
Abstract

MARATHE, JAYDEEP P. Trace Based Performance Characterization and Opti-
mization. (Under the direction of Associate Professor Frank Mueller).

Processor speeds have increased dramatically in the recent past, but improvement

in memory access latencies has not kept pace. As a result, programs that do not make

efficient use of the processor caches tend to become increasing memory-bound and do not

experience speedups with increasing processor frequency.

In this thesis, we present tools to characterize and optimize the memory access

patterns of software programs. Our tools use the program’s memory access trace as a

primary input for analysis. Our efforts encompass two broad areas — performance analysis

and performance optimization. With performance analysis, our focus is on automating the

analysis process as far as possible and on presenting the user with a rich set of metrics,

both for single-threaded and multi-threaded programs. With performance optimization,

we go one step further and perform automatic transformations based on observed program

behavior.

We make the following contributions in this thesis. First, we explore different

tracing strategies — software tracing with dynamic binary instrumentation, hardware-based

tracing exploiting support found in contemporary microprocessors and a hybrid scheme that

leverages hardware support with certain software modifications. Second, we present a range

of performance analysis and optimization tools based on these trace inputs and additional

auxiliary instrumentation. Our first tool, METRIC, characterizes the memory performance

of single-threaded programs. Our second tool, ccSIM extends METRIC to characterize the

coherence behavior of multithreaded OpenMP benchmarks. Our third tool extends ccSIM

to work with hardware-generated and hybrid trace inputs. These three tools represent our

performance analysis efforts. We also explore automated performance optimization with

our remaining tools. Our fourth tool uses hardware-generated traces for automatic page

placement in cache coherent non-uniform memory architectures (ccNUMA). Finally, our

fifth tool explores a novel trace-driven instruction-level software data prefetching strategy.

Overall, we demonstrate that memory traces represent a rich source of information

about a program’s behavior and can be effectively used for a wide range of performance

analysis and optimization strategies.
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1

Chapter 1

Introduction

Processor speeds have increased dramatically in the recent past. However, the

rate of improvement in DRAM access latencies has been slower, as shown by Figure 1.1.

The increasing difference between the performance of the CPU and the memory system

has serious implications for contemporary software programs. Another issue is the advent

of multicore platforms that are being introduced by all major processor vendors. As the

number of cores increase, the demand for memory bandwidth grows, even without increasing

the individual processor frequency.

As a result, programs that do not make efficient use of the processor cache will

tend to become increasingly memory bound and will not experience significant speedups with

increasing CPU frequency. In fact, programs may even experience performance degradation

as the number of cores increases without corresponding increase in memory bandwidth.

In our work we address this “memory wall”[112] in two broad directions. First,

we build automated tools that help the programmers to characterize and understand the

memory access patterns of their programs. Our focus is on automating the performance

analysis process as far as possible and on presenting the user with a rich set of metrics,

both for single-threaded and multi-threaded programs. Second, we go one step further and

perform automatic performance optimization based on observed program behavior.
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Figure 1.1: Improvement in CPU and DRAM speeds [39]

1.1 Problem Statement

How can a program’s memory trace be used to analyze its behavior and

optimize its performance?

This problem statement has several facets:

1. What are the different methods to obtain the program’s memory access trace?

2. What are the quality versus overhead tradeoffs between these trace generation meth-

ods?

3. What are the different performance analysis and optimization frameworks that are

feasible using memory traces?

4. What are the pre-requisites in terms of trace information and detail that these anal-

yses entail, and is it possible to satisfy them with memory traces and additional

instrumentation?

In this thesis, we explore these questions in detail. We demonstrate that memory

access traces are a rich source of information about the program’s behavior and represent

far more profile information that is available with traditional time-based profiling tools like

gprof. In the rest of the chapter, we first discuss the types of trace generation that we

have developed and used in our tools. Then, we introduce our trace-based analysis and

optimization tools.
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1.2 Trace Generation

In our work, we have used memory traces obtained with both software and hard-

ware means. In the pure software approach, we instrument the memory access instructions

of an executing program using dynamic binary instrumentation. Instrumentation at the

level of executable instructions enables whole-program trace-based analysis, even for parts

of the program for which source code is not available (e.g., third-party libraries). This

approach is portable (requires no explicit hardware support) but slows down programs sig-

nificantly. Also, the sheer volume of loads and stores, even for programs with small data

sets, can be an obstacle for some analyses.

Several processor architectures now have explicit hardware support for extracting

memory traces. The Itanium2 and x86 platforms can monitor and capture many load

misses. Hardware based tracing has significantly lower overhead (compared to software-

based tracing). In addition, the Itanium2 platform allows filtering of loads before capture

based on the number of cycles the load took to complete. By setting the filter value

appropriately, we can ignore loads that hit in the L1/L2/L3 caches. This vastly reduces

the number of loads that are captured and thus also the overhead of the tracing process.

We show that many analyses can work effectively with such a filtered trace. On the other

hand, current hardware implementations have some restrictions on the memory accesses

that can be captured. On contemporary Itanium2 and x86 platforms, hardware limitations

make the trace capture lossy, i.e., only a fraction of the qualified trace elements are actually

captured. Also, these implementations have no support for capturing store accesses that

are essential for some tools (e.g., coherence traffic analysis).

Figures 1.2(a) and 1.2(b) illustrate the tradeoff between hardware and software

tracing. The software-based tracer employs binary instrumentation to obtain the load

access stream. The hardware-based tracer exploits the Itanium2’s performance monitoring

unit to filter out loads taking less than 8 cycles to complete (most L1 and L2 load hits).

In addition, the Itanium2 hardware is lossy and drops many of the qualified load samples

that should have been captured. We see that the hardware logs about 10 to 100 times fewer

loads compared to the software tracer, but is more than 10 times faster. In our work, we

show that even lossy traces can be effectively used for certain performance analyses and

optimizations.

We shall now introduce our trace-based analysis and optimization frameworks
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Figure 1.2: Comparison of software-based and hardware-based tracing

shown in Figure 1.3. Broadly, our efforts can be divided into automated tools for per-

formance evaluation and performance optimization. Frameworks use either software or

hardware generated traces or a combination. A brief introduction of the frameworks fol-

lows.

1.3 METRIC: Memory hierarchy analysis for single-threaded

benchmarks

The objectives for this work are as follows:

1. To explore the use of memory traces for memory hierarchy performance analysis of

single-threaded programs;

2. To explore the use of dynamic binary rewriting for extracting memory traces from an

executing program;

3. To test novel light-weight compression strategies for online compression of memory

traces;

4. To abstract and tag low-level events such as cache misses to high-level source code

constructs such as data variables and source code locations, using only symbolic in-

formation extracted from the executable;
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Figure 1.3: Our trace-based frameworks

5. To generate rich metrics that characterize the memory access patterns in the program;

and

6. To demonstrate the use of these metrics for effecting novel optimizations that are very

hard to achieve with pure static compiler analysis.

We call our tool METRIC (“MEmory TRacIng without re-Compiling”). MET-

RIC is a trace-based incremental memory hierarchy simulator that generates a rich set

of metrics to aid the analysis of single-threaded programs. The trace consists of memory

accesses and scope change events (e.g., enter/exit function) and is obtained via software

dynamic binary rewriting of executing programs. The trace is compressed online using a

novel compression algorithm. The compressed trace is used offline for incremental memory

hierarchy simulation and generates a rich set of metrics tagged to high-level source code

constructs like data variables and source locations (line::file).

An earlier version of METRIC was presented in my Masters thesis [62]. However,

in later work we have significantly changed the compression strategy, generated new results

and added unique use cases demonstrating optimizations that are hard to achieve with

static compiler analysis. The details of the our new contributions are elaborated in Section

2.2.
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1.4 ccSIM: Source-Code Correlated Cache Coherence Char-

acterization of OpenMP Benchmarks

The recent trend towards multi-core and multi-processor shared-memory machines

has prompted a shift towards parallel programming. Understanding the sharing of data

among threads is essential to detecting and alleviating performance bottlenecks in parallel

programs. We explored the use of trace-based analysis for this purpose. The objectives for

this work are as follows:

1. To extract traces from multi-threaded OpenMP benchmarks using dynamic binary

rewriting, which has not been done before, to the best of our knowledge;

2. To extract synchronization information among threads, which is essential for correct

performance simulation — this entails reverse engineering compiler generated func-

tions for OpenMP directives which is unprecedented in past work;

3. To exploit the per-thread memory traces and OpenMP synchronization information

for incremental coherence protocol simulation. A unique property of our approach is

the ability to relate low-level coherence events such as invalidations to source code

constructions such as line::file tuples. In contrast, past work has considered coherence

analysis usually from an architecture perspective, instead of the user perspective as

we do; and

4. To demonstrate the capability of our framework for detecting, understanding and

resolving sharing bottlenecks in large real world programs.

We extended METRIC for analysis of coherence traffic of shared memory mul-

tithreaded programs that use OpenMP for parallelism. We call our tool ccSIM (Cache

Coherence SIMulator). We demonstrate that our tool can find optimization opportunities

in several production codes that have been used for many years on tens or hundreds of

processors.

The basic idea and initial prototype of ccSIM were the result of collaborative

research with another researcher, Anita Nagarajan. One of the case studies (NBF, Section

3.5.1) is also discussed in her Master’s thesis [75]. We include it in this document to provide

a comprehensive account of the conducted work.
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1.5 Hybrid Hardware/Software Coherence Analysis

The previous tool (ccSIM) uses software instrumentation to extract the memory

access trace. In this work, we explore the use of lossy hardware-generated traces for an-

alyzing the coherence traffic at the source code level. The objectives of this work are as

follows:

1. To explore the use of the Itanium2 performance monitoring unit (PMU) and high

precision timing register to generate filtered memory traces;

2. To measure the execution overhead, trace sizes and degree of lossiness in the PMU-

generated trace;

3. To explore software strategies that allow the PMU to trace stores, which it is unable

to do natively;

4. To evaluate an alternative software-centric approach that uses high precision timing

hardware to filter load instructions in the trace; and

5. To compare and contrast both these methods (PMU-centric, software-centric) with

respect to overhead, trace sizes and accuracy of coherence simulation. Accuracy is

measured with respect to coherence simulation results achieved with full software

tracing (as used in our earlier ccSIM work).

We show that both the PMU-centric and software-centric methods can reduce the number

of trace accesses that need to be captured by an order of magnitude while retaining the

precision of the corresponding coherence simulation for many benchmarks.

1.6 Hardware Profile-guided Automatic Page Placement for

ccNUMA

Itanium2 processors are used in popular cache coherence non-uniform memory

architecture (ccNUMA) systems that range from 8 to 512 processors. In this work, we

explored the use of lossy load traces obtained from the Itanium2 performance monitoring

unit (PMU) to achieve profile-guided page placement. Page placement has a large impact
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on application performance on ccNUMA machines because remote memory loads are much

more expensive compared to loads from local memory. The objectives of this work are as

follows:

1. To explore the use of Itanium2 performance monitoring unit to generate traces of

filtered long-latency loads for multi-threaded OpenMP programs;

2. To explore the use of these traces for automated page placement without special

compiler, linker or operating system support;

3. To support page placement for both static and dynamically allocated regions of mem-

ory;

4. To explore the use of an alternative profile source, translation lookaside bufffer (DTLB)

misses, for page placement; and

5. To compare and contrast the two profile sources with respect to overhead, quality of

the generated page placement and benefits in terms of reduced execution time and

remote loads.

1.7 PFetch: Profile-guided Data Prefetching

In contrast to our page placement efforts that tries to reduce the average latency

of memory access, we also explored trace-based data prefetching that attempts to hide it

instead. The objectives for this work are as follows:

1. To explore the use of memory traces for a novel software-only data prefetching scheme

based on observed cross-instruction address predictability;

2. To unify several past approaches that each target a separate source of predictability

by introducing a new standard analysis method; and

3. To explore the use of novel threshold-based schemes for addressing the issues of

prefetch accuracy, prefetch timeliness and prefetch redundancy.

Our software tracing strategy uses dynamic binary rewriting to extract memory

access traces from executables. An advantage of working at the instruction level is that
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we can analyze programs across function, module and library boundaries. In this work, we

used our software tracing framework to extract memory access traces from single-threaded

programs that exhibit significant cache misses. The traces are analyzed to detect instances

of predictability such that the address of a load miss can be predicted given a certain number

of previous memory accesses. This predictability can be leveraged to prefetch the missing

memory line into cache.

We have introduced our trace-based frameworks and described our objectives for

each. In the remainder of the document, we shall describe and evaluate each framework in

detail.
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Chapter 2

METRIC: Memory Tracing Via

Dynamic Binary Rewriting to

Identify Cache Inefficiencies

2.1 Summary

With the diverging improvements in CPU speeds and memory access latencies,

detecting and removing memory access bottlenecks becomes increasingly important. In

this work we present METRIC, a software framework for isolating and understanding such

bottlenecks using partial access traces. METRIC extracts access traces from executing pro-

grams without special compiler or linker support. We make four primary contributions.

First, we present a framework for extracting partial access traces based on dynamic binary

rewriting of the executing application. Second, we introduce a novel algorithm for com-

pressing these traces. The algorithm generates constant space representations for regular

accesses occurring in nested loop structures. Third, we use these traces for offline incremen-

tal memory hierarchy simulation. We extract symbolic information from the application

executable and use this to generate detailed source-code correlated statistics including per-
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reference metrics, cache evictor information and stream metrics. Finally, we demonstrate

how this information can be used to isolate and understand memory access inefficiencies.

This illustrates a potential advantage of METRIC over compile-time analysis for sample

codes, particularly when interprocedural analysis is required.

2.2 New Contributions

METRIC was first presented in my Master’s thesis [62]. However, since then, we

have made significant enhancements to the framework and analysis techniques and also

generated new results that supersede the data presented originally. In this chapter, we shall

present new results from our enchanced framework. We have explicitly cited the Master’s

thesis for parts of the framework that have not changed significantly in the enhanced version

— we retain them here to maintain the readability of the text.

We make the following new contributions in this work, compared to the version

reported in the Master’s thesis:

• We have re-designed the online compression strategy. The new approach separates

compression of trace ordering from trace addresses. We show that our new strategy

achieves better compression than the best known state-of-the-art compression schemes

for many of the SPEC FP benchmarks.

• We have added new “stream-oriented metrics” to the pre-existing metrics generated

by the analysis component.

• We present 3 new use cases for METRIC that would be very hard or impossible to

optimize with static compiler analysis.

The following components of METRIC are mostly unchanged from the Master’s

thesis version:

• The overall concept of METRIC — using binary instrumentation to extract memory

traces, compress them online and use them for offline memory hierarchy simulation.

• The tracing framework based on binary instrumentation.

• The algorithm for trace compression for processing trace addresses (not trace order-

ing).
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• Some metrics generated by the memory hierarchy simulator.

2.3 Introduction

Over the past decade, processor speeds have increased much faster than memory

access speeds. Due to this trend, application execution times are increasingly dominated by

the time spent in accessing memory. Tools are needed that can efficiently profile the memory

access behavior of the program and help in detecting, isolating and understanding causes of

the potential memory access inefficiencies. In this work we present one such tool, METRIC.

METRIC employs incremental memory hierarchy simulation using partial memory access

traces and generates detailed high-level metrics characterizing the application’s memory

use.

Simulation may be performed offline using previously extracted access traces or

online as the application executes. In spite of the accuracy that trace-driven memory

simulation affords, efficiency requirements dictate that it be used judiciously. For instance,

software tracing incurs high runtime overheads, making full application simulation with

reasonable data sets infeasible. Furthermore, even programs with short execution times

may generate traces requiring gigabytes of storage. These limitations can be alleviated

with partial data traces representing a subset of the access footprint of the target. Such

traces tend to be comparatively small and less expensive to collect while still capturing

the most critical data access points. Our focus is on scientific benchmarks, which generally

employ algorithms with convergence criteria that are checked on a regular basis at the end of

a timestep. The computation of each timestep is highly repetitive and, thus, representative

for the overall application behavior, as shown elsewhere [108]. Generating and exploiting

partial data traces for online incremental memory hierarchy simulation addresses both high

tracing overheads and large storage requirements without sacrificing accuracy. This is the

approach we take.

METRIC stands for “MEmory TRacIng without re-Compiling”. We draw on pre-

vious experience with partial data traces [74] and binary rewriting [63] to detect memory

hierarchy bottlenecks. METRIC is also influenced by our work with large scale bench-

marks [108], another example of data centric computation where data sizes exceed cache

capacities.
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In this work we make the following contributions

• We develop an approach that uses dynamic binary rewriting to extract memory access

traces from executing applications.

• We develop a novel algorithm for efficient access trace compression of programs with

nested loop structures.

• We present a cache analysis methodology (partially based on prior work by Mellor-

Crummey et al. [70]) that uses partial access traces to generate cache metrics —

including detailed evictor information — correlated to high-level constructs such as

source code locations and data structures.

• We show how METRIC can be used to understand a diverse range of memory access

inefficiencies, some of which are hard to detect with static compiler analysis.

METRIC builds on the DynInst instrumentation framework [10] to exploit dy-

namic binary rewriting, or post link time manipulation of binary executables, enabling

program transformation potentially even while the target is executing. Unlike conventional

instrumentation, which generally requires compiler interaction (e.g., for profiling) or inclu-

sion of special libraries (e.g., for heap monitoring), this approach obviates requirements of

recompiling or relinking.

Dynamic binary rewriting can capture memory references of the entire applica-

tion, including library routines, and it works equally well for mixed language applications

commonly found in production scientific codes [108]. The techniques can be adapted to

address changing input dependencies and application modes, i.e., changes over time in ap-

plication behavior. Furthermore, binary manipulation techniques have been shown to offer

new opportunities for program transformations, and these potentially yield performance

gains beyond the scope of static code optimization without profile guided feedback [5].

2.4 The METRIC Framework

The METRIC framework, shown in Figure 2.1, uses partial access traces for mem-

ory hierarchy simulation. Our framework extracts these comparatively small, low overhead

access traces without compiler or linker support, i.e., traces can be extracted from arbitrary
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executables. To achieve this, we dynamically modify the executing application by injecting

instrumentation code via binary rewriting. We instrument memory access instructions to

precisely capture the data access stream of the target application, and the user may activate

or deactivate tracing so that data reference streams are selectively generated. This facility

builds the foundation for capturing partial memory traces.

Figure 2.1 shows two phases in the process of analyzing bottlenecks with METRIC

— online and offline. In the online phase, we instrument the application and extract the

memory access trace. After trace generation is complete, the instrumentation is removed

and the target application continues its execution without overhead. The traces are then

used offline for memory hierarchy simulation in a background process or on a separate

processor.

The flow of control is as follows. The user provides the application process id

(PID) and the names of the target function(s) to the controller program. The controller

program attaches to the executing target and uses DynInst to access the Control Flow

Graph (CFG) for these target functions. The text section of the target application is

parsed and the memory access and scope change instructions are instrumented. Scope

change instructions transfer control to enter or exit program scopes (such as functions and

loop nests). Recording the scope change instructions allows the memory hierarchy simulator

to aggregate the generated memory usage metrics at multiple levels of detail (scope) in the
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target application’s source code. The instrumentation consists of calls to handler functions

in a shared library. The shared library is loaded into the target’s address space through a

special one-shot instrumentation.

Once instrumentation is complete, the target is allowed to continue. As the instru-

mented application executes, different handler functions in the shared library get invoked,

depending on the type of event being recorded, i.e., load, store, enter scope and exit scope.

The handler functions, in turn, call the compression routines, which attempt to detect reg-

ular patterns in the incoming stream. The compression routines maintain statistics about

the regularity of the access stream seen at each memory access instruction. These metrics

are presented to the user along with the memory access metrics generated by the memory

simulator (in the next step).

After a specified number of events has been logged or a time threshold has been

reached, instrumentation is removed and the target continues executing without overhead.

The compressed partial event trace is then used offline for incremental cache simulation.

The cache simulator driver reverse maps addresses to variables in the source, using infor-

mation extracted by the controller program, and it tags accesses to source code locations

(source filename::line number). In addition to summary level information, the cache simu-

lator generates detailed evictor information for source-related data structures. This infor-

mation is presented to the user, along with the per-reference regularity metrics calculated

by the compression algorithm.

For relating memory statistics to source code, we exploit source-related debugging

information embedded in binaries. The application must provide the symbolic information

in the binary (e.g., generally by using the -g flag when compiling). Most modern compilers

allow inclusion of symbolic information even if compiling with full optimizations (gcc and

xlc on our platform).

