the tasks from being penalized for excessive CPU usage.

Each of the data points is an average of 10,000 synchronization events. The magnitude of

improvement between zero background tasks and one background task is three orders of magnitude.

The zero-interference-task case has a range of only 40 microseconds while the one-background task

test has a range of over 100 microseconds.

4.4 Promotional Buddy Scheduling and the Standard Kernel

Thread Facilities

The promotional buddy scheduler has two main functions: It affines a master control

task and its buddies to logical contexts of the same processor, and it insures that all buddy tasks

of a master control process are given priority scheduling over all other tasks. Processor affinity

and priority adjustment are user-accessible functions provided by most modern operating system

task schedulers, but most of these schedulers are written as round-robin fair-use schedulers. Tasks

are obligated to give up performance for the sake of fairness. Real-time schedulers must schedule

tasks on time in order to assure completion before a deadline. None of these schedulers take into

account inter-task requirements, whereby one task’s performance may be dependent on another task’s

performance. In our model, we have a master task that has one or more buddy tasks. These buddy

tasks are promoted by the scheduler to always run when the master control task runs. The master

control task requires that these processes be instantly available in order to benefit from temporal

cache locality, minimum system overhead and to take advantage of the parallelism provided by SMT

processors. The promotional buddy scheduler recognizes these benefits and co-schedules the tasks

to take advantage of the benefits. It is possible to use the promotional buddy scheduler with regular

processors, while the added benefits of cache sharing would be lost, the benefit of not having to wait

for your buddy task to be scheduled would still be realized.
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4.5 Buddy Scheduling for MPICH

To take advantage of the buddy scheduling concept, buddy threads have to be on the

critical path of a program’s execution. In the case of our modified MPICH, a helper thread handles

non-blocking send and receive calls and services any network communication. The main computation

thread enqueues these requests into the request queue while the helper thread periodically checks

for work. Latency in completion of network communication is critical in many computational codes

due to lack of available work. In this case, the helper thread is a buddy of the computation thread.

The helper thread is always scheduled alongside the computation thread in order to minimize task

switch time.

In addition, the helper thread benefits from locality since data to be communicated usually

resides in the cache at communication time. A more complicated model could also be used, such

as sharing a set of contexts between a single communication thread with multiple computation

threads. The computation threads would compete for a context, and the buddy would always be

the communication thread. In this model, we are assuming that running two computation threads

with identical workloads on the same processor will likely overextend the processor’s resources.

It is possible to examine a multi-communication multi-computation thread model. Given

enough processor contexts, such a model would allow for multiple computation threads (exceeding

the number of available contexts) to be executing on some subset of contexts with access to several

communication threads that are always co-scheduled alongside of them. Future IBM and Intel

processors will have as many as 4 contexts on a CMP-SMT chip. Sun is also planning an 8 core

4 contexts per core processor allowing for a larger degree of parallelism and promotional thread

buddy-scheduling. In the future, such experiments may be viable to stress-test the overlapping

communication-computation model.
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Chapter 5

MPICH MPI Communication

Library

In order to take advantage of the parallelism in the SMT architecture, we modified the

existing MPICH MPI parallel-communication Library from Argonne National Labs. This library

was chosen because of its simplicity and portability. The design of the library has a higher user-level

MPI API and a lower-level application device interface (ADI) that provides interoperability for many

network interface devices and MPICH. Our test systems are Pentium 4 Prescott SMT-enabled pro-

cessors running MPICH MPI applications on Linux kernel 2.6. Each instance of an MPI application

will have a communication thread associated with it. This communication thread is paired with a

computation thread executing on the main processor. As the MPICH library initializes, it spawns a

buddy thread that, after initialization, performs all asynchronous communication functions including

receiving unexpected messages. The Linux kernel was modified to provide this process association,

such that when the main process is scheduled to run on the processor, the buddy task is loaded

concurrently on the second processor.

5.1 Asynchronous/Synchronous and Blocking/Non-Blocking

Functions

The original unmodified MPICH library is primarily a synchronous serial library. Execution

always continues serially, even when data is received. Figure 5.1 illustrates the overall design of the

MPICH library. There is separate process spawned by the P4 communications library, referred to

as the listener thread, that checks for unexpected connections from other nodes and for queuing

unread data. Upon notification of data availability (read) or when establishing a new connection,

the listener() process sends a signal to interrupt the running computation process to execute the
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Normal MPICH Design

Void Listener( )
{
    while (!done) {

waitForNetworkActivity();
           SignalMainThread( )
      }
}

CPU

void main( ) {

MPI_Isend(args);...
}

MPI_Isend(args) {
   ….
    return 0;
}

Main Thread Listener Thread

Context 1 Context 2

Figure 5.1: Original MPICH Code Structure - High Level Design

handler that makes new connections and reads data. In this case, unexpected connection notification

and unfinished data read are truly asynchronous processes, but the handling of these interrupts is

serial and blocking. In fact, all network communication is serial and blocks in the standard MPICH

network handler.

The MPI standard defines several functions as blocking (MPI Send and MPI Recv) and

others as non-blocking subroutines (MPI Isend and MPI Irecv). The MPI standard refines our

previous non-blocking definition as “a nonblocking send start call [that] initiates the send operation,

but does not complete it. The send start call will return before the message was copied out of the send

buffer. A separate send complete call is needed to complete the communication”[MPI]. The MPICH

library, using the Channel P4 communication layer, does not strictly implement this definition

of non-blocking. This definition is defined as an expected guideline in function behavior for the

programmer, but the implementing library can implement the definition more strictly as MPICH

does. There is no true non-blocking function call in MPICH using Channel P4, because the library

was originally a serial execution library using TCP/IP connection-oriented communication. Table 5.1

describes the different methods that MPICH uses to send messages: Short, Eager and Rendezvous.

These methods are differentiated by whether they send the header and message together (Short),

separately (Eager) or the receiver connects back to the sender for the message after a connection is

made to the receiver for the message header (Rendezvous). Each of these methods can be blocking

or non-blocking, but any non-blocking implementation tends to look like the rendezvous protocol.

The unmodified MPICH defines messages smaller than 128,000 bytes should be sent using the short
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Sending Mode Description
Short Communications smaller than long (128,000)

bytes are passed to the underlying TCP/IP layer
as one packet including the message description
header.

Eager (long) Packets larger than “short” bytes and less than
or equal to “long” (128,000) bytes are sent as two
parts: the header describing the message, followed
by the whole message. This option is not used in
the default nor modified MPICH.

Rendezvous (very long) The header is sent to the destination. The Re-
ceiver connects back to the sender to start trans-
ferring the data.

Table 5.1: MPICH Channel Sending Modes

protocol. Short messages are always sent using a blocking send regardless of whether a blocking or

non-blocking function was invoked. The underlying TCP/IP stack divides this message into packets

and establishes a connection to the receiver using a blocking send. For messages larger than 128,000

bytes, non-blocking user functions must still connect to the receiver in order to send the header

information of the message. The receiver then connects back to the sender to asynchronously read

the packet. The MPICH library always makes a connection to the receiver, and, for small messages,

the whole message is copied to the system and then sent to the receiver. These inconsistencies

with the standard non-blocking definition and the limitations imposed by the TCP/IP protocol

prevent true non-blocking functionality in the unmodified MPICH. In our modified MPICH library,

we implemented the true non-blocking definition for non-blocking MPI routines.