2.5 Trace Generation and Compression

A large number of memory accesses can be generated within a short duration of

monitoring, especially for memory-intensive codes. This access trace needs to be efficiently

compressed before committing to stable storage. In addition, our compression algorithm

maintains metrics describing the regularity of the access stream seen at each particular



16

<Point_ID, EA>

PRSD
Detector

LibBZIP

RegularIrregular
Accesses Accesses

Predictable Address ?

NO YES

Trace.PC

Memory Access Stream

Ordering

Access
Pattern

SEQUITUR

LibBZIP

Compressed Compressed Access Stream Regularity
Metrics

Figure 2.2: Overall Compression Algorithm

access point. These metrics provide key information during the analysis phase.

With this work we target scientific applications that tend to have highly regular

accesses, usually in nested loops. We tailor our compression algorithm for this scenario.

Our compression strategy is shown in Figure 2.2. The access stream to be compressed

consists of individual records described by the tuple <point id, EA>. Point id denotes

the access instruction and EA is the data address generated by the instruction. The task of

compression is split into two parts. The ordering among the different access instructions is

compressed separately from the data address generated by the individual access instructions.

The idea is to use different compression algorithms suited to these distinct tasks to achieve

more effective compression. It is necessary to record the access ordering for correct memory

hierarchy simulation during the later phases.

2.5.1 Compressing Access Ordering

For applications with nested loops, the memory access instructions in the loop

are executed in a very regular and predictable order. To exploit this regularity, we use

the SEQUITUR compression algorithm to compress the IP/PC of such memory references.
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SEQUITUR is described by Nevill-Manning and Witten [78]. It converts a trace of symbols

into a context-free grammar, and has time overhead linear in the number of symbols in the

trace [79]. The expansion of the grammar can be used to regenerate the original trace.

SEQUITUR requires memory proportional to the total number of symbols occurring in the

grammar. Since the total number of unique instruction addresses in the trace is usually

small compared to the total program size, SEQUITUR is well suited for our purpose. We

have observed extremely high compression rates with SEQUITUR on the SPEC2K FP

benchmarks. In addition, decompression can proceed incrementally, i.e., compressed traces

can be used directly for cache simulation without an intermediate trace expansion step.

2.5.2 Compressing Trace Accesses

The accesses generated by each access point, i.e., the data addresses of memory

references, are compressed separately. In other words, our compression scheme exploits the

local value locality of each access point. The compression algorithm is tailored for regular ac-

cesses generated by tightly nested loops. The basic unit of representation for the compressed

stream is the regular section descriptor (RSD), an extension of Havlak and Kennedy’s RSDs

[38]. Each RSD is a tuple <point id, start address, length, address stride>. Intuitively, each

RSD compactly represents a stream of regular accesses generated at a given access point.

The point id is the access point generating this RSD. The start address denotes the

starting address of the stream, the length indicates the number of accesses in the RSD.

The address stride denotes the change in addresses between successive addresses in the

RSD. The stride of RSDs may be an arbitrary function. We restrict ourselves to constants

in this work since we require fast online techniques to recognize RSDs. In different contexts,

one may want to consider linear functions or higher order polynomials. Recurring references

to a scalar or to the same array element map to RSDs with a constant address stride of

zero. An example RSD is shown in Figure 2.3, assuming each array element has size one.

RSDs are only sufficient to describe accesses generated by a single innermost loop.

In order to efficiently describe accesses by a nest of loops, we introduce the power regular

section descriptor (PRSD). A PRSD is described by the tuple <point id, start address,

length, address stride, child RSD>. A PRSD is similar to an RSD, but instead of generating

addresses, it generates instances of PRSDs or RSDs. The address stride of the PRSD

represents the difference in addresses between the starting addresses of two consecutive child
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A[i] = B[2*i+2] + C[5*i];

For ( I = 0; I < N; I++)
 {

}

Generated RSDs

RSD_1 <  1, &A[0], N, 1>

RSD_3<   3, &C[0], N, 5>

RSD_2<   2, &B[2], N, 2>

RSD< access_point, start_address, length, address_stride>

Program Code

Figure 2.3: Example RSDs

RSD < 1, &A[0][0], M, 1>
RSD < 1, &A[1][0], M, 1>
RSD < 1, &A[2][0], M, 1>

RSD < 2, &B[1][1], M, 1>
RSD < 2, &B[2][1], M, 1>

RSD < 2, &B[N][1], M, 1>

< 1, start_addr, M, 1>

PRSD < 2, &B[1][1], N, 200, RSD_2>

< 2, start_addr, M, 1>

RSDs of A[I][J]

{

{
For ( j = 0; j < M; j++)

}

}

For ( i = 0; i < N; i++)

Generated PRSDs

RSDs of B[I+1][J+1]

Generated RSDs

PRSDs of A[I][J]

PRSD < 1, &A[0][0], N, 200, RSD_1>

PRSDs of B[I+1][J+1]

, M, 1>RSD < 1, &A[N−1][0]

int A[200][200], B[200][200];

PRSD<point_id, start_addr, length, stride, PRSD/RSD>RSD<point_id, start_addr, length, stride>

A[i][j] = B[i+1][j+1]

Program Code

Figure 2.4: Example PRSDs

PRSD/RSDs. Thus the recursive structures of the PRSD allows efficient representation of

regular accesses generated in tight loop nests.

An example PRSD is shown in Figure 2.4, assuming the size of integers is one and

arrays are laid out in row major order. The RSDs for the A[i][j] and B[i+1][j+1] access points

are calculated separately. There are N RSDs for each access point, each corresponding to

one iteration of the outer i loop. These RSDs are compactly represented by the PRSDs

shown on the right side. For example, consider the PRSD for access point of A[i][j]. The

PRSD has length N, the length of the outer loop. The address stride of the PRSD is 200,

since the starting addresses of A[i][j] in consecutive iterations of the i loop differ by 200.
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Each instance of the PRSD is an RSD that has M elements and an address stride

of one. This RSD describes all iterations in the inner j loop. The compression of data

accesses proceeds as follows. The PRSD detector checks whether the incoming data access

is predictable by a PRSD/RSD. If the access is predictable, the PRSD/RSD data structures

are updated. Accesses may cause evictions of currently existing PRSDs/RSDs (as described

in the next section). These evicted PRSDs/RSDs are further compressed by a second stage

compressor based on the open source BZIP2 package [94]. BZIP2 compresses using a block

sorting algorithm described by Burrows and Wheeler [15].

RSDs with less than three elements are considered irregular accesses. Irregular

accesses are compressed by a separate instance of the BZIP2-based second stage compressor.

In addition to compression, the PRSD detector also computes metrics characterizing the

regularity of the data accesses generated by each access point. These metrics are presented

in later sections and help in deeper understanding of the program’s memory access behavior.

2.6 Online Detection of PRSDs and RSDs

In this section we introduce our algorithm for efficient detection of PRSDs and

RSDs from the data access stream generated at each access point. To simplify the notation,

we consider RSDs to be a special instance of PRSDs in the description of the algorithm.

The height of the PRSD denotes the number of child RSDs encapsulated by the PRSD, and

indicates the degree of hierarchy of the PRSD. RSDs have height zero (since they themselves

do not have child RSDs).

The overall algorithm has been previously described in my Master’s thesis [62].

However, we have modified that algorithm to only compress the trace addresses and not

the trace ordering. The ordering is now compressed separately by SEQUITUR. As a result,

we have removed the concept of explicit sequencing (sequence values and strides) from the

original algorithm. In addition, the description has been revamped for readability.

The algorithm is intuitive. The algorithm builds up hierarchical structures (i.e.,

PRSDs) as data accesses are generated at the access point. If a PRSD exists for the

access point, and it can predict the incoming data access, then the PRSD length is simply

incremented, and processing ends. Changes in the access stream (e.g., the beginning of a

new loop iteration) can cause the current PRSD to fail to predict the incoming access. This
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Figure 2.5: PRSD Detector Flowchart: Processing in a Level [62]

triggers formation of a new PRSD, and potentially flushes the current PRSD to the output

buffer.

2.6.1 Levels

For each access point, we maintain a list of numbered levels. Each level contains a

single PRSD. Higher-numbered levels contain more deeply nested PRSDs, i.e., PRSDs with

increasing heights. The current data access to be compressed is processed at the lowest

level, i.e., level zero. This may trigger the movement of any existing RSD at level zero

to the next level, which may trigger the upward movement of PRSDs to higher-numbered

levels.
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Each level is always in one of three states — empty, single or compound. A level

in state empty has no PRSDs. Similarly, a level in state single has only a single PRSD.

A level in state compound has a composite PRSD. The idea is that an incoming PRSD at

this level would be checked against the composite PRSD to see if it qualifies as a “child” of

the composite PRSD. If so, we only need to increment the length of the composite PRSD

by one — the incoming PRSD was expected. For streams with long regular accesses, we

expect the level to be in the compound state for long stretches of processing.

2.6.2 Per-level Processing

Figure 2.5 shows the processing at each level. All levels are initially empty. Let

X denote the incoming element to be processed at the current level number. As described

earlier, the data access to be compressed is processed at level zero. Thus, X for level zero

will be simply a data address. At higher-numbered levels, X will be a PRSD.

The processing of X is determined by the current state of the level. If the level

is empty, the incoming element is simply stored, the level state is changed to single and

processing ends.

If the level is in state single, there already exists a PRSD “Y” at this level. We

try to combine the incoming element X with the current element Y to form a more deeply

nested PRSD with a height equal to the height of Y plus one. This checking is done by

the function is compatible sibling. Two PRSDs are compatible if they have the same

height, length and their children are also compatible with each other (checked recursively

by is compatible sibling). If the elements are compatible, a new PRSD (“composite

PRSD”) is formed with length two and a height equal to the height of Y plus one. This

new PRSD will have the start address same as the start address of Y and an address stride

of the difference between the start addresses of Y and X, and it will encapsulate Y as the

child prsd.

If X and Y are not compatible siblings, a change in the data access pattern is

detected, e.g., caused by a phase change in the program. We then flush all PRSDs in the

current and higher-numbered levels, reset the level state to empty and resume processing.

In this manner, phase changes are gracefully detected and handled.

Finally, the level might be in the compound state, indicating the presence of a

composite PRSD “Y”. If so, we check if the incoming element X can be considered a child of
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this PRSD. This check is performed by the is compatible child function. The function

first checks if X is a compatible sibling of the children of Y, using the is compatible sibling

function introduced before. Next, the function checks if the start address of X is equal to

Y.start address + Y.length * Y.address stride, i.e., if X is the next instance of the PRSDs

produced by Y. If is compatible child succeeds, we simply increment the length of Y and

processing ends.

If X is not a compatible child of Y, we push Y to the next level (where it is processed

according to the flowchart), reset the level state to empty, and restart processing at this

level with X again. The idea is that with future accesses, X might form a new PRSD Z

that is compatible with Y. Z will be compared to Y when Z is pushed to the next level

(If this new PRSD Z is still incompatible with Y, the flowchart illustrates that this will

cause Y to be flushed). With access points in a recursive function, the number of levels is

potentially unbounded. To guard against this, we specify a MAXLEVEL constant value

beyond which the element being pushed is simply flushed to the output buffer, rather than

being re-processed at a higher level.

2.6.3 Example

Figure 2.6 shows the operation of the PRSD detection algorithm for the A[i][j]

reference shown in Figure 2.4. The figure shows the accesses generated at different instances

of the loop nest, the expected actions that the algorithm executes, and the state of the data

structures after these actions.

Let us step through some of the frames in the example. For each frame, we show the

value of the loop index variables i and j and the corresponding memory address generated,

which is input to the PRSD detection algorithm.

Frame 1: This shows the initial state. All the levels are in state empty.

Frame 2: (i=0, j=0, &A[0][0]): This is the first iteration point in the loop nest.

The incoming element is stored in level zero and the state of the level is changed to single.

Frame 3: (i=0, j=1, &A[0][1]): The incoming element and the resident element

are compared to verify that they can be combined into a composite PRSD

(is compatible sibling). The new composite PRSD has length two, and the state of the

level is updated to compound.

Frame 4: (i=0, j=2, &A[0][2]): The incoming element is checked to verify that
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Figure 2.6: PRSD Detection Example
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it can be considered to be a child of the currently resident composite PRSD

(is compatible child). The length of the composite PRSD is incremented by one and

processing ends.

Now we skip to the last iteration of the i loop in the same iteration of the i loop.

Frame 5: (i=0, j=M-1, &A[0][M-1]): The incoming element qualifies as a child of

the resident PRSD (is compatible child).The length of the resident PRSD is incremented

by one and processing ends.

Frame 6: (i=1, j=0, &A[1][0]): This is the very next iteration point of the loop

nest after Frame 5 and is the first access in iteration 1 of the i loop. Assuming M is smaller

than 200 (the lower dimension of the array), the currently resident PRSD will not correctly

predict the incoming element (the PRSD will predict address &A[0][M+1], the incoming

address is &A[1][0]), i.e., is compatible child will fail. The currently resident PRSD is

pushed to the next level, and the incoming element is saved in the current level.

Frame 9: (i=2, j=0, &A[2][0]): This is the next iteration point after Frame 8.

The incoming element will not be predicted by the currently resident PRSD on level zero

(similar to Frame 6), which will cause the PRSD to be pushed to the next level (level

one). In level one, this PRSD is compared to the pre-resident PRSD to verify that they

are compatible siblings (is compatible sibling), after which a new composite PRSD is

formed with length two, as shown. The state of level zero is reset to empty and processing

is restarted with the incoming address &A[2][0].

Frame 10: (i=3, j=0, &A[3][0]): Similar to Frame 9, the resident PRSD at level

zero will not be able to predict the incoming address &A[3][0]. This will cause the resident

PRSD to be pushed upwards to level one, where it will qualify as a child of the pre-resident

PRSD. This will cause the length of the pre-resident PRSD at level one to be incremented

by one, as shown.

Frame 11: (i=N-1, j=M-1, &A[N-1][M-1]): This is the last access of the loop

nests. The incoming element will be correctly predicted by the currently resident PRSD in

level zero (similar to Frame 5). The state of the data structures at the end of this access is

as shown — there is an RSD at level zero and a PRSD at level one. Future accesses at the

current access point will cause the RSD to be pushed to level one where it will qualify as a

child of the pre-resident PRSD.
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2.6.4 Space Complexity

In the worst case, a completely random sequence of addresses can be passed to

the PRSD detection algorithm. In this case, no RSDs or PRSDs will be detected and the

accesses will be recorded individually as irregular accesses. Thus, the space complexity of the

algorithm is O(M), where M is the total number of accesses (i.e., linear space complexity).

The best case input is a stream of regular accesses. For such input the algorithm would,

at best, generate exactly one PRSD for each access point. The space required to represent

a PRSD is proportional to its height. The height of the PRSD in a particular level can

be at most one greater than the level number, which has an upper bound given by the

constant value MAXLEVELS. Thus, the space complexity to represent the PRSDs for n

access points is bounded as O((MAXLEVELS+1)*n). n is an attribute of the source code

and is constant for the duration of monitoring. Since both factors are constant, the best

case space complexity has a constant upper bound.

2.6.5 Time Complexity

Since we must look at each incoming element to compress it, the lower bound

on the time complexity is given as Ω(M), where M is the total number of accesses in the

trace. A particular incoming access may trigger movement of PRSDs/RSDs to higher-

numbered levels, where they need to be re-processed. The number of re-processing steps is

bounded by the maximum number of levels (MAXLEVELS) and the height of the PRSD,

which can be at most (MAXLEVELS+1). Thus, the upper bound on time complexity is

O(M*MAXLEVELS*MAXLEVELS). Since MAXLEVELS is constant, the upper bound on

the time complexity is linear in the number of accesses in the trace.

2.7 Evaluation of the Compression Scheme

In this section, we evaluate the performance of our compression scheme with re-

spect to compression efficiency and time required for compression. We compare our results

for 12 out of the 14 SPEC2000FP benchmarks 1. Results are compared against VPC3, a

1
191.fma3d failed to run because DynInst ran out of memory for instrumentation code. 301.apsi failed

due to an internal error in DynInst.
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state-of-the-art compression algorithm based on using value predictors for data compression

[16].

2.7.1 VPC3

VPC3 is targeted for compression of extended address traces. Such traces contain

the instruction address (PC) of the access instruction, followed by one or more register

values or effective addresses (EA). VPC3 first splits the access stream into separate streams

of PCs and EAs. The algorithm has a bank of value predictors that attempt to predict the

target element value (PC or EA). All predictors are updated after each element has been

processed. VPC3 by itself does not compress the trace. Instead, it writes out the id of

the value predictor that successfully predicted the current element. This stream of ids is

compressed by a second stage compressor based on BZIP2. Elements that were not predicted

by any predictor are compressed by a separate instance of the second stage compressor. In

our experiments, we use the VPC3 source code obtained from the author’s website [17] and

couple the output to a second stage compressor based on BZIP2 [94].

We use VPC3 for comparison since it represents the state-of-the-art in compressing

access traces. VPC3 has been shown to compress faster and with more effective compres-

sion rate for most benchmarks, compared to several contemporary compression algorithms

(SEQUITUR, BZIP2, GZIP) [16]. VPC3 is targeted towards efficiently compressing the

address traces of general purpose programs while we focus specifically on programs found

in scientific computing. However, in addition to compressing access traces, our approach

generates metrics that characterize the address stream (described later in Section 2.11).

These metrics, along with the results generated by the simulator, provide insight into the

application’s memory access behavior.

2.7.2 Experimental Setup

For our compression scheme we used the open source implementation of SE-

QUITUR [61]. All benchmarks were compiled at -O2 optimization level on an IBM

POWER4 platform. All benchmarks used “training” data sets. The static call graph of the

target program was traversed with main as root, and all memory access points in the call

graph were instrumented. Up to one billion (109) accesses were traced and compressed on-
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Table 2.1: Comparison of Compression Rates

Benchmark Our Algorithm VPC3 Ratio: (Ours) / VPC3

171.swim 910608.59 154698.98 5.886

168.wupwise 144.74 221.48 0.653

172.mgrid 70847.45 4765.63 14.866

173.applu 337.52 133.94 2.519

177.mesa 1519.42 6183.17 0.245

178.galgel 1938.03 4466.73 0.433

179.art 283312.87 40380.65 7.016

183.equake 12.23 99.55 0.122

187.facerec 2382.55 618.93 3.849

188.ammp 1496.68 1152.85 1.298

189.lucas 607.34 437.52 1.388

200.sixtrack 181.24 488.11 0.371

Geometric Mean 2196.76 1636.89

Harmonic Mean 118.76 407.20

Average 106115.72 17803.97

line for each benchmark. All benchmarks reached the one billion limit, except for 177.mesa

(8x106 total accesses) and 188.ammp (531x106 total accesses).

2.7.3 Comparison of Compression Rates

The compression rate was computed as follows. The uncompressed access trace is

composed of <point id, address> records. Each uncompressed record requires six bytes —

four bytes for the 32-bit address and two bytes for the point id. Notice that all our programs

had less than 65536 memory access points. Thus the total uncompressed trace size is (#

total records) * 6. The compression rate is calculated as size of un−compressed trace
size of compressed trace

.

Table 2.1 shows the compression rates for our algorithm and for VPC3. The last

column shows the relative compression rate of our algorithm compared to VPC3. The

table shows that both VPC3 and our algorithm achieve substantial compression rates on

almost all the benchmarks. For 7 out of the 12 benchmarks, our algorithm achieves a

better compression rate than VPC3 (boldface ratio in last column greater than one). For

some programs with very regular loop nest oriented structures, our algorithm achieves

spectacularly large compression rates (swim, mgrid, art), due to our use of hierarchical

PRSD structures. Overall, the geometric mean of the compression rate of our algorithm is
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Figure 2.7: Execution Time Breakup for Our Compression Scheme, Relative to VPC3
Execution Time

about 25% greater than the value for VPC3.

2.7.4 Comparison of Compression Times

Figure 2.7 shows the time required for compression using our algorithm. The time

for three different components is shown. Instrumentation denotes the overhead of the bi-

nary instrumentation framework (e.g., saving/restoring register context). PRSD Detector

denotes the overhead of the PRSD detection algorithm introduced in the last section. Se-

quitur denotes the overhead of the SEQUITUR-based compression of the trace ordering.

The values are relative to the time taken by the VPC3-based online compression framework

(including instrumentation overhead, which should be similar in both cases). Our algorithm

is on average three times slower than the VPC3 implementation. By far the most expensive

component is the SEQUITUR-based module for compressing the trace ordering. It may be

possible to reduce this overhead by using a more optimized version of SEQUITUR. Alter-

nately, we could update the stride predictor in VPC3 to use PRSDs. This modified VPC3

would be much faster than our current approach while allowing us to leverage VPC3’s com-
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pression capabilities on programs where the accesses are less regular. However, we would

lose structural information inherent to PRSDs after BZIP compression. Nevertheless, the

PRSD predictor would still generate the regularity metrics (discussed later in Section 2.11)

that complement the results generated by the memory hierarchy simulator. Finally, we

note that METRIC is capable of and intended for gathering partial access traces, where the

overhead of trace compression is limited by the duration of monitoring. Thus, in practice,

a slightly more expensive scheme might still be acceptable as long as the trace collection

period is short.

2.8 Memory Hierarchy Simulation

The compressed trace obtained in the preceding sections is used offline for incre-

mental memory hierarchy simulation. After a partial trace of accesses has been collected,

the instrumentation is removed dynamically and the application continues execution with-

out overhead. For programs that exhibit distinct phases of execution (e.g., time-stepped

programs), this allows us to limit the overhead of performance analysis by capturing and

simulating only “snippets” of the complete trace.

For memory hierarchy simulation, we use a modified version of MHSim [70]. MH-

Sim simulates the data TLB (translation Lookaside Buffer) and multiple levels of cache.

MHSim maintains information per-reference, allowing “bulk metrics” regarding memory

performance (e.g., hits, misses) to be drilled down and mapped to individual access points.

For each access point, it generates a rich set of metrics that we shall discuss further below.

The original MHSim package used a source-to-source Fortran translator to annotate data

accesses with calls to MHSim cache simulation routines. This strategy has two significant

disadvantages, which we overcome with our approach.

The most serious problem with source instrumentation is that it may significantly

distort the actual memory access behavior of the program without instrumentation. An-

notating the source code accesses with function calls to MHSim routines will potentially

inhibit many important and well established loop reordering transformations (e.g., loop

interchange, tiling), because of the additional true dependences introduced by the function

calls. It may also prevent or modify other standard compiler optimizations, such as common

sub-expression elimination (due to presence of function calls accepting addresses of array
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references). Thus, the resultant executable with instrumentation can be totally different (in

terms of memory access patterns) from the original uninstrumented version — which can

lead to potentially misleading diagnostic information reported by MHSim. In contrast, by

instrumenting the final optimized binary generated by the compiler, we guarantee that we

still capture the exact original access pattern. Thus, we can generate diagnostic information

that correctly reflects the target program behavior. Consequently, we argue that source-

level instrumentation is the wrong abstraction level for capturing the original application

behavior and can lead to potentially misleading results for programs in our target domain

(loop-oriented scientific codes).

The second major problem with source-level instrumentation frameworks is that

they are limited to a particular language. Many scientific programs are mixed-language ap-

plications [108]. In addition, many programs make heavy use of libraries (e.g., Standard C

library (libc), math and numerical libraries, networking libraries), that a source level instru-

mentation frameworks will be unable to instrument. Thus the resultant trace of memory

accesses may be incomplete and can lead to potentially misleading diagnostic information.

In contrast, our approach is independent of any language, compiler and linker. More impor-

tantly, we use dynamic binary rewriting that allows us to instrument target applications as

they are executing. Thus, we can turn the instrumentation on and off, enabling the capture

of partial access traces as discussed before. The resulting overhead of trace collection and

instrumentation is flexible and is only limited to the duration of monitoring.

2.9 Abstracting Trace Data

The compressed trace contains “raw” instruction addresses (point ids) and data

addresses. We use the symbolic information embedded in the binary to map the instruction

addresses to source code locations (filename::line number). We also try to reverse map

the raw data address to a symbolic variable name using information extracted from the

embedded symbol table. Global variable names and sizes are easily obtained from the

symbol table. We also support local variables by keeping records of function entry and

exit in the trace, and by recording the value of the stack pointer on entry. The symbol

table for local variables only contains the address offsets in the current activation record

of the function. Combined with the value of the stack pointer recorded in the trace, this
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allows us to reverse map accesses to function-local variables. Finally, dynamically allocated

variables can be partially supported by instrumenting the entry to allocation functions

(malloc/calloc/free) and walking the call stack at allocation to create a unique “allocation

context” identifier. The data accesses to elements in the dynamically allocated area will be

reverse mapped and tagged to this identifier in the MHSim report.

2.10 MHSim-generated Metrics

MHSim generates metrics for each level of cache and also for the data TLB. Metrics

can be aggregated by reference, by variable and by loop nest. We shall list and describe each

metric and later discuss their value as diagnostic input to understand memory behavior.

MHSim generates the following metrics per-reference:

• Hits: Number of accesses by this reference point that hit in the cache.

• Misses: Number of accesses by this reference point that missed in the cache.

• Miss Ratio Ratio of hits to misses.

• Temporal Hit Fraction: The fraction of the hits that occurred due to temporal reuse

of data. Calculated as temporal hits
total hits

. MHSim uses bit vectors to maintain information

about which byte offsets in the cache line were addressed by access instructions, allow-

ing classification of hits into temporal and non-temporal hits. Temporal hits include

hits caused by both self-reuse (same reference point accesses a memory location mul-

tiple times) and cross-reuse (different reference points access same memory location).

• Spatial Hit Fraction: This is defined as 1 - temporal hit fraction, i.e., non-temporal

hits are classified as purely spatial hits.

• Spatial Reuse: This value gives the average fraction of the memory line in bytes that

was used, i.e., explicitly addressed by a memory access instruction, before the memory

line was evicted from the cache. It is computed as used bytes
cache line size∗number of evictions

.

• Evictor References: For each reference, MHSim maintains a list of evictor references

that evicted this reference from the cache. Evictors provide insight into cache conflicts.

Cycles of evictors potentially indicate conflict misses which could be removed by

transformations like padding.
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2.11 Stream-oriented Metrics

In addition to the metrics generated by MHSim, the PRSD detector in the com-

pression algorithm also generates complementary metrics characterizing the regularity of

the access stream. These metrics are calculated separately for each access point. The

following metrics are generated:

• Regularity ratio: Computed as total predictable accesses
total accesses at this point

. Predictable accesses are

those detected as an instance of an RSD or PRSD. The regularity ratio allows us to

classify access points into irregular and regular categories. Access points with high

regularity ratios can be targeted for stream-based optimizations, as described in our

previous work [71]. For example, the predictable nature of the access point can

be exploited by prefetching, which caches future data access early to lessen effective

access latencies.

• Mean stream length: The average of the length of all RSDs generated at this point.

• # Distinct lengths: Number of distinct RSD lengths seen at this access point.

• % Distribution of distinct lengths: The distribution of RSDs according to their

lengths.

• # Distinct strides: Number of address strides for all RSDs seen at this point.

• % Distribution of distinct strides: The distribution of RSDs according to their

address strides.

The definition of regularity ratio as defined here differs from the definition in our

previous work [71]. In our previous work, the regularity ratio was a single value calculated

over the entire program or program section to characterize the stream behavior. Access

streams were not segregated by access point, i.e., a stream could contain accesses from

different access points. In contrast, in this work we segregate the access stream by access

points and calculate the regularity metrics for each point separately. Thus, we can now

obtain a much finer level of information tagged to individual access points, instead of a

single aggregate value for the whole program or program section.



33

Metric Diagnostic Information

Miss Ratio A basic measure of performance. References with high or medium
miss ratios should be specifically singled out for further analysis.
A high miss ratio, when other indicators like regularity ratio and
stream lengths have favorable values, indicates presence of specific
cache access inefficiencies.

Temporal Hit
Fraction

This measures how much temporal reuse is being realized for the
memory lines accessed by this reference. Low value may indicate that
the reference is being flushed from cache before reuse could occur. If
low temporal reuse is inherent to the reference, cache hinting can be
used to avoid allocating a cache line (this requires other indicators
to show specific behavior, see text for use case).

Spatial Reuse Low values indicate that cache is not being used efficiently — data
is being brought in which is never “touched” before the memory line
is evicted from cache. Can indicate presence of conflict misses, if
regularity metrics (regularity ratio, stride values) show regular and
low-strided access behavior.

Evictor Refer-
ences

A cycle of evictors coupled with other indicators like low spatial reuse
can indicate presence of conflict misses. The advantage of evictor
references is that it tells us precisely which references are involved
in the conflict, allowing straightforward code/data transformations
to correct it. On the other hand, when other indicators of cache
efficiency (e.g., spatial reuse) are high, cycles of evictors may still
indicate the presence of capacity misses — there is simply not enough
room in the cache to keep all the accessed data at the same time.

Regularity ra-
tio

Highly regular streams produce predictable values, which can be ex-
ploited by optimizations like prefetching. On the other hand, irreg-
ular references can be optimized by another class of optimizations
(e.g., cache hinting). References with high regularity ratios that still
have high miss rates reveal the presence of cache access inefficiencies.

Mean stream
length

Optimizations like prefetching require a minimum stream length to
be profitable.

% Distribution
of strides

Low-strided references should be expected to have high spatial reuse
values, otherwise a cache access inefficiency is indicated. If there are
only a few dominant strides, it may simplify the implementation of
optimizations like prefetching (knowing dominant stride value allows
manual insertion of prefetch instructions without depending on the
compiler.)

Figure 2.8: Use of Metrics for Performance Diagnosis
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2.12 Diagnosis of Performance Problems

In previous paragraphs, we introduced several metrics to quantify different facets

of memory access performance. What diagnostic information do these metrics provide?

How can we use them to understand the symptoms and the underlying causes of memory

access inefficiencies? Figure 2.8 gives a short overview of how the generated metrics can be

used for this task.

METRIC gives insight on the memory access patterns of the target program. The

information provided by METRIC allows the program analyst to focus on the bottleneck of

the program, and also gives indications on how a bottleneck can be removed by manually

applying program or data transformations. Many of these transformations can also be

achieved by contemporary compiler technology. Such transformations were presented in

our earlier work for some well known computation kernels [65]. This work will not reiterate

them. Instead, we shall use METRIC to optimize several sample codes to illustrate its

potential advantage over compile-time analysis, particularly when interprocedural analysis

is required. For clarity of presentation, the sample codes are microbenchmarks that manifest

a particular performance weakness. They represent behavior that can arise in larger real

world programs.

2.12.1 Use case: Cache Reuse Hinting

Consider the following snippet of C code:

1 double A[MATDIM], B[MATDIM];

2 double C[MAT2], D[MAT2];

3

4 void do_sum()

5 {

6 for(i=0;i < MATDIM;i++)

7 A[i] = A[i] + B[i];

8 }

9

10 void do_mult(void)

11 {

12 for(j=0;j < 1500;j++)

13 C[ind[j]] *= D[ind[j]];

14 }

15
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16 void main()

17 {

18 for(i=0;i < timesteps;i++)

19 {

20 do_sum();

21 do_mult();

22 }

23 }

There are four distinct arrays A, B, C and D in the first use case. The functions

do sum() and do mult() are called once per timestep. This program was compiled and

traced under our framework on a Power4 platform using the IBM xlc compiler A cache with

the following parameters was simulated: cache size=256 KB, associativity=8, line size=128,

writeback cache, LRU replacement policy. This configuration is similar to the L2 cache of

the Itanium2 processor [46]. The per-reference results generated by the simulator are shown

in Figure 2.9. Figure 2.9(a) shows the cache metrics generated by the simulator, and Figure

2.9(b) shows the stream metrics generated by the PRSD detector.

Analysis

The reference name shown in the results has the following syntax: Variable-

Name Accesstype id. VariableName is the symbolic identifier that corresponds to the mem-

ory address being accessed. Accesstype can be either Read or Write. Finally, id denotes the

unique numerical identifier for this access instruction in the executable code of the target.

This syntax is used in all the use cases presented in this work.

The per-reference results show that different references have widely different be-

haviors. D Read 12 and C Read 11 have very high miss rates (> 87%) while the remaining

references have lower miss rates ( < 7%). The spatial reuse values are also much lower for

D Read 12 and C Read 11, showing that on average, only 6.3% of the memory line data that

was brought into the cache by these two references was accessed before eviction. The stream

metrics show that accesses by D Read 12 and C Read 11 were completely unpredictable, with

a regularity ratio value of 0.0. The remaining references had completely predictable access

streams (regularity ratio=1.0) and were seen to be linearly strided (a single stride of eight

for reference points of type double, a single stride of four for reference points of type int).

All the preceding indicators show that D Read 12 and C Read 11 generate irregular accesses
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with very low cache hit rates. The evictors for each reference are shown in Figure 2.10.

The figure shows that in addition to poor locality, the D Read 12 and C Read 11 references

are also the top evictors for all the remaining references. Thus the references to D and

C bring in data into the cache that is not reused (as indicated by their low spatial reuse

values) and evict a significant amount of pre-resident data from the cache (as indicated by

the per-reference evictors).

A look at the source code shows the cause of this behavior. The D Read 12 and

C Read 11 references are potentially sparse indirect reads on an array, indexed by the array

ind[]. The remainder of the read references (A Read 7, B Read 8 and ind Read 10) are all

direct array accesses, with regular single strided access patterns.

Miss Temporal Spatial
File Line Reference SourceRef Hits Misses Ratio Ratio Reuse

reuse.c 13 D Read 12 D[ind[i]] 1532 13468 0.897 0.1566 0.0639
reuse.c 13 C Read 11 C[ind[i]] 1929 13071 0.871 0.320 0.0639
reuse.c 7 A Read 7 A[i] 96125 6275 0.061 0.021 0.9867
reuse.c 7 B Read 8 B[i] 96135 6265 0.061 0.023 0.9860
reuse.c 13 ind Read 10 ind[i] 14530 470 0.031 0.019 0.9134
reuse.c 13 C Write 13 C[ind[i]] 15000 0 0.0 1.0 1.0
reuse.c 7 A Write 9 A[i] 102400 0 0.0 1.0 1.0

(a) Per-Reference Cache Statistics

Total Predictable Regularity Average Distinct % Stride
Reference Accesses Accesses Ratio Length Strides Distribution
D Read 12 15000 0 0.0 0 0 -
C Read 11 15000 0 0.0 0 0 -
A Read 7 102400 102400 1.0 10240 1 stride=8,100%
B Read 8 102400 102400 1.0 10240 1 stride=8,100%
ind Read 10 15000 15000 1.0 1500 1 stride=4,100%
C Write 13 15000 0 0.0 0 0 -
A Write 9 102400 102400 1.0 10240 1 stride=8,100%

(b) Per-Reference Stream Statistics

Figure 2.9: Original Per-Reference Memory Usage Statistics
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Figure 2.10: Evictors for Each Reference

Optimization

From the analysis, we know that D Read 12 and C Read 11 are the key references

with a significant impact on cache performance. We also know that these references inher-

ently have poor cache reuse, due to their irregular data access pattern. Instead of trying to

reorder their access patterns, we can try to reduce their detrimental impact on the cache

by asking the memory system not to allocate a normal cache line for these references.

This is achieved using the concept of reuse hints. Reuse hints are tagged to each

memory reference instruction (ld/st) and provide hints to the memory subsystem on the

potential reuse of the data fetched by this access instruction. The Itanium2 ISA implements

such a hinting mechanism [46]. Hints indicate whether the accessed data has no expected

temporal locality at the level of the L1 cache (hint=.nt1), at the level of the L2 cache

(hint=.nt2) or no temporal locality at any level (hint=.nta). Floating-point accesses

bypass the L1 cache. So, for these accesses, .nt1 refers to the L2 cache and there is no

.nt2 hint. For floating-point references with .nt1 or .nta hints that miss in the L2 cache,

the L2 cache will allocate a cache line in only one out of the eight associative ways. The

data in the remaining part of the cache is undisturbed. In addition, the LRU bits in the

cache are not updated, so the allocated line will soon be selected for eviction.

We test our optimization on an actual Itanium2 system. We target the L2 cache,

and tag the D Read 12 and C Read 11 references with ".nt1" hints. The hints will minimize

the impact of these two references on the data pre-resident in the cache. In this way, we

hope to retrieve any potential “locality” on the other references that was lost due to these

two interfering references. We note that tagging C Read 11 but not C Write 13 will not
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Source Miss Temporal Spatial
File Line Reference Ref Hits Misses Ratio Ratio Reuse

reuse.c 7 A Read 7 A[i] 101759 641 0.006 0.905 1.0
reuse.c 7 B Read 8 B[i] 101760 640 0.006 0.905 1.0
reuse.c 13 ind Read 10 ind[i] 14953 47 0.003 0.902 1.0
reuse.c 7 A Write 9 A[i] 102400 0 0.0 1.0 1.0

Figure 2.11: Optimized Per-Reference Memory Usage Statistics

provide the desired benefit since the line would be cached following the second access. This

need to tag what appears to be a well-performing access demonstrates the complexity of

the analysis that would be required by a compiler. The optimized code in the do mult()

function is shown below:

10 void do_mult(void)

11 {

12 for(j=0;j < 1500;j++)

13 {

index=ind[j];

value = read_double_nt1(&C[index])

* read_double_nt1(&D[index]);

write_double_nt1(&C[index],value);

}

14 }

15

The read double nt1 and write double nt1 are special inlined functions that

load and store doubles using instructions with explicit “.nt1” hints.

First, let us the see the potential impact of the optimization using the simulator.

Our simulator currently does not support hinting for the access points. Instead, we run

the same program again but without the D[] and C[] array accesses and see the change in

cache metrics for the remaining references, as shown in Figure 2.11.

Notice the improvement in the hit rates for the A Read 7, B Read 8 and ind Read 10

references as compared to the original behavior. The miss ratios for these references have

decreased by an order of magnitude (e.g., 6% to 0.6% for A Read 7 reference). The temporal

fraction of the hits has gone up to 90% for these references, compared to the less than 3%
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Figure 2.12: Comparison of L2 Cache Misses

in the original results. This indicates that we are now realizing inter-timestep locality —

the data is brought into the cache during the first time step and almost always remains in

cache till it is accessed again during the next time step.

Let us now test our optimization on the real system. The original program and

the optimized version with cache hints were both compiled and run on an Itanium2 system.

In each case, we monitor the hardware counters and count the number of L2 misses. Specif-

ically, we measure the value of the L2 MISSES event for the original and optimized program.

The values for the two runs are shown in Figure 2.12. The number of L2 misses reduces

from 42214 in the original program to 32072 in the optimized program (a 24% reduction).

We demonstrated how METRIC can be used for setting reuse hints. It is very

hard or impossible for a static compiler to perform this analysis, since the complete run-

time memory access pattern of the program must be considered (e.g., if the D Read and

C Read hit in cache in the original program, the reuse hinting may actually be detrimental).

The compilers evaluated (Intel icc 8.0, gcc 3.4) did not automatically set the non-temporal

hints for the D Read and C Read. (For the optimized code, we inserted the hints manually

using inline assembly functions).

2.12.2 Use case: Prefetching

Consider the following snippet of C code:

0 #define MATDIM 1000

1 double A[MATDIM][MATDIM], B[MATDIM][MATDIM];

2

3 void do_mult(void)

4 {

5 for(i=0;i < MATDIM;i++)
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6 for(j=0;j < MATDIM;j++)

7 {

8 A[i][j] = A[i][j] * B[j][i];

9 }

10 }

There are two two-dimensional arrays A and B. The function calculates the product

of A[i][j] with B[j][i], and stores the value back into A[i][j]. This program was

compiled on a Power4

machine using xlc 2. A cache with the following parameters was simulated: cache

size=32 KB, associativity=2, line size=128, writeback cache, LRU replacement policy. This

configuration is similar to the L1 cache of a Power4 processor. The simulator reported the

following cache performance:

hits = 1937499 temporal hits = 1000000
misses = 1062504 spatial hits = 937499
temporal ratio = 0.51613 spatial ratio = 0.48387
miss ratio = 0.3541 spatial reuse = 0.17836

Notice the high miss ratio (35%) and the relatively low spatial reuse value (17.8%).

The per-reference results are shown in Figure 2.13. Figure 2.13(a) shows the metrics gener-

ated by the cache simulator, and Figure 2.13(b) shows the stream metrics generated by the

PRSD detector. Due to instruction scheduling, the compiler unrolls the very last iteration

of the innermost loop, hence there are several additional access instructions present in the

executable (more than the three access instructions in the original C code). For clarity

of presentation, we do not show the metrics associated with these additional access points.