5.2 MPICH Channel P4 Code Structure

MPICH is currently implemented as a statically loaded library linked to the main MPI

user program. The library invokes rsh or ssh to execute user programs on remote machines, and

it supports a wide variety of underlying network integration and communication protocols. We use

the P4 Communication library, which implements the Channel Interface, in our experiments using

TCP/IP for message passing. The current code provides serial execution. If a user calls a blocking

(MPI Send/Eager MPI Isend) or non-blocking call (MPI Isend), the program executes the complete

function until the system has copied the user buffer into system space. If the function call is blocking

(MPI Recv), then the caller task blocks in the underlying P4 read() call until data is received. To

handle receiving data asynchronously and quickly, the underlying P4 layer spawns at startup a

seperate listener process whose sole purpose is to wait in a select() system call on the network file

descriptors and notify the MPICH library, through the system signal facility, that a new connection
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or message has arrived and needs to be handled. The user application is immediately preempted

to begin reading the sockets or establish a new connection. Upon completion, the user program

continues from where it left off. The user application cannot make progress on its own, even on

non-blocking calls, unless it has created its own seperate thread for communication. We evaluated

the efficiency of the non-blocking MPI function Isend() by accessing the CPU cycle-counter before

executing the function and after it returns to the callee. Figure 5.2(a) and Figure 5.2(b) shows the

time to execute and complete the MPI Isend() transaction in a standard MPICH implementation

and the modified MPICH with varying buffer sizes.

We move most of the overhead associated with Isend and Irecv into the communications

thread, thereby freeing the master thread to continue computing. The standard MPICH, even though

it MPI Isend is non-blocking, must still assure that the user buffer has been copied to the system

before continuing. Blocking Send and the Non-blocking Isend differ in whether the function waits

for the data to be transfered to the receiver or not. In the modified MPICH implementation, we do

not wait for the buffer to be copied to the system, nor do we wait for the receiver to acknowledge.

We found that re-use of user buffers is infrequent, and in the cases where it does occur, it can be

overcome through double-buffering.

The most obvious anomaly occurs at 16 KB and 32 KB for Normal MPICH in both KML

and Normal execution modes. We narrowed down this spike to the Linux TCP/IP stack, and we

suspect this to be a buffering effect, but we could not come up with conclusive answers. We do see

that all versions of our modified MPICH avoid this pitfall, because they become true asynchronous

non-blocking calls and the communication thread is assuming this overhead, thereby leaving the

computation thread to do more calculations while awaiting completion of the non-blocking asyn-

chronous send. It is interesting to note that the KML version of Isend() at 16 KB performs three

times slower than the non-KML version. The system overhead may not be the problem and possibly

something to do with the way KML implements page-faults. We leave the exact reason to future

work. This anomaly gives our modified MPICH a great opportunity to get higher performance for

small-size packets. It is, in fact, the area underneath the “Normal” MPICH Isend() Overhead curve

and above any version of our modified MPICH that is the exploitable execution benefit. While

the Isend() would be completing in the normal MPICH, the modified MPICH application can pro-

ceed in program execution. Pthread-Condition-Variable had the worst performance and the most

erratic behavior. We see a very high overhead cost for Pthread-Condition-Variable probably due

to the library and system requirements to implement the condition variables and deliver signals.

Even with the system overhead marginalized, performance is only better for sizes that fall under

the anomalous spike. While not executing in ring-0 mode, MWAIT-SysCall-Kernel is marginally

better than Pthread-Condition-Variable. The high cost of the system-calls required for MWAIT-

SysCall-Kernel penalize it as we see in the KML test, the MWAIT-SysCall-Kernel performs equally

with the other primitives. MWAIT-SysCall-User-Space, NOP-Spin-Lock, PAUSE-Spin-Lock and

MWAIT-Call-User-Space all perform very similarly with a plus or minus 1,000 floating-point opera-
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Figure 5.2: Isend Message Latency

tions (FLOPS). These tests reflect the results we achieved in our synchronization micro-benchmarks

in Chapter 3.
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5.3 Modified Code Structure

5.3.1 MPICH Re-Design

MPICH is a layered API library implementation with custom communication libraries

provided by third parties to support different communication interfaces such as the Channel P4

library. The custom communication libraries are called directly from the MPI API call through

the communication library ABI. These libraries are linked at configuration time. For maximum

compatibility with different communications layers, modifications were made in the library at the

API-ABI interface level. The user calls a shell function that enqueues the passed arguments into a

global function call queue. Concurrently with the primary user thread, the assigned buddy thread

(assigned during initialization) loops indefinitely waiting for functions to be called.

Modified MPICH DESIGN

SMT Threadvoid SMT_LOOP( ) 
{     while (! done) {

   do {
checktForRequest();
checkForNetwork();

   } while (no_request);
           action = dequeueRequest( )
   retvalue = action->function(args);

} 
}
    MPI_Isend_SMT( args ) {

.....
return 0;

     } CPU 2CPU 1

void main() {
   MPI_Isend(args);...
}

MPI_Isend(args) {
    return enqueue(args);
}

Primary/Master Thread

Helper Thread

Figure 5.3: MPICH Modification High Level Design

Code modifications to MPICH were designed to be as transparent to the application and

underlying ADI device as possible, with the exception of asynchronous message reception. First,

we began by creating a virtual API that mirrors the standard MPI API. For every MPI call, there

was a complementary MPI SMT call to handle it. The main modifications centered around the

asynchronous calls: isend and irecv. This new communication thread, hereafter also refered to as

buddy thread or helper thread, not only completes the asynchronous calls for the user thread, also

called the ’main’ or ’primary’ thread, but the asynchronous communication. This buddy thread

plays an important part in receiving data, because it supplants the original P4 listener process. This

takes out two slow system interrupts in the code occuring from the use of signals and file descriptors
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for inter-process communication. Figure 5.3 describes the code modifications.

Whenever there is asynchronous communication between the nodes, instead of the main

program having to stop computing to begin sending data, the helper thread assigned to the second

context takes on the task. The main thread would then be free to continue computing, while the

helper thread handles the overhead with the system. In addition, if the main thread wants to

perform blocking calls, it will initiate these calls from the main thread, leaving the helper thread

to continue receiving any unexpected data asynchronously. There is a caveat in that if the helper

thread is performing an asynchronous operation, then unexpected messages may be delayed slightly.

This can also affect the latency of Isend, because the helper thread is doing double duty.