This explains why the number of accesses for the references shown in the per-reference result

do not exactly match the number of accesses expected from the C source version.

Analysis

B Read 3 has the worst possible cache performance — all of its accesses are misses.

2-O3 optimization level with loop unrolling turned off. Unrolling the loop body gives rise to many
additional access instructions that show up as separate access points in the MHSim results. For clarity
of presentation, we turn off unrolling the loop body so that fewer access points are present in the binary
code. However, we could not prevent the compiler from unrolling the very last iteration of the inner loop,
as explained in the text.
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Miss Temporal Spatial
File Line Reference SourceRef Hits Misses Ratio Ratio Reuse

test.c 31 B Read 3 B[j][i] 0 999000 1.000 0.0 0.0625
test.c 31 A Read 2 A[i][j] 936500 62500 0.062 0.0 1.0
test.c 31 A Write 7 A[i][j] 999000 0 0.0 1.0 1.0

(a) Per-Reference Cache Statistics

Total Predictable Regularity Avrg. Distinct % Stride
Reference Accesses Accesses Ratio Length Strides Distribution
B Read 3 999000 999000 1.0 999 1 stride=8000,100%
A Read 2 999000 999000 1.0 999 1 stride=8,100%
A Write 7 999000 999000 1.0 999 1 stride=8,100%

(b) Per-Reference Stream Statistics

Figure 2.13: Original Per-Reference Memory Usage Statistics

This also causes the very low spatial reuse value, showing that less than 7% of the data

cached by the B Read 3 reference is actually accessed by the processor before the memory

line is evicted from cache. The stream metrics show that B Read 3 generated extremely

predictable accesses (regularity ratio=1.0) with long stream lengths (average length=999)

and only a single stride. The stride value is very large (8000), so no spatial locality is

realized (since successive accesses map to different cache lines).

In contrast, A Read 2 has very good cache performance with excellent spatial reuse

(100%). The stream metrics show that accesses generated by A Read 2 were also com-

pletely predictable (regularity ratio=1.0) with a long average stream length. In contrast to

B Read 3 though, A Read 2 generated single strided accesses (of stride eight, the size of the

double data type)). This ensured that A Read 2 achieved excellent spatial locality (spatial

reuse=100%).

Upon closer inspection of the source code, we observe that the innermost loop (j

loop) has a stride-1 traversal over the innermost dimension of the array A, which result

in the accesses generated by the A Read 2 reference. In contrast, the accesses to array B

are generated with the innermost j loop iterating over the outermost dimension of array B,

leading to the high stride value (8000) seen for B Read 3.
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Optimization

The key idea is that both A Read 2 and B Read 3 generate completely predictable

accesses. We exploit this fact to prefetch the array elements long before they are used to

reduce the effective access latency. The average stream length for both access points is high,

indicating that prefetching would be profitable, and the number of distinct strides is low,

reducing the number of potential prefetch target addresses.

We evaluate this optimization on a Power4-based platform. This platform already

has a hardware stream prefetcher that detects cache misses mapping to consecutive memory

lines, such as frequently generated by stride-1 accesses. Once such a pattern is recognized,

the prefetcher automatically prefetches the consecutive memory lines into cache [102].

Hence on this platform, there is no need to insert explicit prefetch instructions for the

A Read 2 access point as it generates only stride-1 accesses. In contrast, accesses generated

by B Read 3 will not be prefetched by the hardware prefetcher, since they do not map to

consecutive memory lines (stride 8000). Hence, we target these accesses for prefetching.

We use the “Data cache block touch” (dcbt) prefetch instruction. The optimized

code is as follows:

0 #define MATDIM 1000

1 double A[MATDIM][MATDIM], B[MATDIM][MATDIM];

2

3 void do_mult(void)

4 {

5 for(i=0;i < MATDIM;i++)

6 for(j=0;j < MATDIM;j++)

7 {

prefetch(&(B[j+15][i]));

8 A[i][j] = A[i][j] * B[j][i];

9 }

10 }

The inserted instruction prefetches the B[][] element that will be accessed 15 it-

erations later (&B[j+15][i]). The number of iterations to “look-ahead” (15) is empirically

chosen to ensure that the prefetch will complete before the prefetched data is accessed by

the B[j][i] load instruction. Other values for the number of look-ahead iterations will still

have a positive impact, as long as the prefetch is able to bring the memory line into the

cache before the memory line is accessed.
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Event Original Optimized % Improvement

L1 Misses 1060733 62522 94.10

Processor Cycles 45325690 33013678 27.16

Figure 2.14: Performance of Original and Optimized Program

We used hardware performance counters to measure the number of L1 cache misses

(event: PM LD MISS L1) and the number of processor cycles (event: PM CYC) for the original

and the optimized program. The results are shown in Figure 2.14.

The prefetch instruction is very effective — it reduces the number of L1 cache

misses by over 94%. This leads to a reduction in processor cycles of 27% over the original

program.

We have shown how to use METRIC to select potential access points that can

be targeted for prefetching. Even though the cache access pattern of B is statically deter-

minable, none of the compilers we evaluated (IBM xlc 7.0, gcc 3.4) were able to generate

prefetches targetting this access, even at very high optimization settings (xlc: -O5 -qprefetch

-qtune=pwr4, gcc: -O3 -mpower). Thus, explicit prefetch insertion is still important in

many cases to achieve good performance.

2.12.3 Use case: Detecting Conflict Misses

Consider the following snippet of C code:

23 double sumfunc(double S1[ ], double S2[], double S3[], int size)

24 {

25 int i;

26 double sum=0.0;

27

28 for(i=0;i < size;i++)

29 {

30 sum += S1[i] + S2[i] + S3[i];

31 }

32

33 return sum;

35 }

#define MATDIM (8192)

double A[MATDIM], B[MATDIM], C[MATDIM];
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main(..)

{

....

result = sumfunc(A,B,C,MATDIM);

....

}

The function sumfunc calculates the sum of the elements of the three arrays A, B

and C. All these arrays contain elements of type double and have size MATDIM. This code was

compiled into a program executable on the Power4 platform, using the IBM xlc compiler.

The program executable was instrumented and the trace of memory accesses was obtained

using our framework. The trace was used to simulate the operation of an L1 cache with

the following parameters: size=128 KB, associativity=2, line size=128 bytes, writeback

cache, LRU replacement policy. This configuration is similar to the L1 cache on the Power4

platform. For clarity, we ignore the other components of the memory hierarchy (L2 cache,

DTLB) during the analysis of this example.

The overall performance of the cache was reported as:

hits = 2 temporal hits = 0
misses = 24574 spatial hits = 2
temporal ratio = 0 spatial ratio = 1.0
miss ratio = 0.99992 spatial reuse = 0.06251

This miss ratio is very high, almost all accesses were misses. The low spatial

reuse value shows that, on average, only 6% of the memory line is used before it is evicted

from the cache. These two indicators immediately point to the presence of a serious cache

access inefficiency. The per-reference metrics are shown in Figure 2.15. Figure 2.15(a) shows

the cache metrics generated by the simulator, while Figure 2.15(b) shows the per-reference

stream metrics generated by the PRSD detector during trace compression.

Analysis

The per-reference results for all references shows very similar symptoms. All refer-

ences almost always miss in cache and have low spatial reuse values. On the other hand, the

stream metrics indicate that the references generated accesses that were highly predictable,

with a regularity ratio of 1.0 and long average lengths (8192). Most crucially, each refer-
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Miss Temporal Spatial
File Line Reference SourceRef Hits Misses Ratio Ratio Reuse

test.c 30 C Read 2 C[i] 0 8192 1.0 0.0 0.0625
test.c 30 A Read 0 A[i] 1 8191 1.0 0.0 0.0625
test.c 30 B Read 1 B[i] 1 8191 1.0 0.0 0.0625

(a) Per-Reference Cache Statistics

Total Predictable Regularity Average Distinct % Stride
Reference Accesses Accesses Ratio Length Strides Distribution

C Read 2 8192 8192 1.0 8192 1 stride=8, 100%
A Read 0 8192 8192 1.0 8192 1 stride=8, 100%
B Read 1 8192 8192 1.0 8192 1 stride=8, 100%

(b) Per-Reference Stream Statistics

Figure 2.15: Original Per-Reference Memory Usage Statistics

ence generated single-strided accesses (of stride eight, the size of the double data type),

that normally would have led to extremely high spatial reuse values (since all elements in a

cache line would be processed before the next memory line is fetched). Recall that for each

reference, the simulator keeps track of the evictor reference, that removed data accessed

by this reference from the cache. The list of evictors is shown graphically in Figure 2.16

and is the final piece of the puzzle. The arrows indicate the evictions — the head points

to the reference that is evicted while the tail is the evictor. The edges are tagged with the

percentage distribution of evictions, i.e., the number of times this eviction occurred, among

all evictions for a particular reference.

The evictor graph shows a clear cyclic pattern of evictors, with large eviction

counts. The three references A Read 0, B Read 1 and C Read 2 conflict in cache and evict

each other’s memory lines from the cache before the cache line could be fully used, which

explains the low spatial reuse values.
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Figure 2.16: Evictor Graph

Optimization

We must update either the code or data layout to ensure that the references do not

cause such a large number of conflict misses. We choose to remap the data layout by padding

each data array with extra unused space. By padding, we hope to reduce the number of

conflict misses, such that the spatial reuse inherent in the stride 1 accesses is exploited. In

other words, we want to prevent evictions of data brought into the cache before all elements

in the cache line have been accessed. The optimized code is shown below:

23 double sumfunc(double S1[ ], double S2[], double S3[], int size)

24 {

25 int i;

26 double sum=0.0;

27

28 for(i=0;i < size;i++)

29 {

30 sum += S1[i] + S2[i] + S3[i];

31 }

32

34 return sum;

35 }

#define MATDIM (8192)

double A[MATDIM+128], B[MATDIM+128], C[MATDIM+128];

main(..)

{

....
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Miss Temporal Spatial
File Line Reference SourceRef Hits Misses Ratio Ratio Reuse

test.c 30 C Read 2 C[i] 7680 512 0.062 0.0 0.986
test.c 30 A Read 0 A[i] 7680 512 0.062 0.0 1.0
test.c 30 B Read 1 B[i] 7680 512 0.062 0.0 1.0

Figure 2.17: Optimized Per-Reference Memory Usage Statistics

result = sumfunc(A,B,C,MATDIM);

....

}

Note the padding of the A, B and C arrays by 128 elements. This ensures that each

iteration of the i loop maps to different cache sets for the A[i], B[i] and C[i] accesses for

the given cache configuration. In general, the padding could be parameterized so as not to

be a multiple of the number of lines in associativity set. The updated code was compiled

and run under our analysis framework as before. The following results were obtained:

hits = 23037 temporal hits = 0
misses = 1539 spatial hits = 23037
temporal ratio = 0 spatial ratio = 1.0
miss ratio = 0.0626 spatial reuse = 0.99951

Notice the significant decrease in the miss ratio and the dramatic increase in the

spatial hits and spatial reuse value compared to the original program. The per-reference

cache statistics are shown in Figure 2.17. The hits for all references have increased signifi-

cantly and their spatial reuse approaches 1.0, the maximum possible value. Thus, we have

successfully eliminated the large number of conflict misses in the original program. It is

very hard for static compiler techniques to find such conflict misses, if not impossible in

certain cases (e.g., if arrays were passed as arguments at run time). Thus, we need tools

like METRIC to analyze such scenarios.
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2.13 Related Work

Compressed representations of memory traces have been commonly represented

in past work, both in hardware and software. For example Havlak et al. use regular

section descriptors (RSDs) for compiler analysis. Weikle et al. describe a trace specification

notification called TSpec that can encode information similar to an RSD [109]. However,

TSpec is more complex because it is directly analyzed for cache evaluation by an analytical

component called a cache “filter”. In contrast, we decompress RSDs on-the-fly and use the

generated accesses for incremental cache simulation.

There are a number of binary rewriting tools presented in past work. Atom is

a static binary rewriting tool that inserts instrumentation into application binaries [99].

Dynamic binary rewriting is an enhancement that allows selective instrumentation (both

location and time-wise) of executing applications. This is useful for periodic monitoring of

long-running programs. Examples of dynamic binary rewriting include DynInst( [10]) and

PIN( [87, 59]).

Additional hardware support for determining cache miss causes have been pro-

posed (e.g., informing memory operations) but these are not supported in contemporary

processors [42, 72].

Several tools provide aggregate metrics obtained at low cost from hardware per-

formance counters. HPCToolkit uses statistical sampling of performance counter data and

allows information to be correlated to the program source [70]. A number of commercial

tools (e.g., Intel’s VTune, SGI’s Speedshop, Sun’s Workshop) also use statistical sampling

with source correlation, albeit at a coarser level than HPCToolkit or our approach. Hard-

ware counters are usually limited in number and typically have restrictions on the type of

events that can be counted simultaneously. Hardware counters complement our method-

ology. Aggregate metrics provided by these counters can be used to determine whether a

cache bottleneck exists, and then our tool can be used to generate detailed source-tagged

statistics to isolate and understand the bottleneck.

Recent work by Mellor-Crummey et al. uses source to source translation on HPF

to insert instrumentation code that extracts a data trace of array references. The trace

is later exposed to a cache simulator before miss correlations are reported [70]. This

approach shares its goal of cache correlation with our work. CProf [55] is a similar tool

that relies on post link time binary editing through EEL [53, 54] but cannot handle shared
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library instrumentation or partial traces. Lebeck and Wood also applied binary editing to

substitute instructions that reference data in memory with function calls to simulate caches

on-the-fly [56]. Our work differs in the fundamental approach of rewriting binaries, which

is neither restricted to a special compiler or programming language, nor does it preclude

the analysis of library routines. Another major difference addresses the overhead of large

data traces inherent to all these approaches. We restrict ourselves to partial traces, employ

trace compression to provide compact representations and derive stream metrics indicating

cache bottlenecks during compression.

Recent work by Chilimbi et al. concentrates on language support and data layout

to better exploit caches [24, 23] as well as quantitative metrics to assess memory bottlenecks

within the data reference stream [21]. This work introduces the term whole program stream

(WPS) to refer to the data reference stream, and presents methods to represent the WPS

compactly in a grammatical form. However, their work focuses on prefetching for dynami-

cally allocated data while we focus on reference reordering through code transformations to

improve data locality. Furthermore, our compression algorithm for reference streams caters

to regular array accesses with lower complexity that a WPS with its need for states and

transitions. Ding and Zhong et al. predict program locality from profiles using the approx-

imate reuse distance of referenced data to identify regular and irregular reference patterns

[31]. Their work is continued by Zhong et al. in analyzing the hierarchical relation between

program data and modeling it very effectively with k-distance analysis, which provides the

means to identify beneficial data layout transformations [116]. Our method, in contrast,

provides per-reference cache information that indicates benefits for code transformations by

pinpointing references participating in cache evictions.

Other efforts concentrate on access modeling based on whole program traces using

cache miss equations [34] or symbolic reference analysis at the source level based on Pres-

burger formulas [19]. These approaches involve linear solvers with response times on the

order of several minutes up to over an hour. The feasibility of using these approaches has

not been demonstrated on large programs, but only with small kernels like matrix multiply.

A number of approaches address dynamic optimizations through binary translation

and just-in-time compilation techniques for native code [95, 5, 25, 105, 36]. The main thrust

of these techniques is program transformation based on knowledge about taken execution

paths, such as trace scheduling. The transformations include the reallocation of registers

and loop transformations (such as code motion and unrolling), to name a few. These efforts
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are constrained by the tradeoff between the overhead of just-in-time compilation and the

potential payoff in execution time savings. Our approach differs considerably. We allow

offline optimizations to occur, which do not affect the application’s performance during

compilation, and we rely on injection of dynamically optimized code thereafter.

SIGMA is a tool using binary rewriting through Augmint6k to analyze memory

effects [30]. This is the closest related work. SIGMA captures full address traces through

binary rewriting. Experimental results show a good correlation to hardware counters for

cache metrics of entire program executions. Performance prediction and tuning results

are also reported (subject to manual padding of data structures in a second compilation

pass in response to cache analysis). Our approach differs in several respects. First, our

cache analysis is more powerful. In addition to generating per-reference cache metrics, we

also generate per-reference evictor information. We supplement these results with stream

characteristics observed by the compression algorithm at each access point. This allows us to

infer potential for more sophisticated transformations, as demonstrated by the examples in

the preceding sections. Second, their work lacks an evaluation of the efficiency and overhead

of the compression algorithm used. In contrast, we demonstrate that our trace compression

algorithm compresses better than the state-of-the-art in trace compression for 7 out of the

12 benchmarks we evaluated, and has comparable performance on the rest. Finally, our

framework is designed for collecting and processing partial access traces. In contrast, their

work neither captures partial traces nor presents a concept for such an approach.

In our previous work, we used binary rewriting to extract the memory access

stream and characterize its spatial regularity [71]. In that work, we used regularity values

to classify applications as regular or irregular and showed how particular regularity metrics

suggested specific applicable optimizations (e.g., long length regular streams are amenable

to prefetching). Our current work differs in many respects. In this work, we segregate

the memory access stream by access point and calculate regularity metrics for each point

separately. In contrast, our previous work calculated a single regularity value for the entire

program or program segment. Here, we provide more fine-grained information on the mem-

ory access behavior. More importantly, our current work supplements the stream metrics

with cache usage metrics (per-reference statistics, evictor information). The richer informa-

tion about the potential memory access inefficiencies enables the use of more sophisticated

optimizations.

Our recent work beyond uniprocessor METRIC describes a binary rewriting based
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framework to characterize shared memory coherence metrics for OpenMP programs [66].

In that work, we use software instrumentation to extract synchronization information and

memory access traces for each OpenMP thread, and use these for incremental coherence

simulation. Even more recently, we extended this approach to investigate the benefits

from hardware support to gather “lossy traces” that are then utilized to analyze coherence

traffic [67]. Our work, in contrast, concentrates on application level characterization of

uniprocessor memory hierarchy metrics.

2.14 Conclusion

In this work we demonstrate that dynamic binary rewriting offers novel oppor-

tunities for detecting inefficiencies in memory reference patterns. Our contributions are

a framework to instrument selective load and store instructions on-the-fly for generating

partial access traces, a novel trace compression algorithm for compressing these traces and

a cache simulation framework that generates detailed source reference tagged metrics. We

evaluated our compression algorithm with respect to compression rate and overhead. We

demonstrated that the compression rate is better than the state-of-the-art for the majority

of the benchmarks (7 out of 12), and comparable for the rest.

Our framework generates a rich set of performance metrics describing the memory

access behavior of the program, including per-reference cache metrics, evictor information

and stream metrics generated by the compression algorithm. We demonstrated how these

metrics enable the detection and understanding of memory access inefficiencies with several

use cases. METRIC has a potential advantage over compile-time analysis when analyzing

these performance inefficiencies for sample codes, particularly if interprocedural analysis is

required.
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Chapter 3

Source-Code Correlated Cache

Coherence Characterization of

OpenMP Benchmarks

3.1 Summary

Cache coherence in shared memory multiprocessor systems has been studied mostly

from an architecture viewpoint, often by means of aggregating metrics. In many cases,

aggregate events provide insufficient information for programmers to understand and opti-

mize the coherence behavior of their applications. A better understanding would be given

by source-code correlations of not only aggregate events but also finer-granularity metrics

directly linked to high-level source code constructs, such as source lines and data structures.

In this paper, we explore a novel application-centric approach to studying coher-

ence traffic. We develop a coherence analysis framework based on incremental coherence

simulation of actual reference traces. We provide tool support to extract these reference

traces and synchronization information from OpenMP threads at run-time using dynamic

binary rewriting of the application executable. These traces are fed to ccSIM, our cache-
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coherence simulator. The novelty of ccSIM lies in its ability to relate low-level cache co-

herence metrics (such as coherence misses and their causative invalidations) to high-level

source code constructs including source code locations and data structures. We explore the

degree of freedom in interleaving data traces from different processors and assess simulation

accuracy in comparison to metrics obtained from hardware performance counters.

Our quantitative results show that: (a) Cache coherence traffic can be simulated

with a considerable degree of accuracy for SPMD programs, as the invalidation traffic closely

matches corresponding hardware performance counters. (b) Detailed high-level coherence

statistics are very useful in detecting, isolating and understanding coherence bottlenecks.