5.4 Evaluation

5.4.1 Synthetic Benchmark Results
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Figure 5.4: MPICH Isend overhead benefit measured in floating point operations not running in
KML

To evaluate the modified MPICH performance, we created test kernels to capture the

benefit of having a threaded asynchronous send call. Our experimental kernel is shown in Figure

5.6.
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Figure 5.5: MPICH Isend overhead benefit measured in floating point operations with KML
privileges

We tested each of the synchronization primitives against the standard base MPICH under

privileged KML and regular execution mode to evaluate performance improvements. Our goal is

to show that we can effectively utilize more of the CPU for computation using our buddy model

than the standard serial method. We found that our threading model does not improve the network

performance of the MPI library significantly because we do not affect the underlying P4 library’s

operation. Figure 5.4 and Figure 5.5 quantify the performance benefits shown in Figure 5.2. That

potential described as the area under the Normal MPICH curve can be quantified in floating point

operations executed while awaiting completion of the asynchronous call. These two bar graphs

explicitly show the exploitable slack in the communication library. Looking at Figure 5.4 first, we

see no benefits for using any of the synchronization primitives for less than 4 KB of data except

with MWAIT-SysCall-User-Space. Messages are infrequently less than 32 bytes [VM02]. The most

interesting messages sizes are those between 8 and 64 KB. This seems to be the area with highest

latency for Normal MPICH, which we take advantage of. Normal MPICH does not have enough

slack to perform computation simultaneously to messages possibly below 32 KB. Our modified

MPICH, in contrast, can start taking advantage with messages as small as 4 KB. The number of

computations Normal MPICH can asynchronously take advantage of is comparable to our NOP
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Sender() {

for msgSize = 0 to 2^20 bytes

double c;

long floats = 0;

BeginTime()

request = MPI_Isend(buffer,msgSize,receiver)

while (!MPI_Probe(request)) {

for num = 0 to 1000

c = c*c

floats++

}

EndTime();

}

Receiver() {

for msgSize = 0 to 2^20 bytes

double c;

long floats = 0;

request = MPI_Recv(buffer,msgSize,sender);

}

Figure 5.6: MPI Isend() Test Kernel

and PAUSE spin-locks and condition variable primitives, but MWAIT-SysCall-User-Space leads

with messages up to 4 MB with MWAIT-SysCall-Kernel close behind it. We believe the resource

impact and overhead of NOP/PAUSE spin-locks and Pthread-Condition-Variables prevent the extra

magnitude of calculations to be performed as message size increases. Performance evens out across

the board as message size grows because memory becomes the limiting factor and Normal MPICH

and our Modified MPICH utilize the low-overhead rendezvous messaging protocol of MPICH after

128 KB. As the system overhead is reduced by the KML environment, floating point operations

increase for all test primitives. Figure 5.5 still reflects the anomalous behavior seen in the graphs

of Figure 5.2, and we are able to further take advantage of it. Although we do see available floating

point operations at 0 KB, it is an infrequent and unlikely case in real-world programming, so it is

not interesting to study. We start seeing available slack again at 4 KB message sizes. The time

to enqueue and synchronize with the helper thread is approximately equal to sending a message

smaller than 4 KB. Under KML, the Normal MPICH performs extremely well after 32 KB. The lack
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of system overhead and quickness of the rendezvous protocol allows for performance on par with

our modified MPICH and even better performance than our modified MPICH at very large message

sizes. A final observation should be noted that MWAIT-Call-User-Space performed on par with

other synchronization primitives in the floating-point test, but its advantage is the lower system

overhead and faster latency, which we want to take advantage of.
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Chapter 6

ASCI Purple Benchmarks

We ported five of the ASCI Purple benchmarks, IRS, SMG2000, sPHOT, SPPM and

Sweep3d[VY02, VM02, Pur], to the Intel i386 Linux platform to test for real-world applications

that can take advantage of the SMT processor. Table 6.1 summarizes each of the benchmarks. All

of the benchmarks, except for Sweep3D, use non-blocking message passing to some extent to test

our hypothesis.

6.1 Implicit Radiation Solver (IRS)

6.1.1 Description

Implicit radiation solver (IRS) [Car03] is an application to solve the radiation transport

equations by the flux-limited diffusion approximation. The application uses an implicit matrix solu-

tion. IRS is written as a general diffusion equation solver, but the flux limiter imposes the speed of

light as the maximum signal speed. The preconditioned conjugate gradient method (PCCG) is used

to invert the matrix equation. Neither transformations, diagonal scaling nor the two-step Jacobi

method are used to precondition the matrix. This PCCG method is known to not be completely

scalable, but its limitations are accounted for in the benchmark test sets. The standard ISO-C code

of the application uses a combination of MPI and/or OpenMP threads to scale.

The benchmark problem is a planar radiation wave diffusing through a regular rectangular

mesh from one end to the other and out. The physical problem is a 10 x 10 x 10 cm3 mesh with

variable resolution. The mesh is normally divided into domains with one domain per processor. The

number of spatial domains should not be less than the number of processors. Large amounts of com-

munication occur only in transmission of domain surfaces, though the PCCG method does require

two global reductions of four doubles for every matrix iteration. The benchmark time is made up

of the global reduction speed plus the general surface communication speeds plus the computation
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Table 6.1: Benchmark Summary
Application Language Problem Primary MPI Functionality

IRS C A diffusion equation solver that
solves the radiation transport
equations by the flux-limited dif-
fusion approximation

MPI Irecv
MPI Reduce (47%)
MPI Waitany (32%)
MPI Allgather
MPI Allgatherv
MPI Barrier
MPI Bcast
MPI Gather
MPI Gatherv
MPI Isend
MPI Recv
MPI Send
MPI Ssend
MPI Waitall

SMG2000 C Semicoarsening multigrid solver
for linear systems

MPI Waitall (60%)
MPI Irecv (35%) newline
MPI Isend (1%)
MPI Allreduce (.03%)
MPI Wait

sPHOT F77 2-D photon transport code using
Monte Carlo transport

MPI Barrier
MPI Irecv
MPI Reduce
MPI Send
MPI Waitall

sPPM F77 3-D gas dynamics problem on a
uniform Cartesian mesh using a
simplified version of the Piecewise
Parabolic Method

MPI Allreduce
MPI Isend
MPI Irecv
MPI Wait

Sweep3D F77 Solver for the 3-D, time-
independent, particle trans-
port equation on an orthogonal
mesh using a multidimensional
wavefront algorithm

MPI Allreduce
MPI Bcast
MPI Send
MPI Recv

speed. Comparisons should be measured in terms of speed per cell-iteration in one domain.

IRS Speed = (execution time in microseconds) / ( cells/domain * integral of iterations)

Messaging Profile and Execution Analysis

IRS is a highly optimized, compute-intensive application. MPI library calls account for

only 7 percent of the execution time, and 47 percent of that time is spent in MPI Allreduce. IRS



52

0

20

40

60

80

100

120

140

Time (seconds)

1 8 64 256
MPI Tasks

IRS Communication and Computation

Average Communication Time
Average Computation Time

Figure 6.1: IRS Communcation (After [VY02])

is memory-bound, because 80 percent of the calculations require a memory access. This results

in low utilization of the CPU and allowing for a greater density of threads per CPU. Execution

time decreases linearly with the number of processes. The communication overhead decreases as the

number of CPUs increases.
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6.2 SMG2000

6.2.1 Description

SMG2000 is

parallel semicoarsening multigrid solver for the linear systems arising from finite
difference, finite volume, or finite element discretizations of the diffusion equation on
logically rectangular grids. The code solves both 2D and 3D problems with discretiza-
tion stencils of up to 9-point in 2D and up to 27-point in 3D for the diffusion equation
∇ · (D∇u) + σu = f . The driver provided with SMG2000 builds linear systems for the
special case of the above equation, with Dirichlet boundary conditions of u = 0, where h is
the mesh spacing in each direction. Standard finite differences are used to discretize the
equations, yielding 5-point and 7-point stencils in 2D and 3D, respectively. To determine
when the solver has converged, the driver currently uses the relative-residual stopping
criteria. This solver can serve as a key component for achieving scalability in radiation
diffusion simulations. Parallelism is achieved by data decomposition. The driver provided
with SMG2000 achieves this decomposition by simply subdividing the grid into logical P
x Q x R (in 3D) chunks of equal size. [Car01]

The code is highly synchronous (blocking) with communication and computation patterns

that exhibit surface-to-volume relationships causing efficiency to be determined by the size of the

data blocks. SMG2000 is memory-access bounded. There are only one to two computations per

memory access. The memory requirements for 3D problems are 54 times the local grid size times

the size of a double plus some overhead. The overhead grows as the logarithm of the problem size.