We use ccSIM with several well known benchmarks and find coherence optimization op-

portunities leading to significant reductions in coherence traffic and savings in wall clock

execution time.

3.2 Introduction

High-performance computing platforms are increasingly deployed in configurations

of multiprocessor shared-memory nodes. Understanding the coherence behavior of multi-

threaded programs on such systems can lead to optimizations with significant impact on the

overall wall-clock execution time of the program. Past work on understanding cache coher-

ence has concentrated on two distinct areas: architecture simulation and program analysis

for performance tuning. Many architecture and system simulators have been reported,

supporting different coherence models (e.g., [7, 14, 28, 43, 80, 88]), and they operate at

varying levels of abstraction ranging from cycle accuracy to discrete event based simula-

tion. In the performance tuning area, work has been focused mostly on compiler analysis

to derive optimized code (e.g., [52, 93]).

Hardware performance monitors of modern processors offer new opportunities for

low overhead measurement of coherence activities. Here, we explore a complementary

scheme where programmers use hardware counters to confirm that a potential coherence

bottleneck exists in the program, and then use our framework to generate detailed source-

code related information to understand its cause.

In this work we focus on a discrete event-based cache coherence simulation with-

out cycle accuracy or instruction-level simulation. We constrain ourselves to an SPMD



54

programming paradigm on dedicated SMPs. Specifically, we assume the absence of work-

load sharing, i.e., only one application runs on a node, and we enforce a one-to-one mapping

between threads and processors. These assumptions are common for high-performance sci-

entific computing [107, 108].

ccSIM is the first tool to characterize coherence traffic for OpenMP programs. The

novelty lies in being able to provide detailed per-reference source-code correlated statistics

about coherence events (invalidations, coherence misses) and in showing how such tools can

be used to detect, understand, and fix inefficiencies in accessing shared data in large well

known benchmarks that closely resemble real world programs. In contrast to most previous

approaches, ccSIM does not require any special compiler or linker support. It operates

directly on the program executable and potentially allows the collection of partial access

traces by toggling the instrumentation at run-time (dynamic instrumentation).

Our contributions are as follows: 1) We introduce ccSIM, a cache coherence sim-

ulator that we have designed and built for shared memory multiprocessors. 2) We develop

a novel dynamic binary-rewriting mechanism to extract memory access traces and thread

synchronization information from OpenMP parallel programs. 3) We demonstrate good cor-

relation between ccSIM results and hardware performance counters for an SMP architecture

on a variety of OpenMP benchmarks. 4) We quantify the run-time overhead of software

instrumentation and evaluate several on-line compression algorithms with respect to com-

pression factors and execution time. 5) Finally, we demonstrate how ccSIM obtains detailed

information indicating causes of invalidations and coherence misses and relates these events

to their program location and data structures. We achieve significant wall-clock time im-

provements for several well known benchmarks by inferring optimization opportunities from

the information supplied by ccSIM.

3.3 ccSIM Framework

Figure 3.1 shows the ccSIM framework. There are 3 phases in our approach -

Instrumentation, Trace generation and Coherence simulation. First, the target OpenMP

executable is instrumented for capturing the memory access trace and OpenMP synchro-

nization information. During execution, the instrumentation calls handler functions in a

shared library that compress the event trace and write the compressed representation to
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Figure 3.1: ccSIM Framework
stable storage. An incremental shared memory multiprocessor simulator uses this event

trace to simulate coherence traffic for a selected coherence protocol. The simulator maps

the coherence events (e.g., invalidations, coherence misses) to high-level constructs, such as

source code locations and also to local and global variable names. The simulator achieves

this using the symbolic information extracted from the target OpenMP executable by the

instrumenter (controller) program. At the end of simulation, the detailed coherence metrics

are presented to the user. In our work, we explicitly bind each OpenMP thread to a dif-

ferent processor using the bind processor system call. Thus, the per-thread event trace is

actually a per-processor event trace. Each phase is discussed in more detail in the following.

3.3.1 Instrumentation

Our instrumentation tool uses the DynInst instrumentation library [10] for dy-

namic program instrumentation. It is an extension of our previous work in using binary

rewriting to extract memory traces from uniprocessor programs [65]. In this work, we

extend the original tool to support multi-threaded OpenMP programs.

The instrumentation process occurs as follows. A control program (controller)

attaches to the potentially executing target OpenMP program. For each OpenMP thread,
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the controller inserts instrumentation to intercept the memory access instructions (loads

and stores). To reduce the overhead of trace collection, the controller does not instrument

instructions that access memory locations at an offset from the stack pointer register. These

memory instructions access stack locations that are private to each thread (since each thread

has a separate stack). It is uncommon that a thread’s stack variables will be accessed by

other threads such that exclusion of such instructions during instrumentation will not result

in any measurable loss of accuracy. In addition, we also instrument the compiler-generated

functions that implement OpenMP synchronization constructs (e.g., #pragma parallel do,

#pragma barrier, etc.). This synchronization information is saved in the captured event

trace. During simulation (phase 3), the synchronization information allows us to maintain

a correct ordering among accesses from different threads (e.g., no accesses from any thread

past a barrier can be simulated till all accesses from all threads before the barrier have

been simulated). Finally, the instrumentation also records function entry and exit events,

as well as the stack base address when the function was entered. The former allows us

to tag coherence traffic to specific functions. The latter allows us to also support tagging

coherence traffic to local variables whose addresses are not determined till the function is

entered. 1

To support tagging of coherence events to high level constructs, the controller

extracts symbolic information from the target executable. This symbolic information is

embedded in the target executable.2 This information is used to map the memory access

instructions to locations in the source code (line::File). In addition, the names and addresses

of global variables as well the names and stack offsets of local variables for each function

are extracted and stored in a target descriptor file.

3.3.2 Trace Generation

The instrumentation instructions call handler functions in a shared library that is

loaded into the target program’s address space using a one-shot instrumentation. Once the

instrumentation is complete, the target program is allowed to continue execution. As the

program executes, the handler functions get invoked, generating an event trace (memory

1The debug information embedded in the executable contains the offset values for each local variable of a
function. The offset values can be combined with the value of the stack pointer to get the absolute memory
address of the local variable for that instance of the function.

2Most compilers support inserting debug information in the binary, e.g., with the -g flag.
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accesses, function entry/exits and OpenMP synchronization calls). For real-world programs,

the tool can be expected to capture hundreds of millions of events. To conserve space, it is

essential to efficiently compress this trace online before storing it to stable storage. In later

sections, we discuss and evaluate several compression strategies.

Our instrumentation framework allows partial event tracing. After an adequate

number of events have been captured, the instrumentation can be turned off, and the

original application can continue execution without any instrumentation overhead. This is

important for tracing “snippets” of long-running applications. In this work, however, we

only collect full event traces, i.e., we run the application from start to finish and use the

generated event trace for processing.

Each thread is responsible for logging its own event trace. There is no cross-thread

dependence for tracing. Hence, our framework scales with increasing number of threads.

3.3.3 Simulation

This is the final phase. The simulator uses the compressed per-thread event trace

for incremental coherence simulation. In this work, ccSIM simulates the MESI coherence

protocol that is present on our target platform. Other protocols can be easily simulated, if

required in the future.

Interleaving of Reference Streams

It is important to note that for correct coherence simulation, we must not only cap-

ture the memory access trace but also the partial ordering information among the OpenMP

threads. The partial ordering among threads occurs due to the execution of OpenMP syn-

chronization directives, i.e., barriers, critical sections, atomic sections and accesses

protected by explicit mutex locks (omp get lock, omp set lock).

We maintain the partial ordering during simulation in the following manner. In

the instrumentation phase, we instrument the entry and exit points of the functions imple-

menting the OpenMP directives in the compiler’s run-time support library. These recorded

events are used to order accesses from different threads during coherence simulation. For

barrier events, the simulator ensures that all events from all threads before the barrier are

executed before any events after the barrier. The mutual exclusion effect of critical,
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atomic, omp get lock() and omp set lock() directives is achieved by allocating and ma-

nipulating corresponding lock structures in the simulator.

For understanding coherence behavior more effectively, we found that it is useful

to classify accesses within and across a region. We define a region as the execution between

two successive barrier events.3 In a region without additional OpenMP synchronization

events (e.g., omp critical), there is no ordering between accesses from different threads.

We explore the effect of different interleavings by allowing our simulator to execute in two

modes at the start of a region:

Interleaved Mode: The simulator processes one data reference from each trace (corre-

sponding to a thread or processor) before processing the second reference for each trace etc.

Effectively, the simulator enforces a fine-grained interleaving in a round-robin fashion on

a per-reference base in this mode. Piped Mode: The simulator processes all data refer-

ences from one trace up to the next synchronization point before processing data references

from the second trace etc., effectively enforcing a coarse-grained interleaving at the level of

regions.

A comparison of results from the interleaved and piped modes reflects the extent

to which program latency is affected by the non-deterministic order of execution of OpenMP

threads and may provide extremes (bounds) on metrics for coherence traffic.

3.3.4 Studying Invalidations and Misses

For optimizing the sharing behavior of multi-threaded applications, identifying

the sources of invalidations and coherence misses is essential. Invalidations occur when a

processor writes to a shared cache line. Coherence misses occur when a processor accesses a

recently invalidated cache line. Coherence misses are very expensive because the concerned

memory line will be absent from all levels of cache and will have to be brought in from

the other processor’s cache over the bus. The latency for this operation is high enough

that contemporary out-of-order processors will run out of independent instructions and will

be forced to stall. Thus, reducing the number of coherence misses often has a significant

impact on the overall wallclock execution time of the program.

3Our definition of region is slightly different from its definition in the OpenMP 2.5 standard. Even though
both definitions refer to the dynamic extent of execution, our focus is only on barrier events. In contrast,
the OpenMP standard defines regions more generally as the dynamic or runtime extent of a construct or
OpenMP library routine [113].
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By reducing invalidations we will also reduce the number of coherence misses.

Given the importance of invalidations, we provide multiple sub-classifications for different

types of invalidations.

First, we are able to distinguish between true and false sharing invalidations by

keeping information about parts of the cache line that are accessed by the host processor.

True-sharing invalidations occur when multiple processors access a particular data element

and at least one of the accesses is a write. False-sharing invalidations occur due to accesses

to different data elements that happen to be resident in the same memory line. False-sharing

invalidations are an artifact of the limitation that coherence information is only maintained

at cache line level granularity in contemporary architectures. Consider two un-related data

items d1 and d2 that are resident in the same memory line, and the line is in shared state

in the caches of processor P1 and P2. If P1 writes to d1, the memory line containing d1

and d2 is invalidated from P2’s cache. If P2 subsequently attempts to access d2, it will

experience a coherence miss.

Second, we distinguish between in-region and across-region invalidations. We in-

troduced the concept of a region above (Section 3.3.3). Within the same region, we further

distinguish true-sharing invalidations by whether they are protected by a critical region or

not.

In summary, ccSIM generates the following metrics. 1) Uniprocessor statistics:

Hits, misses, temporal and spatial locality ratios, and list of evictors for each reference. The

uniprocessor metrics are described in our previous work [65]. 2) Invalidations: These are

sub-classified into true and false-sharing invalidations, as discussed above. 3) Coherence

Misses: A miss is classified as a coherence miss if it is accessing data that was present in

the processor’s cache previously but was invalidated due to a write from another processor

to the shared data’s memory line. When a cache line is invalidated, we save the cache tag

of the invalidated line. Later, when a miss occurs, this information is used to classify a miss

as a coherence miss. 4) Invalidator Lists: We have enhanced our framework described

in [66] to generate invalidator lists for each reference. The invalidators for a reference are

the write (store) references on other processors that invalidated the data accessed by this

reference. Invalidator lists help to understand the movement of shared data elements across

processor caches. A later case study (ammp) shows the use of these lists for understanding

coherence patterns.

These statistics can be viewed at several levels of detail: 1) Per-Processor: This
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level of detail is similar to architecture-oriented coherence simulators. 2) Per-Reference:

A source code reference is a program location (line:File). Per-reference results allow us

to magnify per-processor results and to map them to individual program locations. 3)

Per-Function: Since we instrument function entry and exit points, we can generate per-

function as well as per-calling context coherence metrics. 4) Per-Variable: Global and local

variables are supported by our framework. In addition, dynamically allocated variables

can be distinguished by their call-context-sensitive allocation site in the program source

code. 5) Within/Across OpenMP regions: As discussed before, we distinguish between

interactions that occur in the same OpenMP region from interactions that occur across

different OpenMP regions.

The coarser levels of detail can be used to quickly check whether a potential

coherence bottleneck exists (e.g., high ratio of coherence misses to total misses). Then,

the per-reference and per-data structure metrics can be used to isolate the bottleneck to

particular source code locations and data structures. Finally, the invalidator lists show

how the shared data is moving across processor caches. We demonstrate this performance

evaluation process with several case studies later in this chapter.

3.4 Experiments

First, we present the OpenMP benchmarks used for experiments with ccSIM.

Next, we compare results obtained from ccSIM with hardware performance counters. We

evaluate the trace extraction framework with respect to execution overhead induced on the

target application and compare the effectiveness of various compression strategies for online

compression of the access stream.

Finally, we use ccSIM to characterize the shared memory usage of representative

OpenMP benchmarks and show how ccSIM statistics are useful in detecting and isolating

coherence bottlenecks.

Benchmarks: In later sections, we validate our simulator against hardware per-

formance counters and measure the overhead of tracing with different compression algo-

rithms. For these experiments, we selected the 6 benchmarks from the NAS OpenMP suite

[48] plus an additional OpenMP benchmark (NBF) from the GROMOS benchmark suite

[37].
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A brief description of each benchmark is given below. 1) IS: A large integer sort

used in “particle method” codes. 2) MG: A V-cycle MultiGrid method to compute the solu-

tion of the 3-D scalar Poisson equation. 3) CG: A Conjugate Gradient method to compute

an approximation to the smallest eigenvalue of a large, sparse, unstructured matrix. 4)

FT: An implementation of a 3-D Fast Fourier Transform (FFT)-based spectral method. 5)

SP: A simulated CFD application with scalar pentagonal bands of linear equations that are

solved sequentially along each dimension. 6) BT: A simulated CFD application with block

tridiagonal systems of 5x5 blocks solved sequentially along each dimension. 7) NBF (Non-

Bonded Force Kernel): A molecular dynamics simulation computing non-bonded forces due

to molecular interactions.

All NAS benchmarks used class S data sets, except for IS which used class W. The

NBF kernel was run for 2 time steps with 16384 molecules. For these settings, we observed

a sufficient number of invalidations to characterize the application behavior.

In addition, we also present case studies in using ccSIM to optimize much larger

applications, which closely resemble real world programs. These include two benchmarks

(IRS-1.4, SMG2000) from the ASCI Purple OpenMP suite [1], and one benchmark (AMMP)

from the SPEC2001M OpenMP suite [98]. More details about these applications are

presented in the case studies.

3.4.1 Comparison with Hardware Counters

In this section, we validate ccSIM against measurements from hardware perfor-

mance counters. From a developer’s perspective, the number of coherence misses is the

most important facet of the shared memory access pattern of an application. However, there

are no hardware counters capable of measuring coherence misses on our target platform.

Instead, we compare the number of invalidations for ccSIM against the actual number of

invalidations measured by the hardware counters. The total number of invalidations is an

upper bound on the number of coherence misses for the application. Reducing invalidations

will also lower the number of coherence misses, thereby improving application performance.

Hardware Environment: The hardware counter measurements were carried

out on a 4-way SMP machine with 375 MHz Power3 processors. The hardware counters

were accessed through the proprietary Hardware Performance Monitor (HPM) API. The

system has a 64 KB 128-way associative L1 cache with round-robin replacement and an 8
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Table 3.1: Total L2 invalidations with HPM

Benchmark HPM(raw) HPM(OpenMP-adjusted)

IS 165246 162964

MG 24631 13629

CG 134964 100488

FT 326595 325257

SP 282269 258923

BT 185317 157384

NBF 474121 135926

Table 3.2: HPM vs. ccSIM

Benchmark HPM ccSIM ccSIM % Error
Interleaved Piped Interleaved vs. HPM

IS 162964 163073 159913 -0.06

MG 13629 13174 12355 3.30

CG 100487 117117 116318 -16.50

FT 325257 302630 302607 6.90

BT 157384 157503 157480 -0.07

SP 258922 268334 268334 -3.60

NBF 135926 137498 14629 -1.15

MB 4-way associative L2 cache. All experiments were carried out with 4 active OpenMP

threads bound to distinct processors. The IBM OpenMP compilers, xlc r and xlf r, were

used to compile the benchmarks at the default optimization level O2 with following flags

settings: -qarch=auto, -qsmp=omp, -qnosave.

HPM measurements: The Power3 hardware implements the MESI coherence

protocol within an SMP node. The PM SNOOP L2 E OR S TO I and PM SNOOP M TO I HPM

events were used to measure the number of L2 cache invalidations with E→I, S→I and M→I

transitions, respectively. The OpenMP runtime system also contributes to the number of

invalidations measured. Since we are interested only in the invalidations of the application,

we need to remove these invalidations from the measured numbers.

To assess the side-effect of the OpenMP runtime system on invalidations, we mea-

sured invalidations for OpenMP runtime constructs with empty bodies in a set of mi-

crobenchmarks. For example, the overhead in terms of invalidations for a barrier construct

was determined. The microbenchmarks were subsequently used to adjust raw HPM data

obtained from application runs by removing the extrapolated effect of OpenMP runtime

invalidations for n iterations. For example, we removed the effect of n = 100 times the
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overhead for a single barrier if the benchmark contained 100 barriers. We refer to these

measurements as the raw HPM metrics and the OpenMP-adjusted HPM metrics.

Table 3.1 shows the raw and OpenMP-adjusted HPM measured invalidations for

the L2 cache. The invalidations were measured for each processor separately using the HPM

events discussed above and summed up to get the total invalidations shown in the table.

Each HPM measurement is the mean of 5 samples.

Comparison with ccSIM: ccSIM was configured with the MESI coherence protocol

and with the cache parameters of the hardware platform (4-way Power3 SMP node). Both

L1 and L2 caches were simulated. Table 3.2 compares total L2 invalidations for HPM and

the two ccSIM modes - piped and interleaved.

The results indicate a good correlation between ccSIM and HPM for most bench-

marks. The absolute error between ccSIM and HPM is less than 17% for all benchmarks

and less than 7% for most. Moreover, for the NAS benchmarks, both interleaved and piped

modes result in closely matching numbers of invalidations. This indicates that for these

benchmarks, fine-grained round-robin simulation is not necessary to achieve a high level

of simulation accuracy. NBF stands out as an anomalous case with significant difference

between the interleaved and piped modes of simulation. ccSIM allows us to categorize

invalidations into true and false sharing invalidations as well as to distinguish between

across-region and in-region invalidations, as explained in Section 3.3.4. The cause of the

discrepancy becomes apparent when we examine the in-region true-sharing critical invali-

dations shown in Figure 3.2. Metrics are plotted in a log scale. The number of true-share

invalidations occurring within a region is much higher (at least an order of magnitude)

in the interleaved simulation mode. The interleaved simulation mode involves fine-grained

round-robin simulation, which leads to a “ping-pong” exchange of shared data across pro-

cessors. The ping-pong exchange does not take place with the piped mode of simulation,

leading to a very small number of invalidations to be recorded. A look at the per-reference

ccSIM statistics indeed shows that the most significant invalidation source is a data access

point inside an OpenMP critical construct. This demonstrates the necessity of inter-

leaved simulations for codes containing critical sections to closely resemble the interleaving

of references during actual execution.4

4In Figure 3.2, the number of in-region true-sharing invalidations is shown to be zero for P4. This is an
artifact of our round-robin scheduling due to which the true-sharing invalidations were classified as across-
region false-sharing invalidations in this particular benchmark. This can potentially be improved upon by
using pseudo-random instead of round-robin scheduling, after which the results for P4 will be similar to
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Figure 3.2: NBF: Interleaved and Piped
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(b) Trace Size (Normalized)

Figure 3.3: Execution Overhead and Trace Sizes

3.4.2 Execution Overhead and Trace Compression

Instrumentation for capturing the memory access trace imposes execution overhead

on the application. The access traces being captured can be in the order of hundreds of

gigabytes. Hence, effective compression is necessary before they can be stored to disk. In

this section, we measure the run-time overhead imposed by software instrumentation. We

also evaluate several compression strategies with respect to additional run-time overhead

imposed and the quantum of compression achieved by each.

For compression, we compare the following strategies: 1) No Compression (No-

other processors.



65

Compr): No compression algorithm is used. The raw uncompressed trace is written to

stable storage. 2) PRSD Compression (PRSD-Compr): This compression algorithm

is targeted for regular accesses in nested loop structures, as commonly found in scientific

programs. It is reported in our previous work in [62]. 3) LZO Compression (LZO-

Compr): This is an open-source lossless compression library designed specifically for com-

pression speed [85]. We use the mini-lzo variant that implements the LZO1X-1 algorithm.

Compression input is in chunks of 64KB. 4) Multi-stage Compression (Multi-Compr):

This is a hybrid algorithm that uses LZO compression to compress the output stream of

the PRSD algorithm.

Run-Time Overhead: Figure 3.3(a) shows the execution time of just the soft-

ware instrumentation (Null-Instru), and for instrumentation plus compression with the

algorithms discussed above. The execution time is normalized to the execution time of

the original unmodified executable. We make the following observations: 1) The cost of

software instrumentation alone (Null-Instru) is approximately 2 to 3 orders of magnitude

(i.e., 100 to 1000 times slowdown). This is due to the high frequency of instrumentation

at every load and store instructions. 2) The execution overhead of storing the compression

trace is comparatively low (No-Compr vs. Null-Instru). 3) LZO Compression is very fast

and adds very little overhead by itself (LZO-Compr, Multi-Compr). 4) PRSD Compression

has variable overhead. For some benchmarks (MG, FT, SP) the overhead is low while for

others, there is significant overhead compared to LZO compression.

Trace Compression: Figure 3.3(b) compares the trace sizes achieved with the

various compression strategies normalized to the original size of the trace. We make the

following observations: 1) LZO compression always reduces the trace size by half or even

more. 2) PRSD-based compression can lead to spectacular compression in some cases (MG,

FT and SP) and beats LZO-based compression in 4 out of the 7 benchmarks (MG, FT, SP,

BT). However, the compression rate is significantly better for LZO for the remaining three

benchmarks (IS, CG, NBF). 3) Multi-stage compression achieves the best compression for

all benchmarks, except for NBF. Even with NBF, multi-stage compression reduces the trace

size to approximately half of the original size.

To summarize, PRSD-compression either works very well (with low execution over-

head and very high compression) or very poorly (with relatively high overhead and poor

compression). Compression is poor when the program either does not have nested loops

that dominate the overall memory accesses or the access stream generated is irregular. The
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latter is the cause for the poor compression rate of both CG and NBF, due to the presence

of indirectly indexed arrays in sparse matrix computations, which generate a non-linearly

strided access stream.

A hybrid multi-stage algorithm (PRSD+LZO) almost always achieves the best

compression, at the price of additional execution overhead.

3.5 Opportunities for Transformations

In this section, we demonstrate how ccSIM is used to detect and isolate coherence

traffic bottlenecks, to derive opportunities for transformations leading to reduced coherence

traffic and, thereby, to obtain potential performance gains.

Our methodology for performance evaluation is subject to a cost/benefit trade-off,

as detailed in the following. A high overhead of tracing and simulation limits the extent of

the program execution that can be realistically traced by our framework. We expect the

programmer to either create a smaller data set or to identify a repeating program phase

(e.g., a single timestep) for performance evaluation. The resulting smaller program trace

must have similar sharing characteristics as the original one; otherwise, the performance

analysis results may not apply to the original program. Consider a the smaller program’s

data set that completely fits in cache while the original program’s data set does not. Then,

the importance of coherence (sharing) optimization may be exaggerated by the performance

analysis.

Tracing has relatively high overhead. Thus, we recommend that programmers

follow a two-step approach for performance evaluation of coherence activity. First, existing

hardware performance counters can be used to quickly and cheaply evaluate if there exists a

significant amount of sharing between processor caches (e.g., using our previous approaches

[67]). If such sharing exists, then our framework can provide detailed source code level

information about the causes of any potential sharing bottlenecks.

Except for NBF, all our case studies use a smaller data set for performance eval-

uation and the recommended large data set that is used for measuring performance im-

provements. We are able to effectively use smaller data sets due to two notable reasons.

First, 3 out of the 4 use cases (NBF, SMG2000, AMMP) exhibit sharing behavior between

processors that is temporally close. In other words, the same sharing behavior will occur for
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small or large data sets, irrespective of whether the data set fits in cache or not. Second,

for all use cases, the coherence simulation results lead us to optimizations (removing redun-

dant concurrency, increasing concurrency, prefetching) that provide performance benefits

irrespective of whether the data set fits in cache or not. In the first case, this is a property

of the trace while in the later one, it is a property of the optimizations. This shows that

in practice, the potentially difficult task of crafting smaller data sets or truncated program

runs that reflect the original program behavior may be mitigated.

We shall now use ccSIM to optimize the NBF kernel. This code is comparatively

simple compared to the other applications that we discuss later (irs, smg, ammp). NBF

serves as a good introduction to characterizing and optimizing coherence behavior with

ccSIM, even though the code analysis and transformations we discuss for it are straightfor-

ward, and may be achievable by visual inspection of the code. The other benchmarks are

much larger and complex, and a profile-guided approach (like our tool) would be essential

to understand and optimize their coherence behavior.

3.5.1 NBF: Non-Bonded Force Kernel

This case study is also discussed in Anita Nagarajan’s thesis [75]. We included it

in this document in order to maintain the readability of the text and to provide additional

examples of ccSIM in action.

A full access trace was obtained for the OpenMP NBF kernel. The OpenMP

environment was set to four threads and static scheduling (OMP NUM THREADS=4,

OMP SCHEDULE=STATIC).

Analysis: Figure 3.4 shows the breakdown of misses for L1 and L2 caches for each processor

obtained by ccSIM. We observe that almost all L2 misses and a significant number of L1

misses are coherence misses. A coherence miss is caused when a processor accesses a cache

line that was invalidated due to a write from another processor. However, a large number

of invalidations does not necessarily imply a large number of coherence misses, since the

invalidated cache lines may not be referenced by the processor again before being flushed

out of the cache. The number of coherence misses shown in Figure 3.4 is very close to

the number of invalidations received by the cache. This shows that almost all invalidations

eventually caused a coherence miss. Minimizing the total number of invalidations will also

reduce the magnitude of coherence misses correspondingly.
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Figure 3.4: NBF: Breakdown of L2 misses

Table 3.3: NBF: Comparison of per-reference statistics for each optimization strategy

Invalidations
Line Ref Optimization Misses Miss % Coherence True False
No. Strategy Ratio Misses Total In Across In Across

Region Region Region Region

141 f Read Original 32500 0.99 96.87% 32768 32768 0 0 0
Serialized 2050 1.0 50.30% 2048 2048 0 0 0
Round-robin 1790 0.87 42.84% 2048 2048 0 0 0

227 x Read Original 1540 0.997 99.74% 768 1 765 0 2
Serialized 1540 0.997 99.74% 768 1 765 0 2
Round-robin 1540 0.997 99.74% 768 0 766 0 2

217 f Read Original 512 1.0 100% 256 256 0 0 0
Serialized 512 1.0 100% 256 256 0 0 0
Round-robin 512 1.0 100% 256 0 255 0 1

We have detected a potential coherence bottleneck. We can use the per-reference

coherence and cache statistics generated by ccSIM to determine the cause of the bottleneck.

Table 3.3 shows the per-reference statistics on processor one for the top three references

of the original code and two optimization strategies (serialized and round-robin) discussed

next. Only L2 cache statistics are shown.

We observe that access metrics across all processors are uniform. The f Read ref-

erence on line 141 of the source code has an exceptionally high miss rate in all processors.

Moreover, more than 96% of the misses for this reference are coherence misses. The inval-

idation data shows that the large number of in-region invalidations are the primary cause

for these misses. The relation of this reference to the source code indicates that line 141 is
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Table 3.4: NBF: Wall clock Times (Seconds)

Code Original Serialized Round-robin
Segment

f-Update 4.981 0.003 (99.9%) 0.003 (99.9%)
Other 2.141 2.076 (3%) 2.190 (-2.28%)
Overall 7.122 2.079 (70.8%) 2.193 (69.2%)

Table 3.5: NBF: L2 Invalidations (HPM raw)

Code Original Serialized Round-robin
Segment

f-Update 503654 921 6209
Other 37987 32916 38863
Overall 541641 33837 45072

of interest:

#pragma omp parallel

...

for (i = 0; i < natoms; i++) {

#pragma omp critical

141: f[i] = f[i] + flocal[i];

}

The for loop updates the global shared array f with values from the local private

copy flocal for each OpenMP thread. The large number of invalidations attributed to the

f Read reference is due to a ping-pong exchange of the shared f array between processors

as all of them try to update the global f array simultaneously.

Optimizing Transformations: Using ccSIM’s per-reference statistics, we isolated the

coherence bottleneck to the updates of the shared global array f. We shall discuss two

ways of reducing the number of coherence misses. One method eliminates the ping-pong

exchange of the f array by serializing the updates to the array f since they require mutually

exclusive writes. This is achieved by moving the critical section to encompass the entire

for loop instead of the single update. The modified code is shown below.

#pragma omp parallel

...

#pragma omp critical

for(i = 0; i < natoms; i++) {

f[i] = f[i] + flocal[i];

}
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Moving the critical statement outside the loop also reduces the number of times

that the mutual exclusion region must be entered and exited, decreasing the execution

overhead. Although reducing the number of coherence misses, this method does not exploit

the potential for parallel updates to separate parts of the f array by different threads.

Hence, we consider an alternate transformation. We can exploit parallelism by partitioning

the array f into a number of segments. Each thread updates a distinct segment until all

segments are updated. We call this scheme the round-robin update scheme. The modified

code is shown below as pseudo-code.

//1. calculate #segments

tot_segments = (size of "f" array) / #threads;

//each thread executes this for loop

for(i = 0; i < tot_segments ; i++)

{

//2. get segment id to update

seg_id = (thread_id + i) % tot_segments ;

//3. update segment seg_id of array "f".

......

//4. synchronize all threads (barrier)

barrier();

}

Results: Table 3.3 compares the L2 coherence misses and invalidations for the

two optimization strategies. Statistics are depicted only for processor-1 and are similar

for the other processors. We observe that both strategies lead to a significant decrease in

the volume of coherence misses for the f Read reference. Table 3.4 shows the wall clock

execution time for (a) the routine that updates the shared array f, (b) the remainder and (c)

the entire program. Table 3.5 shows the total L2 invalidations from all processors for each

approach measured with HPM. We observe that the transformations cause a significant

improvement in wall clock execution time. This improvement occurs due to two effects.

First, the restructured programs have far less invalidations (and, subsequently, coherence

misses) compared to the original program (Table 3.5). Second, the restructured programs

have lower OpenMP execution overhead because they execute fewer OpenMP calls.
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3.5.2 IRS: Implicit Radiation Solver

IRS-1.4 is part of the ASCI Purple codes [1]. IRS can use MPI, OpenMP or

a mixture of both for parallelization. We use the pure OpenMP version of IRS for our

study. Existing OpenMP parallelization uses “omp parallel do” constructs for loop level

parallelization. For the analysis below, we ran IRS for 10 calls to the top-level xirs function,

with a limited data set (NDOMS=10, ZONES PER SIDE=NDOMS PER SIDE) with 4 OpenMP

threads and static scheduling. This partial data trace is comparatively small, yet captures

essential coherence traffic. Once our optimizations are complete, we compare the wall-clock

time for the recommended full-sized data set for IRS (zrad.008.seq).
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Figure 3.5: IRS: Breakdown of L2 misses
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Figure 3.6: IRS: Time w/ 4
Optimizations

Analysis: Figure 3.5 shows that for all processors, coherence misses constitute

almost the entire volume of L2 cache misses. Interestingly, the coherence miss magnitudes

are asymmetric with processor-1 experiencing more than twice the number of coherence

misses of any another processor. Figure 3.7 shows the per reference coherence statistics for

processors 1 and 2. Statistics for other processors were similar to those for processor-2.

References have been collected into groups with distinct coherence characteristics

(Groups 1, 2 and 3). Multiple references are shown with only a single representative refer-

ence. For example, there are a set of fourteen references to different arrays in the matrix

structure, all of which show similar coherence characteristics; these are represented by a
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Figure 3.7: IRS: Per-Reference Statistics

Invalidations Opt.
Proc No. Reference Grp Coh. True False Optimization Coh.

misses in across in across strategy misses

1 1 v1[] rd 8627 4 7517 31 1342 code 1980
2 v2[] rd 8568 310 5093 78 3085 transforms 1971

3-16 matrix.dbl[] wr 1 2547 25 2325 0 455 for data 719
17 x[] rd 1803 0 1402 391 2 segregation 968
18 timersflag rd 2 3182 1 0 3122 70 padding 0
19 thread flop[] rd 1789 0 2 1789 0 0
20 clock last rd 3 2165 2166 0 0 0 remove 0

sharing

2 1 clock last rd 3 5997 5644 353 0 0 0
2-3 timersflag rd 2907 18 0 2908 0 0
4-6 thread flop[] rd 2 2734 0 0 2407 327 0
7 thread wall secs[] rd 1022 0 0 652 371 padding 0
8 thread cpu secs[] rd 811 0 71 742 0 0

/* only master */
for (i =0; i < nblk; i++)

dotprev += icdot(r[i], z[i],...); /* Reads r,z */
...
/* parallel updates to r,z */
#pragma omp parallel for
for (i =0; i < nblk; i++) {

setpz1(r[i],...); /* Writes to r*/
setpz1(z[i],...); /* Writes to z*/

}
...
/* only master */
for (i =0; i < nblk; i++)

dotrz += icdot(r[iblk], z[iblk],...);/* Reads r,z */

Figure 3.8: IRS Breakup into Parallel Regions
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single representative reference matrix.dbl[] in the table. We observe that the set of refer-

ences with significant coherence behavior are quite different for processor-1 and processor-2.

We shall now analyze references belonging to each group in detail.

Group 1: These references account for the largest fraction of coherence misses.

True sharing across-region invalidations are dominant for this group. This indicates that the

data elements accessed by these references move across the L2 caches of multiple processors.

Consider the first two references (v1[] and v2[]). These references occur in the icdot

function, that is only called at three locations from the MatrixSolveCG function. All call

sites are in serial code, i.e., they are executed only by the master thread. Between successive

calls, the argument arrays are updated by other processors in parallel regions, as depicted

in Figure 3.8.

Thus parts of arrays r and z move between processor-1 and other processors. We

can eliminate this unnecessary movement using code transformations for data segregation.

In this case, we can parallelize the icdot calls using OpenMP. This allocates segments of r

and z arrays to specific processors thereby eliminating unnecessary data movement. More

significantly, icdot calls now operate in parallel. This potentially has a much bigger impact

on performance than the elimination of data movement alone.

Similar transformations are carried out for other references from Group-1, which

we do not further discuss here.

Group 2: In-region false sharing invalidations constitute almost the entire volume

of invalidations for these references. The number of coherence misses closely matches the

number of invalidations received. All these references are related to timer routines used

for performance benchmarking. Most of the coherence misses arise due to parallel updates

to counter arrays indexed by thread id. Since array elements are contiguous, this leads to

false-sharing, causing a ping-pong exchange of cache lines across processors. We use intra

data-structure padding to align individual array elements at cache line boundaries, which

eliminates coherence misses.

Group 3: This group has a single reference exhibiting large volumes of true in-

region invalidations. These invalidations occur inside a omp critical region updating a

shared global clock variable. We eliminate this sharing by maintaining clock variables for

each thread separately.

Results: The coherence misses for each reference after optimization are shown

in the last column of Figure 3.7. We see that coherence misses for Groups 2 and 3 have
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been eliminated (by padding and sharing elimination, respectively) and have decreased sig-

nificantly for Group 1. Figure 3.6 shows the wall-clock execution times for the different

optimization strategies on the recommended OpenMP data set(zrad.008.seq). The read-

ings were obtained on a non-interactive node with 8 OpenMP threads. DSeg represents

code transformations for data segregation (Group 1 references). DSeg+Crit additionally

removes the shared global clock (Group 3 reference). DSeg+Crit+Padding represents the

fully optimized benchmark. We observe that DSeg causes significant decrease in wall clock

execution time (over 30%), compared to the original program. The performance impact

is due to a combination of 2 factors. First, there is reduction in coherence traffic due to

our optimizations. Second, the reduction in coherence traffic was achieved by additional

parallelization of serial sections of code. This additional speedup also contributes to the

overall wallclock time improvement.

It would be hard to achieve these optimizations by conventional time-based pro-

filing alone. Such schemes might be able to pin-point the source-code locations taking

significant amounts of execution time. However, our ability to understand the exact flow of

shared data across processor caches was critical in identifying the ping-pong effect due to

insufficient parallelization.

3.5.3 SMG2000: Semi-coarsening Grid Solver

Table 3.6: SMG: Per-Reference Statistics (Processor-1)

Invalidations Optimized
No. Reference Group Coherence True False Optimization Coherence

Misses In Across In Across Strategy Misses
1 rp[] Read 1 170046 0 0 156585 13387 Code Transforms 256
2 rp[] Read 83509 0 0 80145 3529 for coarse-level 0
3 rp[] Write 43640 0 0 43305 3373 interleaving 0
4 xp[] Write 23193 0 0 22309 1284 2764
5 num threads 2 44362 44929 0 0 0 Remove sharing 0

SMG2000 is part of the ASCI Purple benchmark set [1]. The SMG code utilizes

the hypre library [32], that can select between OpenMP and MPI parallelization. We use

the default settings of SMG2000 for our analysis (10 x 10 x 10 grid, cx=cy=cx=1.0).

We then compare the wall-clock execution time for the recommended full-sized workloads
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Figure 3.9: Break-
down of L2 misses
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Figure 3.10: SMG: Cumulative
L2 Coherence Misses
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Figure 3.11: SMG: Time for dif-
ferent Workloads

for different optimization strategies.

Analysis: For all processors, the L2 miss rate is quite high, ranging from 64% to

81%. Figure 3.9 shows that almost all of the L2 misses are coherence misses. It also shows

that the number of invalidations received is very close to the number of coherence misses.

This indicates that almost all invalidations received by the L2 cache eventually caused a

coherence miss.

Our instrumentation framework instrumented 11,047 memory access points, out

of which only 338 access points (3%) experienced coherence misses. Figure 3.10 shows

the cumulative coherence misses for the access points that experienced coherence misses

(“participating access points”) for each processor. Notice that the cumulative distribution

is quite skewed — 10% of the participating access points accounted for 82-85% of the total

coherence misses for a processor. Thus, by focusing on optimizing the coherence misses for

the top references, we can remove a large number of coherence misses, potentially resulting

in a significant performance gain.

The per-reference statistics for the top 5 references from processor-1 are shown

in Table 3.6. The statistics for other processors were similar to those of processor-1. As

with IRS, we classify references into groups based on coherence characteristics to facilitate

analysis.

Group 1: References in this group are all array access references. All references

experience a very large volume of in-region false-sharing invalidations. This indicates that

multiple processors are updating different data elements on the same cache line, causing the

cache line to ping-pong between L2 caches of different processors. The cause of the large

volume of invalidations lies in the sub-optimal implementation of loop-level parallelization

by the hypre library function. This function must choose one loop of a triply-nested loop

nest to parallelize. Each loop in the nest iterates over a single coordinate axis. The order of
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iteration is x,y,z from the inner to the outer loop. The function always chooses the largest

dimension for parallelization, with the default being the innermost loop (x dimension). This

results in fine-grained interleaving of thread accesses to adjacent array elements, resulting

in large amounts of coherence traffic. To correct this, we hoist the OpenMP parallelization

to the outermost loop (z dimension) ensuring that threads access data on different cache

lines.

Group 2: This group has a single store reference that exhibits large volumes of

true-sharing in-region invalidations. The data element referenced is a shared variable that is

simultaneously updated by all threads with the number of runnable OpenMP threads, inside

an omp parallel construct. We eliminate this sharing by replacing the omp parallel

construct with separate calls to omp get max threads() in each thread.