6.2.2 Messaging Profile and Execution Analysis

As the number of processors increases, SMG2000 scales very poorly (Figure 6.2) due to an

increasing amount of communication overhead relative to constant amount of computation time. 75

percent of the application time is spent in MPI library routines, and 98 percent of that MPI library

time is spent in the non-blocking MPI Isend, and MPI Irecv calls and their respective message

status routines. As the number of nodes increases, the floating-point operations decreases, but the

fixed-point operations remains constant, while fixed-point operations dominate SMG2000 operations.

Because of the frequent communications, SMG2000 is only able to execute about 1024 floating-point

operations. On a 3 Ghz Pentium 4, this amounts to only 2 nanoseconds of computation for every

communication. This small number of operations per communication per task requires low latency

between the communication thread and the computation thread to prevent long backups in the

message queue. The average message volume per task is 2.5 megabytes distributed to two-thirds of

the other nodes in the network. With network communication latency between 60 microseconds and

20 milliseconds, the communication thread will have a queue of connections keeping it busy while

SMG2000 computes. SMG2000 uses the integer function heavily, so we expect to see some conflict

with the communication thread to occur.
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Figure 6.2: SMG2000 Communcation (After [VY02])

6.3 sPHOT

6.3.1 Description

sPHOT is

a 2D photon transport code. Photons are born in hot matter and tracked through
a spherical domain that is cylindrically symmetric on a logically rectilinear, 2D mesh.
Monte-Carlo transport solves the Boltzmann transport equation by directly mimicking the
behavior of photons as they are born in hot matter, move through and scatter in different
materials, are absorbed or escape from the problem domain. The logically rectilinear, 2D
mesh in which particles are tracked, is internally generated. The mesh is small enough
that a complete copy of the mesh will not only fit on each node in a parallel machine, but
also fit into cache memory in most modern CPUs. Thus, this benchmark does not stress
memory access.

Particles are born with an energy and direction that are determined by using random
numbers to sample from appropriate distributions. Likewise, scattering and absorption
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are also modeled by randomly sampling cross sections. The random number generator
used is implemented in the code using integer arithmetic in a way that makes the resulting
pseudo-random number sequence portably reproducible across different machines.

The use of random numbers makes the code’s output (edit variables) ”noisy”. This
noise is a direct result of the discrete nature of the simulation. The level of the noise
can be reduced by increasing the number of particles that are used in the simulation.
Unfortunately, the level of noise in the answer decreases only very slowly with increasing
computational effort. The noise is inversely proportional to the square root of the number
of particles. If the noise is to be reduced to 1% of the value in a given simulation,
it is necessary to run 10,000 times as many particles. Thus, high-quality (low-noise)
simulations can become very computationally expensive. Parallelism is an obvious way
to increase the number of particles.[Bar01]

sPHOT is considered an embarrassingly parallel application. A copy of the 2D mesh is

distributed to each computer, which generates its own random numbers and does its own particle

tracking. Communication is limited to global scatter and gathers between the master and slave tasks

to update global variables and distribute the meshes. This code utilizes OpenMP on every node and

MPI for a message passing. Even if the program makes non-blocking send, the message size is so

small that the Channel P4 communication layer will make a blocking send and complete the call.

Messaging Profile and Execution Analysis

sPHOT is so embarrassingly parallel that its communication overhead consists of 4 global

data distribution operations regardless of scale. Increasing the size of the cluster decreases execution

time exponentially. sPHOT spends at most 12 percent of the execution time in a barrier call. The

average message size is only 4 kilobytes.
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Figure 6.3: sPHOT Communication (After [VY02])

6.4 SPPM

6.4.1 Description

sPPM is

a benchmark solves a 3D gas dynamics problem on a uniform Cartesian mesh using a
simplified version of the PPM (Piecewise Parabolic Method) codehence the ”s” for sim-
plified...The hydrodynamics algorithm involves a split scheme of X, Y, and Z Lagrangian
and remap steps that are computed as three separate passes or sweeps through the mesh
per timestep, each time sweeping in the appropriate direction with the appropriate oper-
ator. Each such sweep through the mesh requires approximately 680 FLOPs to update
all of the state variables for each real mesh cell. Message passing is used to update ghost
cells with data from neighboring domains three times per timestep and occurs just before
each of the X, Y, and Z sweeps. Multiple threads are used to manipulate data and update
pencils of cells in parallel.

The sPPM problem involves a shock propagating through a gas with a density discon-
tinuity. The coordinates are -1:1 in x and y, and 0:zmax in z, where zmax depends on
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the overall aspect ratio prescribed. A plane shock traveling up the +z axis encounters a
density discontinuity, at which the gas becomes denser. The shock is carefully designed
to be simple, though strong (about Mach 5). The gas initially has density 0.1 ahead of
the shock; over 5dz at the discontinuity, it changes to 1.0.[Eng02]

This code uses explicit and/or implicit threading techniques through POSIX threads and/or

OpenMP for shared memory computation on nodes. Message passing is used for domain decompo-

sition and to distribute data to each node.

Messaging Profile and Execution Analysis
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Figure 6.4: sPPM Communication (After [VY02])
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sPPM is an application that can scale to thousands of processors with communication

overhead of 4 percent (for 8 tasks or more) dominated by an MPI Allreduce. Global MPI Allreduces

occur after each time-step, but communication between the neighbors occurs throughout the three

sweeps. The average message size is 512 kilobytes with some messages as large as 1 megabyte. The

large messages require rendezvous messaging entailing two separate messages. The modified MPICH

should have an advantage here because the messaging is exclusively composed of MPI Isends and

MPI Irecvs. As the number of nodes increases, the messaging overhead diminishes the added benefit

of more processors. Each thread communicates on average 17 megabytes of data to the other nodes.

6.5 Sweep3d

6.5.1 Description

The benchmark code SWEEP3D

SWEEP3D solves a 1-group time-independent discrete ordinates (Sn) 3D cartesian
(XYZ) geometry neutron transport problem. The XYZ geometry is represented by an IJK
logically rectangular grid of cells. The angular dependence is handled by discrete angles
with a spherical harmonics treatment for the scattering source. The solution involves
two steps: the streaming operator is solved by sweeps for each angle and the scattering
operator is solved iteratively. The two step solution coded in SWEEP3D is known as an
inner iteration. A realistic Sn code would solve a multi-group problem, which in simple
terms is nothing more than a group-ordered iterative solution on top of what SWEEP3D
does. Groups are solved sequentially since there is strong coupling between groups due
to downscattering. The multi-group iterations are known as outer iterations. Finally, a
realistic ASCI Sn code would include time-dependence with thousands of time steps on
top of what a multi-group code does. [Car02]

As the number of groups increases, the number of inner iterations increases. Hence,

the work and memory requirements substantially increase. Adding groups requires saving angle-

dependent arrays for all grid points, angles and energy groups for old and new time steps. To solve

each angle requires solving a series of 4 equations with 7 unknowns (boundary conditions complete

the system of equations) resulting in the solution to the cell plus an input I, J or K for three other

cells. This recurses until the solution is found.