Results: The coherence misses after optimization are shown in the last column

of Table 3.6. Our optimizations have eliminated almost all the coherence misses for these

references. We compare the performance impact of our optimizations on wall clock execution

time for the following workloads, as recommended by the SMG2000 benchmarking criteria:

1. 35x35x35 grid, OpenMP threads=1

2. 35x35x70 grid, OpenMP threads=2

3. 35x70x70 grid, OpenMP threads=4

4. 70x70x70 grid, OpenMP threads=8

All workloads have processor configuration 1x1x1 (-P 1 1 1), cx=0.1, cy=1.0,

cz=10.0. The workloads scale up the input grid size with increasing number of threads

keeping the overall data processed per processor constant. Figure 3.11 compares the wall-

clock times for the different workloads.

Coarsening represents code transformations for coarse-level interleaving of ac-

cesses (Group 1). Coarsening+Sharing Removal additionally removes unnecessary shared

data access (Group 2). We observe that both optimizations have significant impact on

execution time, with a maximum improvement of 73% for the 4th workload (8 OpenMP

threads).

3.5.4 AMMP: Molecular Mechanics Program

AMMP is a part of the SPEC2001M OpenMP benchmark suite [98]. We use the

smaller test data set for characterizing the coherence behavior of the benchmark, and later
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Table 3.7: AMMP: Per-Reference Statistics

Invalidations
# Reference Group Coh. True False Optimization

file line name misses in across in across strategy
1 rectmm.c 1184 (a2->py) Read 45321 88081 0 4489 0
2 rectmm.c 1237 (a2->qzz) Read 1 43905 89614 0 0 0 Prefetch
3 vnonbon.c 536 (a2->dy) Read 6764 35700 1639 0 0
4 atoms.c 95 a number Read 9580 0 9582 0 0
5 atoms.c 99 new Write 2395 0 2395 0 0 Remove
6 atoms.c 194 (*name) Read 2394 0 2395 0 0 Superfluous
7 atoms.c 111 a number Read 2 9582 0 1 9581 0 Parallelization
8 atoms.c 144 a number Read 4791 0 0 4792 0
9 atoms.c 115 serial Read 2394 0 0 0 2395
10 atoms.c 115 serial arr[ ] Write 2095 0 0 0 2395
11 atoms.c 116 serial p[ ] Write 2095 0 0 0 2395

use the larger train data set for measuring the performance improvements on the target

machine. The benchmark was run with 4 OpenMP threads. We modified the scheduling

policy specified by the program to static scheduling, from guided scheduling, for more

repeatable performance numbers. 5 As before, we bound the OpenMP threads to separate

processors using the bindprocessor system call.

For the coherence characterization, the address traces were obtained on a 8-way

SMP Power4-II platform6. We updated the coherence simulator configuration to simulate

the cache configuration of this target platform, including shared L2 caches. We simulate

the generic MESI protocol and do not model the more specialized version of the protocol

as implemented on the target POWER4 platform.

Table 3.7 shows the top references exhibiting coherence misses for processor 3.

The results for other processors are similar.

Invalidator Lists: Figure 3.12 shows the invalidator lists for selected references.

We shall describe invalidator lists in more detail, since this is the first use case to use

this feature. The invalidator lists are shown graphically in the following format. Each

ellipse represents a reference in the source code. An edge from ellipse A (source) to B

(target) denotes that A caused the memory line resident in some other processor’s cache

5Static scheduling ensures that the each processor executes the same iterations, over multiple runs of the
program. With guided scheduling, the iterations that are executed on a processor can vary across multiple
program run, leading to more variance in performance numbers.

6The Power3 machine that we used for earlier experiments was no longer in service.
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Figure 3.12: Invalidators for Selected References

to be invalidated, and that memory line was previously accessed by the reference B. Here,

A must be a store reference (since it caused an invalidation) and B can be either a load

or a store reference. The numbers on the edges denote the percentage of the invalidations

of the target reference that were accounted for by the source reference. E.g., consider the

invalidator list for reference Ref7 in Figure 3.12. Ref7 is a number Read, with source code

location atoms.c:111. The data brought into the cache by this reference was invalidated 50%

of the time by reference highest Write (atoms.c::235) executing on processor1, 25% of the

time by reference last Write (atoms.c::207) executing on processor1 and 25% of the time

by reference last Write executing on processor2. The invalidator references are accessing

a different data element than the reference being invalidated (highest Write, last Write

vs. a number Read). The invalidations occur because all these data elements are resident

on the same cache line (an example of false-sharing).

Analysis: As before, we have grouped references showing similar characteristics.

Let us consider each group in more detail.

Group 1: There are 3 references in this group. Together, they account for 72%

of all the L2 coherence misses suffered by this processor. For this group, almost all the

invalidations received are in-region true-sharing invalidations, i.e., other processors wrote

to the same shared data element within the same OpenMP region causing the invalidation.
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Figure 3.13: Reduction in Execution Metrics for AMMP

The invalidator lists for reference (a2->qzz) Read are shown in Figure 3.12. It is

apparent that all the invalidations for this reference occur due to writes by processors 1 and

2 on the same source code line. In turn, these references are invalidated by the same write

instruction on processors 3 and 4. The cycle of invalidations causes a ping-pong exchange

of data across the processor caches.

A look at the source code shows why the ping-pong exchange is occurring. All

the references access nodes of type struct atom. Consider reference a2->qzz) Read at

rectmm.c::1237.

1158: for( i=0; i< nng0; i++) {

1160: a2 = (*atomall)[natoms*o+i];

1180: omp_set_lock(&(a2->lock)); //capture lock

1237: a2->qzz -= (k2*(zt2 - third) + ...);

1306: omp_unset_lock(&(a2->lock));//release lock

1309: }//end loop

For each atom in the for loop, the shared atom data is accessed in a critical section

guarded by the a2->lock OpenMP lock variable. Our results indicated that the update of

the a2->qzz element suffers frequent coherence misses due to writes to the same element

by different processors.

It is difficult to re-structure the code to remove sharing of the atom elements.

Instead, we use prefetching to pre-load the data that will be accessed in the near future by

this processor using the POWER4 dcbt (“Data Cache Block Touch”) instruction. Prefetch-

ing is beneficial even with larger data sets when the working set size increases beyond the
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L2 cache capacity and most of the data is fetched from memory rather than from another

processor’s L2 cache. We apply this optimization for all the 3 references in this group. The

resulting performance improvements are discussed below.

Group 2: All references in group 2 belong to the function atom() in atom.c.

There are 3 distinct reference sub-groups receiving true-inregion, false-inregion and false-

across-region invalidations, respectively. Figure 3.12 shows the invalidators for reference4

a number Read (atoms.c::95) and reference7 a number Read (atoms.c::111). Reference-4 is

invalidated always by a write in processor-1 occurring at atoms.c::105. Reference7 suffers

false-sharing invalidations due to writes to the shared variables highest and last in other

processors.

We further reduce the coherence misses for this group as follows. Consider refer-

ence4 (atoms.c::95) and its invalidator (atoms.c::105) in the source code.

94:#pragma omp parallel

95: if (omp_get_thread_num() ==

a_number % omp_get_num_threads())

96: {

97: new=malloc(ALONG);

98: }

.......

105: a_number++;

Variable a number increases linearly with each call to the atom() function. The

“if” condition is only satisfied by one thread for each call, so the parallel region is extremely

imbalanced. Following the OpenMP region, a number is updated by the master thread

(line 105), which causes a coherence miss on other processors when they attempt to read

a number the next time. We can avoid this needless coherence miss and eliminate the

overhead of spawning the parallel region by removing this superfluous parallelization. There

are 2 other similar OpenMP regions that are superfluous; they together cause all the other

coherence misses in this group. We shall remove OpenMP parallelization for these regions

and denote this optimization “Shared-Removal” in the performance results discussed below.

Results:

In this section, we compare the performance of the original version of ammp with

our optimized versions (Shared-Removal and Shared-Removal + Prefetching). Since our

simulator currently does not simulate the effect of prefetch instructions, we do not show the

simulator results for the optimized versions. Instead, we measure the performance on the
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real physical machine using hardware performance counters, shown in Figure 3.13. For these

experiments, we used the larger train data set as input. The performance measurements

were obtained for each bound OpenMP thread using 4 threads on a non-interactive Power4-

II 8-way SMP node. For maximum performance, we force the threads to busy-wait by setting

the XLSMPOPTS environment variable to “spins=0:yields=0”. The counter values were

averaged over 4 runs. We observed very low deviation among runs with a coefficient of

variance less than 0.6 for all counter values.

Figure 3.13(a) and 3.13(b) shows the reduction in per-processor cycles and per-

processor L1 data cache misses, over the original version. Figure 3.13(c) shows the reduction

in wall-clock time for the application. We observe that Sharing-Removal leads to a mea-

surable decrease in the number of cycles for each processor and negligible reductions in

the overall wall-clock time. This is because the time spent in the atom() function is less

significant compared to the overall execution time. The impact of this optimization may

increase with a larger number of processors, especially in ccNUMA systems where the cost

of accessing remote memory and remote caches is higher than the cost of accessing their

local counterparts [64].

Sharing-Removal + Prefetching dramatically decreases the magnitude of L1

data cache misses for all processors, ranging from 21% to 47% across processors. This leads

to a 0.5% to 5.3% reduction in processor cycles. Overall, Sharing-Removal+Prefetching

leads to a 5% reduction in wall-clock time.

3.5.5 Other benchmarks

In addition to the benchmarks discussed above, our framework was able to find

incorrect/sub-optimal instances of parallelization in several other benchmarks — sPPM

from the ASCI Purple suite [1], 301.wupwise m from the SPEC OMP2001M suite and FT

from the C OpenMP version of the NAS-2.3 suite [2]. We discuss them briefly below.

sPPM/ASCI-Purple: Our framework pin-pointed a large number of in-region

true-sharing invalidations that were not protected by locks (initbuf() function in sppm/main.m4).

The code is shown in Figure 3.14. The PLOOP macro is expanded by the m4 preproces-

sor to OpenMP pragmas. Due to incorrect parallelization, all threads update the mm1,

mm2, mm3, mm4, mm5 scalar variables that are used in the body of the loop without critical

sections. This is reflected in our coherence simulation results as true-sharing in-region inval-
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1042: PLOOP(ii,1,iq,11,<<

........
do jj=1,iq*ndata*nbdy

mi xma(mm1+jj) = zero
........

enddo
1054: mm1 = mm1 + iq*ndata*nbdy

........
1061: mm2 = mm2 + iqb*ndata*nbdy

........
1072: mm3 = mm3 + (....)*ndata*nbdy2

........
1083: mm4 = mm4 + (...)*nbdy*nbdy2

........
1090: mm5 = mm5 + (...)*nbdy2*nbdy2

1092: >>)

Figure 3.14: sPPM, initbuf() in main.m4

48: !$OMP PARALLEL DO
49: DO I=1,LENGTH
50: U(I) = 0.0
51: ENDDO
52: DO 100 I=1,LENGTH
53: U(I) = DLARND(2,SEED)
54: 100 CONTINUE

Figure 3.15: 310.wupwise m, rndcnf() in
rndcnf.f

427: #pragma omp for
428: for (i = 0; i < dims[2][0]; i++){
429: ii = (i+1+xstart[2]-2+NX/2)%NX - NX/2;
430: ii2 = ii*ii;
431: for (j = 0; j < dims[2][1]; j++) {
432: jj = (j+1+ystart[2]-2+NY/2)%NY - NY/2;
433: ij2 = jj*jj+ii2;
434: for (k = 0; k < dims[2][2]; k++) {
435: kk = (k+1+zstart[2]-2+NZ/2)%NZ - NZ/2;
436: indexmap[k][j][i] = kk*kk+ij2;
437: }
438: }
439: }

Figure 3.16: FT, compute indexmap in ft.c

idations. However, program correctness is not affected because the values of the overwritten

variables are monotonically increasing and are used as indices for initializing array elements

to 0. Thus, some array elements may be initialized multiple times, but the problem does not

affect program correctness. Also, the initialization only happens once and does contribute

significantly to the overall execution time. This problem manifests due to a combination

of incorrect parallelization and multiple updates spread over 50 lines of code. It would be

very hard to detect this problem by mere visual inspection.

310.wupwise m/SPEC-OMP2001M: Our framework found two instances of

sub-optimal parallelization (rndcnf() and rndphi() functions). The concerned code for rnd-

cnf() is shown in Figure 3.15. The U array is initialized to 0 in parallel, but it is immediately

overwritten by the serial thread in the following do loop. This shows up in our simulation

results as large across-region true-sharing invalidations by thread 0 (master thread). A
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similar situation arises in the rndphi() function. The initialization to 0 can be removed.

Furthermore, the second DO loop may be parallelized. However, these two functions do not

contribute significantly to the overall execution time.

FT/NAS-2.3-C: Our framework found large numbers of in-region false-sharing

invalidations and coherence misses in the loop nest shown in Figure 3.16 (function com-

pute indexmap() of ft.c). All the invalidations and coherence misses occurred for the up-

date of the indexmap variable on line 436. A closer inspection of the loop nest shows the

problem: The i loop is parallelized but the i variable indexes the contiguous dimension

of the array indexmap. As a result, multiple threads write simultaneously to adjacent ele-

ments of indexmap located in the same cache line, which leads to a ping-pong exchange of

the memory line between processors. This problem is similar to the “coarsening” problem

discussed for SMG2000 (Section 3.5.3). The problem can be alleviated by reordering the

loop nest in memory order (k,j,i) and parallelizing the k loop instead. We found signif-

icant improvement in execution time for the loop nest after this optimization. However,

the compute indexmap() function is not invoked after the initialization phase. Hence, the

optimization had negligible impact on the overall program execution time.

3.6 Related Work

There are several software-based and hardware-based approaches for memory per-

formance characterization of shared memory multiprocessor systems. Gibson et al. provides

a good overview of the trade-offs of each approach [35]. At one end of the spectrum are

complete software machine simulators. RSim is a simulator for ILP multiprocessors with

support for CC-NUMA architectures with a invalidation-based directory mapped coherence

protocol [43]. SimOS is a complete machine simulator capable of booting commercial op-

erating systems [88]. However, these frameworks simulate hardware and architecture state

to a great detail, increasing simulation overhead. This limits the size of the programs and

workloads that they can run. In contrast, ccSIM is an event-based simulator that simulates

only memory hierarchies. Our instrumentation tool is flexible and allows us to collect par-

tial traces of only the pertinent memory access. Thus, we can handle a much larger range

of programs and workloads. More importantly, these simulators provide only bulk statis-

tics intended for evaluating architecture mechanisms. In contrast, we aim at providing the
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application programmer with information on the shared-memory behavior of the program

and correlate metrics to higher levels of abstraction, such as line numbers and source code

data structures.

Execution-driven simulators are a popular approach for implementing memory ac-

cess simulators. Code annotation tools annotate memory access points. Annotations call

handlers, which invoke the memory access simulator. Augmint [80], Proteus [7] and Tango

[28] are examples of this approach. All these tools use static code annotation, i.e., they

annotate the target code at the source, assembly or object code level. MemSpy [69] and

CProf [55] are cache profilers that aim at detecting memory bottlenecks. CProf relies on

post link-time binary editing through EEL [53, 54]. Lebeck and Wood also applied binary

editing to substitute instructions that reference data in memory with function calls to simu-

late caches on-the-fly [56]. Other approaches rely on hardware support, such as watchdogs

[11] or statistical sampling with hardware support in ProfileMe [29], to gather information

on data references. Scal-Tool detects and quantifies scalability bottlenecks in distributed

shared memory architectures, such as the SGI Origin 2000 [97]. It determines inefficiencies

due to cache capacity constraints, load imbalance and synchronization. Nikolopoulos et al.

discuss OpenMP optimizations for irregular codes based on memory reference tracing to

indicate when page migration and loop redistribution is beneficial. This results in compara-

ble performance of optimized OpenMP with MPI parallelization, again on the Origin 2000

[82].

CProf and MemSpy use static binary rewriting, but they only provide information

about uniprocessor misses (cold, capacity, conflict). In contrast, we focus on characterizing

shared memory traffic.

All other tools (besides CProf and MemSpy) discussed above do not allow misses

to be related to source code and data structures. Furthermore, our work differs from these

works in the fundamental approach of rewriting binaries, which is neither restricted to

a special compiler or programming language, nor does it preclude the analysis of library

routines.

In addition, execution-driven simulators are often tied to one architecture due to

the requirements of annotating the code at assembly or object level. DynInst is available

on a number of architectures. Porting our framework to these platforms only involves

changing the memory instructions to be instrumented. Another major difference addresses

the overhead of large data traces inherent to all these approaches. We allow the analysis of
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partial traces and employ trace compression to provide compact representations.

SM-prof is an aggregate classification tool for shared-memory references resulting

in coherence traffic [8]. It classifies all accesses into access classes depending on how many

processors read/write to the same data block in the current time slot. It is up to the analyst

to find and quantify the location and magnitude of the coherence bottleneck. The analysis

tool does not provide this information at the level of individual access points, but only at

the level of each access class. This causes to authors “to suspect false sharing” [8]. In

contrast, ccSIM is a per-reference coherence analysis tool. We generate detailed coherence

statistics for each access point, as well as for global data structures. Metrics include the

magnitude of coherence misses, true and false sharing invalidations and classification of

invalidations across and in a parallel OpenMP regions. Thus, we do not suspect, we know

when false/true sharing occurs (among other symptoms).

The SIGMA (Simulator Infrastructure to Guide Memory Analysis) [30] system has

many similarities with our work. It uses post-link binary instrumentation and online trace

compression, and allows tagging of metrics to source code constructs. A toolkit by Marin

and Mellor-Crummey uses statistical methods based on dynamic measurements of edge

counters and histograms of reuse distances for each memory reference to predict cache and

execution behavior across different architectural platforms [68]. Both of these approaches

are limited to uniprocessor systems while we focus on analyzing coherence traffic for SMPs.

The latter work does not focus on transformations, unlike our work.

Recently, most architectures have added hardware counters that provide informa-

tion on the frequency of hardware events, e.g., to count shared memory events. Portable

APIs like PAPI provide a reasonably platform-independent method of accessing these coun-

ters [9]. Hardware counters impose no runtime overhead, and querying counters is typically

of low overhead. However, they only provide aggregate statistics without any relation to

the source code, and there are only a limited number of counters available. In addition,

there are often restrictions on the type of events that can be counted simultaneously. HPC-

Toolkit uses statistical sampling of performance counter data and allows information to be

correlated to the program source [70]. Our method goes beyond this granularity by identi-

fying evictors within caches and coherence traffic in SMP to indicate source of inefficiency.

A number of commercial tools, such as Intel’s VTune, SGI’s Speedshop, Sun’s Workshop

tools also use statistical sampling with source correlation, albeit at a coarser level that

HPCToolkit or our approach. It is possible to finer-grained information with customized
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hardware. The FlashPoint system uses a custom system node controller to monitor coher-

ence events [35]. In general, hardware monitors are fast but may constrain the number

of events that can be monitored. At this point in time, they lack a wide acceptance in

practice.

Krishnamurthy and Yelick develop compiler analysis and optimization techniques

for the shared-memory programming paradigm using SplitC as an example [52]. Their

main concern is the hardware-supported coherence model, namely weak consistency. They

are specifically concerned about writes and invalidations occurring out-of-order. Their op-

timizations reflect the constraints of reordering writes in the presence of locks and barriers

with respect to weak consistency and employ message pipelining (aggregation of writes) and

reduction of communication (two-way to one way or elimination). Satoh et al. study com-

piler optimizations for OpenMP in a distributed shared memory system based on data-flow

techniques to analyze thread interactions [93]. Optimizations include barrier removal and

data privatization to reduce coherence-induced messages. Our work shares the aim at op-

timizing shared-memory applications with these approaches. However, we take a radically

different approach by analyzing traces to determine if and where inefficiencies in terms of

coherence traffic exist and if there is room for improvements.

3.7 Conclusion

This work describes a novel framework to analyze cache coherence and to correlate

detailed information back to source-code constructs. At the center of our framework is

ccSIM, a cache-coherent memory simulator. This simulator obtains coherence metrics and

retains reference correlations based on actual data traces. The traces are obtained via

on-the-fly dynamic binary rewriting of OpenMP benchmarks executing on a contemporary

SMP architecture. We explored the degrees of freedom in interleaving data traces from the

different processors with respect to simulation accuracy compared to hardware performance

counters. We evaluated the run-time overhead of software instrumentation and several on-

line trace compression algorithms. We also provided detailed coherence information per

data reference and relate them to their data structures and reference locations in the code.