The benchmark is currently coded with blocking sends and receives, but this ’embarrass-

ingly’ parallel code allows for independent calculation of all discrete angles. These can be converted

to use non-blocking sends and receives to overlap communication of the next block of data with the

computation of the current block. The benchmark would need to be altered to double buffer and

stagger computations in order to maximize the benefit.
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Figure 6.5: Sweep3D Communication (After [VY02])

Messaging Profile and Execution Analysis

Sweep3D is highly scalable code up to 64 nodes, but adding more nodes increases the

computation overhead super-linearly. At 384 nodes, MPI Send and MPI Recv account for 63 percent

of the execution time. MPI Isend and MPI Irecv makeup 98% of this time. It hits in the cache 99%

of the time and spends the majority of time in one function that it iterates through every time-step.
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Chapter 7

Benchmark Evaluations

7.1 Experiment Setup

The experiments were performed on a four-way cluster of computers connected via a gigabit

ethernet switch. Each computer is equipped with an Intel Pentium 4 Prescott SMT processor from

the Intel Corporation. Each processor has two logical contexts, which share 16 KB of L1 cache

and 1 MB of L2 cache. Each node has 1 GB of DDR400 RAM memory, along with sufficient disk

space. Two of the processors are clocked at 3 GHz, and the other two are clocked at 3.2 GHz. We

believe the clock difference played little bias in these results as all experiments were performed on

the same hardware. In all instances, benchmarks were scaled so they would not page to disk during

the experiments.

We did not perform these experiments using our modified KML environment, nor utilize

MWAIT-Call-User-Space. These results utilizes regular non-KML Linux operating system because

KML is beyond the scope of this thesis. This is most unfortunate and we plan to incorporate this

into future work. We make conclusions using the other available synchronization primitives.

Each machine runs Red Hat Fedora Core 2 Linux with Linux kernel 2.6.8. The kernel was

compiled with default Red Hat kernel configuration enhanced by our personal extensions to enable

promotional buddy scheduling and MWAIT instruction access. MPICH and the benchmarks were

compiled using the Intel C and FORTRAN compiler version 8.1. All final results were run without

debugging enabled, nor with X-windows active on any machine. In addition, each experimental

data-point is an average of three runs.

7.2 Benchmark Evaluation

We present our benchmark results relative to the performance of “Normal” unmodified

MPICH implementation. The Normal MPICH implementation is the standard MPICH library
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distributed by Argonne National Laboratory [Lab]. Higher Bars reflect improvement in time over

the normal MPICH run-time. For each benchmark, we present results with absolute numbers and

also normalized percentages against the standard MPICH library. Our benchmark experiments were

made on the same four machines described above and in succession to keep the experimental setup as

unbiased as possible. For experiments using Normal MPICH, SMT was turned off on the processor

and the Fedora Core 2 single CPU kernel was used. SMT experiments always ran with SMT turned

on and the SMP kernel.

We attempted to keep the problem size the same as we increased the number of nodes, but

this was not possible in some cases, such as sPPM. To gain more insight into the results, we used

Lawrence Livermore Laboratory MPIP and the Gnu Profiler tools when necessary for interpreting

the data.

7.2.1 IRS
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Figure 7.1: IRS Results (Time)

Our results are displayed in Figure 7.1 and Figure 7.2. They are displayed in two forms to



62

provide reference to the meaning of the percentage value results. We received the best performance

from the IRS benchmark. This benchmark is a long-running benchmark that scales very well and

takes great advantage of the modified MPICH through the overlapping of work with asynchronous

and non-blocking communication. The GNU Profiler was only able to attribute 87% of the CPU

time to the application for our modified MPICH code (Condition Variable and MWAIT variations),

while the Normal MPICH consumed 99% of the CPU time. The missing 13% was likely utilized in

the MPI library during network communication.
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Figure 7.2: IRS Results - Percentage Improvement over “Normal”

On two nodes, IRS executes in 700 seconds, while on four nodes it executes in 200 seconds.

This benchmark is very sensitive to interruptions and cache pollution. One function MatrixSolveCG

consumes the most CPU time (40% combined), but the communication function rbndcom() saw

the greatest savings. We see that rbndcom() requires 16 seconds in a two-node configuration and

9 seconds in a four-node configuration. The MatrixSolveCG function The rest of the savings were

between 1 and 5 seconds per function distributed evenly across all functions. Considering that the

majority of communication calls reside between every time-step, the overhead of being interrupted
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during these collective sections was hindering the benchmark’s performance.

We see an equal performance increase for MWAIT-User-Space, MWAIT-Kernel-Space and

Pthread-Condition-Variable MPICH because the communication overhead overlapped with the com-

putation of the main application, even if it was null. This benchmark performs well for 4 nodes.

With 2 nodes, we observer unchanged performance. We believe this is due to the added overhead of

communication over the single node model. Also, the savings achieved are minimal with only two

nodes because the duration of communication is minimal. In addition, the benchmark problem size

was kept the same across the different sized nodes.

7.2.2 SMG 2000

    for (i = 0; i < num_sends; i++)
        {       
          MPI_Isend (send_buffer, send_size, ((MPI_Datatype) 6),
                     send_procs[i], 0, comm, &send_requests[i]);
        }       
    }

  if (num_sends)
    {
      MPI_Waitall (num_sends, send_requests, send_status);
      ...
    }

Figure 7.3: SMG2000 Kernel

Our results are displayed in Figure 7.5 and Figure 7.4. They are displayed in two forms to

provide reference to the meaning of the percentage value results. SMG2000 takes an average of 20

seconds to execute. It is an application spending 60% to 70% of its time waiting for non-blocking

asynchronous calls to complete. The primary communication function is hyper StructCoarsen(),

which coordinates data with neighboring processes. This function dominates in the presence of

communication. The NOP-Spin-lock and PAUSE-Spin-lock primitives are faster than either of the

MWAIT variations or Pthread-Condition-Variable in executing MPI Calls, but they slow down and

interfere with the application because there is CPU contention.

The main kernel in SMG2000 is an Isend/WaitAll combination illustrated in Figure 7.3.

This code performs zero computations during point-to-point and collective message passing. 98% of
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Figure 7.4: SMG2000 Results - Percentage Improvement over “Normal”

all the packets communicated are 2 KB in size. As we increase the number of nodes, we see that

Normal MPICH beats all modified versions except for Pthread-Condition-Variable in the 4-node

configuration. The overhead of queuing and dequeuing the accumulated Isend() calls with only 2

KB packets makes Normal MPICH faster in this respect. We see that this amounts to about 4 seconds

in general. MWAIT-User-Space, in this case, shows its main weakness. Being in a such a tight call

with so many Isends constantly sending data, the application must constantly suffer the kernel-to-

user memory overhead. MWAIT-USER SMG2000 spends more time in Irecv() than in WaitAll(). In

the 4-node case, Condition Variable MPICH beats NORMAL by one second and MWAIT Kernel by

4 seconds because it has the very low latency and system impact while remaining in User space. The

MWAIT-KERNEL MPICH suffers from repeated system calls. SMG2000 problem size remained the

same for all experiments.
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Figure 7.5: SMG2000 Results (Time)

7.2.3 sPHOT

Our results are displayed in Figure 7.6 and Figure 7.7. They are displayed in two forms to

provide reference to the meaning of the percentage value results.

sPHOT is a highly CPU-bound benchmark that predictably showed little or no improve-

ment. The benchmark runs for 15 seconds on average and has only 4 communication calls. Perfor-

mance is flat for two nodes, because there is no communication involved and similarly for the two

node experiment. In the four-node experiment, we see a 7% performance drop in Pthread-Condition-

Variable MPICH, while MWAIT-USER-Space, MWAIT-KERNEL-Space and Normal MPICH show

no difference. Again, NOP and PAUSE Spin-Lock versions degrade performance because of CPU

resource conflicts. The beneficial effect of the MWAIT instructions on uniting the CPU internel

queues are visible with this benchmark. Because of the paucity of communication and the similar

profiles, the MWAIT-User/Kernel-Space and Normal MPICH benefit from complete use of the whole

CPU. We start to see this effect with four CPUs and a mixture of communication and computation.

Though the difference in time is only one second, that one second makes a big difference to an
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Figure 7.6: sPHOT Results

experiment lasting only 15 seconds. The size of this benchmark problem was kept the same across

all experiments.

7.2.4 sPPM

sPPM is another benchmark that performs a lot of computation and then reduces the

information from neighboring nodes. Nodes issue an MPI Send() and the master node initiates an

MPI Allreduce(). Message sizes are 1 MB in size, which would beof benefit if it were overlapped

with calculations, which is not the case. We see from Figure 7.8 that our MWAIT and Condition

Variable MPICH modifications are on par with Normal MPICH for all tested cases. NOP and

PAUSE MPICH modifications again reflect the CPU resource contention issue.
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Figure 7.7: sPHOT Results (Time)

7.2.5 Sweep 3D

The Sweep3D benchmark executes for 80 to 150 seconds from two to four processors. It

is dominated by the function sweep that consumes 98% of the run-time. After every sweep(), an

AllReduce() is issued that uses blocking synchronous sends and receives to aggregate a global result.

There is stub code in the benchmark to implement a non-blocking asynchronous call, and because

messages are in the range from 16 to 512 KB, this application has potential for use in our approach

if it was modified. Unfortunately, now it uses synchronous sends and receives, and we see from

Figure 7.10 and 7.11 shows that there is no improvement again in any of the benchmarks. NOP

and PAUSE MPICH conflict again during computation and during communication. In the modified

MPICH, blocking synchronous sends and receives are handled by the computation thread, while the

communication thread waits for new connections and requests. This also explains the degradation

in performance of why NOP and PAUSE from two to four nodes. This benchmark problem size is

kept the same across the benchmarks.
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Chapter 8

Related Work

Parallelizing sequential problems and overlapping their overhead with computation has long

been an approach to improving performance of many tasks in computers. Henry Ford popularized

pipelining the building of cars to prevent workers from becoming idle and improve factory efficiency.

Similarly, the IBM STRECH mainframe was the first to pipeline a microprocessor to improve execu-

tion efficiency, and the IBM 3084 was one of the first mainframes to have multiple microprocessors

to execute multiple tasks at one time [IC]. Taking explicit advantage of SMT processors through

asynchronous communication techniques has not been previously studied, but techniques to mini-

mize program latency and throughput using asynchronous and synchronous techniques have been

studied heavily. These problems frequently arises in processes demanding maximum efficiency such

as process scheduling, processor pipelining, network communication protocols, disk access, etc. We

considered several approaches on how to best parallelize communication libraries. Hoare outlined a

parallel programming language and efficient synchronization primitives to take explicit advantage of

multi-processors, independent controllers and other parallel features of microprocessors [Hoa78]. He

promotes programming features to be as parallel and independent as possible to maximize efficiency.

The BeOS operating system from Be, Inc. describes itself as a “pervasive multitasking” operating

system. Almost every library and routine in the whole operating system, including the GUI inter-

face, is non-blocking and asynchronous. In addition to the user’s explicit non-blocking overlap, the

operating system transparently breaks the application’s tasks into smaller tasklets that are executed

in parallel to maximize processor efficiency [Be]. Modern operating systems take advantage of hard-

ware to allow slow tasks to complete while they take care of other tasks. Direct memory-addressing,

modern hard disks, communication cards, video cards and any other peripheral use hardware inter-

rupts to notify the operating system when a task has completed or needs to be completed. Modern

operating systems take advantage of any hardware parallelism available to them. Our work is an

extension of these concepts.

Promotional Buddy Scheduling is a special case of general-purpose scheduling algorithms
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and akin to gang-scheduling and symbiotic job scheduling. Snavely et al. study a convergent

feedback scheduling algorithm that uses sampling along with custom prioritization techniques to

discover the most efficient scheduling [STV02]. This technique may optimally schedule tasks, but

it does not take into account thread-specific requirements, such as low IPC latency or locality.

Dorai et al. optimize single-thread applications on SMT processors by minimizing the impact of all

other tasks. In effect, they lower priorities of all background tasks or make them dependent on the

primary application task [DYC]. This technique is similar to ours in that hardware and software

are optimized for use by the primary tasks, and any subordinate helper tasks are low-priority low-

use tasks. Wiseman and Feitelson take a similar approach to minimize process conflict on a larger

scale [WF03]. Their Paired Gang Scheduler also uses a feedback scheduler to assign symbiotic tasks

together to groups of processors in a cluster or multi-processor environment. They focus on pairing

CPU-intensive tasks with I/O bound tasks on the same processor. This is a concept similar to our

division of communication and computation. These works are focusing on single applications. None

of them offer any user facilities like Promotional Buddy Scheduling or library-based transparent

multi-threading to meet an application’s specific needs.

There has been some research investigating methods to minimize the latency of communi-

cation through parallelism. Liu et al. show how the Infiniband network architecture can provide very

low latency, high bandwidth communication through the use of zero-copy and one-sided communi-

cation [LWK+03]. When a user calls MPI Send or MPI Isend, the underlying library sets up and

enqueues the request, notifies the Infiniband network card and continues processing. The Infiniband

card uses direct memory access to read directly from user memory (zero copy) without going into

kernel mode or using further CPU cycles. This reduces most of the overhead associated with copying

data into kernel space and forcing the kernel to initiate direct memory access (DMA). In addition,

the Infiniband network cards support one-sided communication that allows it to send data directly

into another node’s user-space memory whereupon the remote node is notified that a message has

arrived. This provides a close approximation to the simultaneity provided by the SMT processor

and topics discussed in this thesis [LWK+03].

The MPICH MPI library (Argonne National Laboratory) was chosen over LAM MPI (Indi-

ana University) because of the maturity of its code base and simplicity in allowing for modifications

[BDV94, GL97]. Both MPICH and LAM MPI are being modified constantly, and a second gener-

ation MPICH is under development that implements some asynchronous communication in order

to further overlap communication and computation. MPI-2 one-sided communication sets up a vir-

tual shared-memory allowing MPI nodes to send messages directly to other nodes’ memory without

intervention. The remote node is then notified that the data is in its memory and the communica-

tion completes. One-sided communication supports remote dynamic memory access (RDMA) using

synchronous put and get operations on memory to simulate the shared memory in a distributed

environment. In contrast, this thesis focuses on non-blocking sends and receives (Isend, Irecv) of

messages and its potential to increase performance in distributed applications on SMT processors.
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Chapter 9

Conclusions

We were able to successfully show that overlapping communication and computation through

SMT hardware increases performance of scientific applications on SMT hardware. However, the

magnitude of improvement is lower than expected. Choosing different benchmarks with greater

communication and computation overlap that resemble our ideal model more closely is necessary.

The Sweep3D benchmark documents describe how to modify the benchmark to almost completely

overlap communication with computation. Other red-black computational kernels should also be

explored. Nevertheless, we were able to see that our threaded communication model, low-latency

synchronization primitives and promotional scheduler are effective and have great potential. The

IRS benchmark is our showcase from this set. It improves 30% through communication overlap and

fewer interruptions of the computation thread. We see benefits for sPHOT when using the MWAIT

instruction over other primitives by rejoining the internal instruction queues of the processor to max-

imize performance. For sPPM, sPHOT and Sweep3D, we see that our modified MPICH performs

equally well when using MWAIT-SysCall-USER/KERNEL-Space or Pthread-condition-variable for

inter-thread communication and synchronization. We determined that we need to better support

smaller packets in the future. SMG2000 illustrates that even though there are plenty of non-blocking

calls, the overhead of using any of our threading techniques was either too high to provide a benefit

or communication occurred in non-overlapping communication-computation sections. We were not

able to use our promotional scheduler in these benchmarks, but we plan to use it in future work.

Taking advantage of the SMT hardware to perform symbiotic communication and compu-

tation in scientific applications can and does provide benefits under certain circumstances. Programs

need to be specifically designed to take further advantage of SMT processors. We were able to sup-

port 4 out of 5 legacy applications on the SMT architecture without degrading their performance

and, in some cases, improving it. The MWAIT instruction has great potential as an even faster

synchronization primitive when available in user-space. Promotional scheduling can be used in dis-

tributed environments to provide maximum performance for users. Frequently, computing clusters
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deploy general-purpose operating systems built for fairness while the scientist needs every clock cycle

and would be better-served with customized operating system kernels.
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Chapter 10

Future Work

One of our performance limiting factors is the MPICH P4 communication sub-structure.

It is well designed for networks up to 100 Mbps, but poor connection management, dependence on

signals and system pipes hamper performance beyond 100 Mbps. Modifying the underlying P4 for

higher throughput by improving the P4 layer may be more time-consuming than moving to another

option such as the high speed, low latency Myricom Myrinet network [Myr]. This 800 Mbps network

provides 7 micro-second latency and scales to thousands of nodes.

We want to investigate scaling this design to thirty-two and more processors. Vetter showed

that for some computational programs, MPI communication increases super-linearly as the number

of processors increases [VY02]. Frachtenberg and Vetter suggest that 16 to 64 processors should be

enough to take advantage of substantial gains in performance due to the communication overhead

[FPCcF01, VY02].

We would like to further explore promotional thread-scheduling in a gang-scheduler run-

ning on computational clusters. Our emphasis is on single application performance improvements,

so each gang schedule would consist of all threads of a single program assigned to the process-

ing elements. Implementing intelligent paired gang scheduling along with a performance counter

feedback scheduler would allow higher densities of threads on the same contexts without degrading

performance[FPCcF01, WF03, STV02]. Other individual programs would then be gang-scheduled

for control of the processors. This gang scheduling would occur as an operating-system task sched-

uler as opposed to a global task scheduler that doles out groups of tasks to all processors available

in the cluster.

We are in search of better applications to illustrate the benefits of our techniques. We are

looking into red-black kernels and possibly more traditional network servers. In addition, we will be

optimizing the current MPICH design for small message sizes and further reducing the overhead of

thread synchronization.
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Appendix A

Build Environment Instructions

A.1 How to use this repository

We setup a distributed benchmark compiling/management and cluster setup/management

system through the use of shell scripting, rsync and distcc [Tri, Poo87]. This is a self contained

multi-version environment that comes with compilers, libraries and other support files that can

easily be setup on other computers to make a working compute node available. We have made every

attempt to make this collection as portable as possible and as flexible as possible. The environment

is based from a root directory ($ROOTDIR) from which all operations are based. The emphasis was

to not depend on computer-local files, but carry a complete environment from machine to machine

in order to minimize incompatibilities and maximize flexibility.

A.2 Setup

One could retrieve the latest version from Dr. Frank Mueller’s CVS directory. Direc-

tions to setup for his CVS are at http://moss.csc.ncsu.edu/∼mueller/ . Checkout using cvs co -d

[Your ROOTDIR directory] nvouk [your userid] . If you want to check out only a single bench-

mark, then you must minimally checkout the “bin” directory and the benchmark from “bench-

marks/BENCHMARK NAME”. Be aware, though, that most items in the benchmarks directory

that end in thread should be deleted except mpich-1.2.5 thread.

All files mentioned are relative to the root directory ($ROOTDIR), unless explicitly stated.

These steps are recommended for setup:

1. Basic items required are a set of computers inter-connected through a network. You should

have administrative access to all machines if this is a brand new setup. The system works

by designating a machine as a primary host from which all files will be pushed to other slave

servers. Even though all machines should be able to act as primary host, you should pick just
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one machine as a template machine to keep things clear. If you decide to work from multiple

machines, you must remember to not make changes on other machines before synchronizing all

machines. An alternative method that doesn’t require synchronization is to use a distributed

file system.

2. You should use bash as your primary shell, or rewrite conf/bashrc file in whatever shell language

of choice.

3. You must add to your basic .bashrc file two lines:

declare -x ROOTDIR=$HOME // or other choice directory
. $ROOTDIR/bin/bashrc

ROOTDIR is the reference directory under which all benchmarks,libraries, programs are

placed. This does not have to be a home directory, but some other directory defined by

ROOTDIR. You should keep the root directory the same across the cluster due to the way

MPICH executes remotely.

4. The user will have to edit a few key files to customize for your specific setup. These files are

used in the computer setup, so be careful in what you allow or don’t allow. The files deal with

letting users use ’rsh’ and ’ssh’ to login without a password. It also adjusts some firewall rules.

$ROOTDIR/bin/conf.pl

$ROOTDIR/bin/bashrc

$ROOTDIR/bin/hosts

$ROOTDIR/bin/hosts.allow

$ROOTDIR/bin/hosts.deny

$ROOTDIR/bin/hosts.equiv

$ROOTDIR/bin/rhosts

$ROOTDIR/bin/iptables

/etc/sudoers

/etc/group

The user should look through conf.pl and edit the benchmarks (follow additional directions

from the next section)

These are the steps to get a node working manually. There is a utility called ’setupComputer’

that can be executed from the template computer that executes most of these instructions.

The only thing to be done afterwords is to copy the new machine’s public key to the template
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computer, add it to the authorized keys file in the bin directory, re-synchronize, and run

’setupCompile’ on all machines.

In order to setup a machine, the user should use ’sinc’ to have the repository copied to that

machine. sinc username@machinename

The account needs to setup your user for use with ’sudo’. Sudo is important as it is used in

several places and you will be typing your password annoyingly too much otherwise. Most of

the time the user just needs to add himself to the ’wheel’ group (gpasswd -a user wheel) and

edit the /etc/sudoers file.

For communication, the user should run the command ’setupCompile’. This should be checked

before running as it modifies several system configuration files. ’setupCompile’ will generate

an ssh dsa key, copy configurations for rsh and ssh and also an iptables firewall config. Be

aware that there are some security considerations to consider here because of rsh’s inherent

insecurity.

The user will need to copy the id dsa.pub key to your template server and then run ’sinc’

again in order to get ssh to work through dsa keys. The account owner must be able to login

without having to type a username or password. Copy the new machine’s public key and add

it to the authorized keys file in the bin directory of the template computer. Re-’sinc’ and run

’setupCompile’ again to complete installation.

Once the last step has been accomplished, the user should be able to freely use rsh or ssh

to execute and login to any machine across the network.

A.3 Setup benchmarks

This is a Multi-version compilation and testing system. This means that it supports several

copies of the same program, but operated on slightly differently. This project is keyed off of the

MPICH MPI library compiled statically against several test benchmarks. There are utilities, namely

switch, which go through the set of benchmarks and change pointers in the ROOTDIR to ’alternate’

versions of files. This can be applied to any type of directory, not just benchmarks. To change all

of these features, edit the ’switch’ utility.

The lynch-pin to making this system work are the three utilities ’switch’,’sinc’ and ’buildall’.

• switch: Switch facilitates the multi-version system. Be-aware though, it works under the

model that benchmarks have a ’normal’ version of a program, which may be modified at will,

but the same version must be used for ’alternate’ versions. There is a normal and alternate

MPICH library, which can be modified freely. New benchmarks added should be suffixed

with ’ normal’. Then, when a ’switch’ occurs, the ’normal’ version is copied and suffixed with
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’ thread’. ’Switch’ checks for the ’ thread’ copy and if it exists, it does nothing but switch the

pointers in the root directory.

Switch uses the ’%benchmarks’ hash in conf.pl to get a mapping between the short root

directory name of the benchmark and the corrosponding long name. This helps to allow for

changes in versions and keep things ”straight”. The symbolic links created in the root directory

can be reference by other libraries to keep

• switchall:

This is a corrosponding application to ’switch’ that ”switches” all the machines in your ’@ma-

chines’ array at once.

• sinc: Sinc, in the default configuration, it uses rsync to copy all items declared in the ”@dirs2”

array in conf.pl. Add/Delete items to this array for automatic copying. It uses the ”@ma-

chines” array as a default set of machines. Pass ’-h’ to get all the options as you can synchronize

individual directories from the ROOTDIR to other hosts. You should look at the ”%machines”

hash to adjust the communication protocol desired to access those machines (ssh/rsh/other).

• buildall: Buildall allows you to build all applications in a particular order with whatever

customizations are needed in order to make it work. It can build particular projects or all of

them (pass it -h to see options). It uses the ’%benchmarkBuild’ hash keys as input, and then

executes the corrosponding instructions. Given no arguments, it will follow the order of items

to build in the ’@buildOrder’ array. This allows you to build your whole system to your exact

specific5ation.

• tell: Tell is a simple utility to control other nodes in your network (or outside). It takes a

hostname as an argument and passes that to ssh, if the communication method is not defined

in ’%machines’ hash. It then executes whatever commands are passed to it on that host.

• tellall: Corresponds to the ’tell’ command, but tells all machines the same command.

A.4 Compiling

For the benchmarks provided, we used primarily the Intel 8.1 fortran and C/C++ compiler.

We also provided support, in some cases, for gcc as in mpich, but only where necessary. The compilers

are installed in $ROOTDIR/opt/intel 80 cc and $ROOTDIR/opt/intel 80 fc. Symbolic links are

provided for future compiler upgrades. Adjust the $ROOTDIR/opt/cc and $ROOTDIR/opt/fc

links accordingly.
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A.5 Distributed Compiling:

We have also provided a facility for using a distributed compiling system, secure and

insecure, distcc (http://distcc.samba.org/) and also the caching preprocessor ccache. We wrapped

the necessary make commands into the command ’distmake’, so you can use ’distmake’ where ever

’make’ is used. To use this properly, please modify the @machines and the @DISTCC HOSTS

arrays in $ROOTDIR/bin/conf.pl to adjust which machines are used for compiling. The utility

automatically checks if a machine is up or down to allow for changing networks.

• setupdistcc: Used by distmake to start the distcc daemon on that machine.

• distmake:

If you compile something using distmake, please use distmake throughout the build/install

process, even if you need to use sudo or be root to install. The distmake utility checks if

you are effectively the root user and does not distribute. If distributed compilation as root is

desired, you will have to edit the distmake utility and take out the check or add an option.

For distributed compiling using ssh communication, pass the -ssh option as the first option.

To use a C compiler other than gcc, pass the type of compiler first, or if using ssh, then after

the -ssh option. It recognizes icc, gcc, icpc, xlc, XlC, g++, pgcc, pgCC and their respective

fortran versions.

By default, distmake assigns three times as many tasks to pass to ’make -j’ as there are

machines. Edit the file to change the number of tasks assigned.

• iccbuild: Setups up the environment variables to use Intel fortran and C compilers.

• gccbuild: Setups up the environment variables to use GNU fortran and C compilers.

A.6 Testing benchmarks

We have written some automated testing tools to help ease testing of the various options.

• maketests: ’maketests’ is a robust utility to test each individual benchmark, while also record-

ing the output. The output is sent to $ROOTDIR/results and allows the passing of many

modifications. Each of the benchmarks’ Makefile was modified to accept these parameters.

Pass ’-h’ to see all the options defined by ’maketests’.

• manualtest: This program attempts to execute an MPI benchmark manually instead of thread

MPIRUN.

• dotests: An automated script that tests all benchmarks, threaded and normal.
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• cmwait: This controls the kernel mwait modifications. If you happen to kill a process that is

calling the mwait system call, you will not be able to break it without this tool or rebooting.

Pass the command ’status’ to check if MWAIT is enabled or disabled. Pass ’cmwait’ on or off

to enable and disable.

• killprog: This is a script to cleanup leftover programs. Pass it a program name to kill it.

A.7 Miscelanious Tools

These are some random utilities written to help development.

• gensmtthrds: Experimental utility. Modifications to each of the source files in MPICH are very

similar, so We wrote an automated tool to do the process efficiently and consistantly. The tool

pseudo-works, but needs some more fixing. Useful, in that it contains a template of the general

modifications necessary for each file. Use on files in mpich/src/, except for mpich/src/ht.

• gccDefines: Contains the LIB, CC, FC, etc. environment definitions for the GNU GCC/G77

compilers. Used by gccbuild.

• iccDefines8: Contains the LIB, CC, FC, etc. environment definitions for Intel 8.X ICC/IFORT

compilers. Used by iccbuild.
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