Experimental results indicate a close match between our simulations and the ob-

served hardware performance counters for coherence events. By deriving detailed coherence
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information, it becomes feasible to indicate the location of invalidations in the application

code. Benefits of this detailed level of information are demonstrated by our ability to infer

opportunities for optimizations. Without ccSIM, these sources of coherence bottlenecks

would not have easily been detected and, more importantly, localized. The resulting pro-

gram transformations ranged from coarsening of access granularity over data alignment

to call parallelization, critical section removal with privatization and prefetching. Mea-

surements of optimized codes showed both significantly decreased coherence traffic and

execution time savings.
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Chapter 4

Analysis of Cache Coherence

Bottlenecks with Hybrid

Hardware/Software Techniques

4.1 Summary

Application performance on high-performance shared-memory systems is often

limited by sharing patterns resulting in cache-coherence bottlenecks. Current approaches

to identify coherence bottlenecks incur considerable run-time overhead and do not scale.

We present two novel hardware-assisted coherence-analysis techniques that reduce

trace sizes by two orders of magnitude over full traces. First, hardware performance mon-

itoring is combined with capturing stores in software to provide a lossy-trace mechanism,

which is an order of magnitude faster than software-instrumentation-based full-tracing and

retains accuracy. Second, selected long-latency loads are instrumented via binary rewrit-

ing, which provides even higher accuracy and control over tracing but requires additional

overhead.
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4.2 Introduction

Recent high performance computing platforms incorporate multiple processors

connected by a fast interconnection system. Many of these systems provide different degrees

of shared memory abstraction. Examples of this approach include clusters of SMPs with

multiple processing chips sharing memory over a bus-based coherence protocol (e.g., Intel

Xeons), chip-multiprocessors (e.g., the IBM Power5) and large-scale cache coherent NUMA

machines (e.g., the SGI Altix).

Scientific codes on such machines incorporate data parallelism, i.e., multiple threads

of the program work on different parts of the data set in parallel. The underlying coherence

protocol in hardware ensures that each processor always accesses the most recent version of

the data element. Application performance and scalability is affected to a significant degree

by the sharing pattern of data among the application threads and its impact on the cache

coherence system.

Sharing patterns that result in frequent invalidations followed by subsequent co-

herence misses represent cache coherence bottlenecks with significant performance penalties.

However, the complexity of the hardware makes it difficult for programmers to assess the

effects on shared resources, specifically those imposed by cache coherence traffic between

processors, for the multitude of architecture variations (bus-based SMPs vs. CMPs vs.

directory-based SMPs). Thus, users need a scalable performance analysis methodology to

detect coherence bottlenecks.

Coherence behavior can contribute significantly to wall-clock time. Mixed-mode

scientific parallel applications often support a hybrid MPI+OpenMP model, but tend to

be more optimized for MPI performance, and only to a lesser extent for their OpenMP

usage. Our previous work addresses this problem and pin-points potential coherence bot-

tlenecks [66]. We showed that code transformations can result in up to 73% improvement

in wall-clock time for large-scale NNSA ASC benchmarks [1], closely resembling production

code. In addition, with the advent of multi-core architectures, there is growing interest in

using OpenMP for shared-memory parallelism. In this work we describe efficient techniques

to understand sharing behavior of such multi-threaded programs.

Prior work on cache coherence focused on simulation of coherence protocols and

performance enhancements techniques to reduce coherence traffic. Architectural simula-

tors support a multitude of coherence models in their implementation. These simulators
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and systems operate at different levels of abstraction ranging from cycle-accuracy over

instruction-level [14, 43, 80, 7, 28] to the operating system interface [88]. Past work on the

performance tuning concentrates on program analysis to derive optimized code [52, 93].

More recent work on identifying coherence bottlenecks is based on tracing mem-

ory accesses via dynamic binary rewriting [66, 101]. This approach can reduce the trace

collection overhead by an order of a magnitude or more over conventional hardware simula-

tors. But the execution time overhead is still significant compared to the un-instrumented

performance of the application. Due to this, the approach does not easily scale with larger

data sets. It is useful for hot-spot analysis over short periods of time, but it is infeasible

for the analysis of the entire execution of long-running applications. In practice, this may

discourage programmers from using such an analysis tool. These past approaches are slow

because of the reliance on purely software-based techniques to obtain data traces, either

by means of slow hardware simulations or via software instrumentation with significant

overhead per access point.

In this work we present novel low-cost hardware-assisted methods to determine

coherence bottlenecks in shared-memory applications. These methods use existing processor

features to reduce collected trace sizes and execution overheads by a significant degree.

Our first method, PMU-based tracing, uses the Itanium-2 hardware performance

monitor (PMU), which accurately associates data addresses with load instructions and filters

interrupts for these instructions based on a latency threshold. The PMU also provides

sampling frequency support. We combine the PMU support with an efficient software

technique to capture store data addresses to provide a lossy-trace mechanism.

Our second method, targeted tracing, provides more control of the tracing process.

In this approach, we first use the PMU latency-based filtering to cut down on the number

of instructions to instrument. This reduced set of instructions is instrumented using binary

rewriting. Each load instance is timed, and only loads that exceed a software-defined latency

threshold are captured. Stores are sampled with different sampling intervals.

We evaluate both methods with a large set of OpenMP benchmarks. We compare

them against a näıve software instrumentation-based approach that captures the entire

access trace of the program. We explore the tradeoffs between accuracy of the results based

on reduced traces obtained with our methods vs. the size of the collected trace and the

overhead of trace collection. A method is considered accurate if it generates results that

closely resemble the results generated using the full trace. Section 4.5.1 details the metrics,
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namely coverage fraction (most frequent coherence misses we detect vs. those in the full

trace) and number of false positives (references that we false identify as coherence misses).

We show that both of our methods reduce the number of loads captured by more

than two orders of magnitude over the full trace. The PMU-based method is more than an

order of a magnitude faster than software-instrumentation based full-tracing. Its accuracy,

a metric first introduced below and detailed in Section 4.5.1, is high accuracy on most

benchmarks. Targeted tracing provides even higher accuracy and control over the tracing

process, at the cost of additional overhead compared to the PMU-based method.

To the best of our knowledge, our methods significantly outperform any prior

approaches. They make cache coherence analysis feasible for long-running applications for

the first time.

In this work we make the following contributions:

• Two new hardware-assisted tracing methods for coherence analysis;

• PMU-based Method: Design of a PMU-based method to filter out irrelevant accesses

and to reduce trace collection cost by an order of magnitude;

• Targeted Method: Design of software-based tracing enhanced by PMU support to

prune the set of instrumented access points to reduce the tracing cost;

• Use of cycle accurate hardware timing registers to filter out accesses unrelated to

coherence to cut trace sizes by two orders of magnitude (for Targeted Method);

• Definition of two coherence trace accuracy metrics: coverage fraction (most frequent

coherence misses detected vs. those in the full trace) and number of false positives

(references that misidentified as coherence misses);

• Comparison of our two novel tracing methods to software-instrumentation based full-

tracing including evaluations of their execution overheads, of their trace sizes and of

their accuracy;

• Demonstration that PMU-based tracing usually has high accuracy and reduces the

trace size and collection cost by orders of magnitude;

• Demonstration that targeted tracing also decreases the trace sizes by two orders of

magnitude and significantly reduces execution overhead while generating even more

accurate results PMU-based tracing, but at a relatively higher execution cost.
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(a) Coarse Statistics

Invalidations Received
No. Reference Coherence True False

Misses In Across In Across

1 rp[] Read 170046 0 0 156585 13387
2 rp[] Read 83509 0 0 80145 3529
3 rp[] Write 43640 0 0 43305 3373
4 xp[] Write 23193 0 0 22309 1284

5 num threads 44362 44929 0 0 0

(b) Per-reference statistics

Figure 4.1: Characterization for SMG2000

The rest of the chapter is structured as follows. First, we demonstrate the use-

fulness of detailed source code-correlated coherence metrics. We then describe the two

hardware-assisted trace capture approaches. Next, we sketch the experimental setup and

results. Finally, we contrast our approach with prior work and summarize our contributions.

4.3 Source-Correlated Statistics

In prior work, we used a full-tracing approach to extract complete access traces

from OpenMP applications [66]. These traces were fed to an incremental coherence sim-

ulator, which generated detailed source-code correlated coherence metric information. In

this work we compare the accuracy of this simulator’s results based on a new hardware-

assisted lossy-tracing approach. Before detailing our new approach, we motivate the need

for source-code correlated coherence characteristics.

Consider SMG2000, a production-quality OpenMP benchmark from the ASCI

Purple suite [1]. The example stems from our prior work [66]. SMG2000 is a large

benchmark with approximately 24,000 lines of code in over 72 files and approximately 69

OpenMP regions. Using a conventional architecture simulator or hardware performance

counters, coarse-level results can be obtained, similar to those shown in Figure 4.1(a). The

numbers indicate a possible coherence bottleneck (most L2 misses are coherence misses).

But which parts of the source code are responsible for the bottleneck? What source code



93

references compete for the same shared data causing invalidations and coherence misses?

Fundamentally, we cannot answer these questions only with aggregate metrics; we

must “drill-down” and associate coherence metrics with elements in the high-level source

code. Our coherence simulator generates such correlated results (shown in Figure 4.1(b)).

Top references in processor-1 are suffering coherence misses and true/false sharing invalida-

tions, depicted in descending order. This information provides insight into sharing patterns

in the application and guides the programmer towards probable causes and optimization

strategies. E.g., the table shows that the rp Read[] reference on line 289 of smg residual.c

incurred many coherence misses, and received many false-sharing invalidations.

4.4 Extracting Memory Access Traces

We evaluate a variety of access tracing schemes with different degrees of hard-

ware assistance. We start with a purely software-instrumentation based scheme. Then, we

describe a pure hardware scheme that leverages the PMU’s capabilities to filter out irrele-

vant accesses and generates results based on a fraction of the remaining accesses. Finally,

we describe a composite targeted tracing method that uses hardware profiling and timing

mechanisms to focus the software memory capture only on interesting memory accesses.

Pure software-based instrumentation: Software instrumentation can be in-

serted either by the compiler, a static binary rewriter or via dynamic binary rewriting. The

instrumentation intercepts memory access instructions and captures the resulting memory

access trace.

PMU-based lossy tracing: We introduce a new lossy tracing mechanism that

uses the Itanium-2 performance monitoring unit (PMU) capabilities to capture long-latency

loads. The latency threshold can be increased to make the capture mechanism more selective

(i.e., only capture the L1 miss stream or L2 miss stream).

Hardware-assisted targeted software tracing: Näıve software instrumenta-

tion can generate a large volume of accesses, which is difficult to store and to process. We

introduce a composite method that first uses the PMU to filter out load instruction ad-

dresses that never miss in cache. In a later run, we only instrument the remaining load

access points. The software tracer times each tracked access and only captures accesses

exceeding a software-defined latency threshold.
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We evaluate these methods with respect to three properties: cost, trace size and

accuracy. Their definitions are given below.

Cost: This measures the execution time overhead inflicted on the target program

by the trace capture mechanism. Software-instrumentation based tracing has been shown

to increase execution time by anywhere between five to two orders of magnitude at best

[66, 71].

Trace Size: This measures the number of memory accesses in the trace. Each

access is described by two fields: the address of the instruction that generated the mem-

ory access, and the data address that the instruction was accessing. As discussed before,

software-instrumentation based tracing leads to very large trace sizes so that access to sec-

ondary storage becomes the main bottleneck during the analysis. Online trace compression

mechanisms can reduce this overhead, but they cannot eliminate it.

Accuracy: This measures the degree of closeness between the results generated

using a tracing method vs. the results generated using the full memory access trace. Sec-

tion 4.5.1 details the metrics, namely coverage fraction and number of false positives. For

example, when considering coherence misses, the coverage fraction measures the number

of coherence misses recognized by using a tracing method versus the number of coherence

misses recognized using the full trace (for a selected set of top source code locations). The

false positives are the source code locations that do not appear in the full trace-based re-

sults, but do appear in the lossy trace based results. False-positives are misleading, and the

number of false positives should be low for a lossy trace-based method to be effective.

We now describe the PMU-based hardware lossy tracing scheme and the hardware-

assisted targeted tracing scheme in detail.

4.4.1 Method I: PMU-based Lossy Tracing

Hardware performance monitoring provides new opportunities to gather perfor-

mance metrics. For example, obtaining the information from hardware performance coun-

ters is extremely low cost and supplies interesting aggregate metrics, including metrics on

the performance of the memory hierarchy. However, the aggregate nature of performance

counters limits its applicability to only coarse-grained analysis. Finer-grain data is required

to pin-point performance bottlenecks in the program, i.e., data traces are needed not just to

detect the existence of cache coherence bottlenecks but to identify their source and cause.
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Figure 4.2: Simplified PMU Operation

Hardware-based support for obtaining data traces is beginning to be available on

a few high-performance architectures (e.g., on the Itanium-2 and Power architectures). The

most sophisticated and flexible, yet readily accessible support at the user level is found on

the Itanium-2 [47].

PMU Operation

A simplified view of the Itanium-2 Performance Monitoring Unit (PMU) operation

for tracing long-latency loads is shown in Figure 4.2; full details are available elsewhere [46].

The PMU supports selective tracking of load instructions based on a latency threshold.

If a PMU-tracked load exceeds a user-configured latency threshold value, it qual-

ifies for capture, otherwise it is ignored (Filtering). Since access latencies monotonically

increase for cache levels further away from the processor, the threshold allows selective

capturing of the load miss stream (e.g., the L1-D miss stream or the L2 data load miss

stream).

Each filtered load increments the PMU overflow counter. By appropriately initial-

izing this counter, the user can vary the sampling rate for the captured long-latency load

stream (Sampling). The Itanium-2 has special support to capture the exact instruction



96

address (IP) and the corresponding data address being loaded (EA) for the sampled long-

latency load. In contrast, counter-overflow based sampling on other processor architectures

can give misleading instruction addresses for the missing load due to superscalar issue, deep

pipelining and out-of-order execution [46].

Lossy Tracing

All loads that miss in cache must take more than a fixed number of cycles to

execute (the cache miss latency). Ideally, by setting the cycle threshold of the PMU below

this fixed value, we could capture the cache miss stream. However, in our experiments with

a specially designed microbenchmark, we observed that the PMU was able to capture only

10% of the total loads that missed in cache, even at the highest sampling rate. There are

two reasons for this. First, the PMU can only track one load at a time out of potentially

many outstanding loads due to hardware restrictions. Second, the PMU uses randomization

to decide whether or not to track an issuing load instruction in order to prevent the same

data cache load miss from always being captured in a regular sequence of overlapped cache

misses. Thus, the load miss trace available for capture is lossy. Furthermore, the Itanium-2

only supports tracking of loads — but not of store instructions. Can we obtain sufficiently

reliable information about cache coherence bottlenecks given the lossy nature of the trace?

How can we leverage the limited PMU capability to track stores (essential for modeling

coherence traffic) efficiently and without reintroducing prohibitively high runtime overhead?

In the following, we detail our approach to hybrid hardware/software tracing that addresses

these questions.

Tracking Stores

We statically rewrite the sequence of instructions to substitute a store with a

sequence that, besides performing the store operation, invalidates the cache line of the

referenced data before loading it again. Thus, the load results in a cache miss, which can

be natively traced by the hardware. We annotate rewritten stores to distinguish them from

original load misses, i.e., we can identify them by the IP of the rewritten instruction.

We sketch our store rewrite mechanism here. The store is rewritten into an xchg

(atomic exchange) instruction, which swaps a register value with the memory location
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indicated by the address register. Effectively, the exchange results in a memory load and a

memory store. Since the xchg involves a load operation, the PMU can track this instruction.

On our platform, we observed that the xchg always took more cycles to execute than the

published latency cycles for a L2 cache hit. This allows us to filter out most of the L2 load

hits and still capture a lossy fraction of the instrumented stores (i.e., xchg instructions). 1

This store tracking mechanism incurs only minimal execution overhead, as our

results demonstrate. Future hardware may include native support for store tracking, which

would a) facilitate our overall efforts and b) alleviate the need for static binary rewriting.

There are several other ways in which stores could potentially be captured. Our

second tracing method (Section 4.4.2) uses software tracing to capture a fraction of stores.

This method has higher overhead than the mechanism discussed above (since it is imple-

mented fully in software), but allows finer control over trading off overhead vs. the volume

of stores captured. We explore this aspect further in Section 4.8. Stores could also be

captured by exploiting virtual memory protection mechanisms. In this method, a range of

virtual memory pages could be protected against write access. A store to data in any of

these pages will cause an access violation, and the store access can be captured in the fault

handler. However, the virtual memory page would then need to be unprotected, the write

re-executed and the page protected again — all within the handler routine. Performance

results of such a method are beyond the scope of this work but the overhead of calling a

handler, issuing two more system calls and communicating the value to write to the han-

dler (since it is typically not available inside the handler), possibly requiring instruction

disassembly, seems prohibitively high.

Sampling Loads

We track long-latency loads through the Itanium-2 PMU interrupt mechanism.

However, a high rate of interrupts results in considerable overhead in execution time. Thus,

we investigate several sampling rates, denoted as OV − r for a sampling rate of every r-

th event (high-latency tracked load). The Itanium-2 PMU hardware actually facilitates

statistical sampling in another way. The PMU randomizes whether or not to track a partic-

1The Itanium-2 ISA necessitates several subtleties due to constraints on register types (exchange does
not allow floating-point registers) and short stores (smaller than 64 bits) whose short exchange counterparts
clear the most significant bits in a register, even though their value may still be live. We utilize a combination
of scratch registers and register spills onto stack where necessary to preserve the original data.
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ular load instruction as it is dispatched into the pipeline. This reduces the likelihood that

consecutive tracking candidates originate from the same load (IP) and, thus, spreads the

tracked loads over multiple references (IPs) in tight loops.

Recall that we observed a 90% loss of data references at even the highest sampling

rate (OV-1). Even lower rates (OV-2 and higher) accentuate this loss but, at the same

time, considerably reduce the interrupt overhead, as will be shown. Such trace data loss

may impact the validity of observed coherence traffic. By skipping references in a trace,

a coherence miss may not be observed at all. At other times, the coherence miss may

be seen but its correlation to an invalidation may be inaccurate, i.e., the closest store

(on another processor) may not be part of the trace such that a much earlier store is

falsely implicated. Our experiments assess the validity of coherence analysis under different

degrees of “lossiness”. By increasing the sampling interval, we can decrease the overhead

of tracing — at the cost of having fewer trace records available for simulation. This may

impact the quality of the trace-based coherence simulation. Our experiments explore the

tradeoff between these two factors (overhead vs. impact of the increased lossiness on result

accuracy).

4.4.2 Method II: Hardware-assisted Targeted Software Tracing

In our experiments, we will show that the PMU-based tracing scheme is very fast,

compared to software tracing. However, the lossy nature of the generated scheme may lead

to a decrease in accuracy. Our second method emulates the action of the PMU in software,

by timing individual loads, and only capturing the loads that exceed the cycle threshold.

Thus we expect to filter out the bulk of load accesses that hit in cache, but without the

lossiness that comes with the PMU-based approach.

This process works as follows. In the first step, we reduce the potential set of load

access points that must be instrumented. We run the target program without software

instrumentation and set the PMU latency threshold greater than the latency (in cycles) for

an L3 cache hit (64 cycles in this work). We find the set of load instructions that do not

appear in the PMU-logged trace at all. We remove these load instructions from further

analysis since they will not contribute to coherence traffic. The rationale for this decision

is as follows. Consider the set of load instructions that do not occur at all in the PMU-

generated trace. There are two possible causes. First, these loads could occur frequently



99

but mostly hit in the L3 cache (or higher levels of cache). These loads can be ignored as

they do not cause coherence traffic since they hit in processor-local caches. Second, some

of these load instructions have high L3 miss rates but occur infrequently enough that our

lossy PMU-based trace does not have a single occurrence of them. Since these loads execute

infrequently, we can ignore them without affecting the accuracy of the resulting coherence

simulation. Recall that the accuracy metric only considers the top references resulting in

coherence misses.

In the second step, we use a dynamic binary rewriter to instrument the remaining

load access instructions and re-run the program. For every instrumented load, the instru-

mentation uses a high-resolution timer to measure the number of processor cycles needed

to load from the memory location accessed by the load.2

The access is logged only if it takes more than a software-defined cycle threshold.

The cycle threshold is set high enough (64 cycles) so that most of the loads that hit in the

processor’s caches (and, therefore, do not generate coherence traffic) are filtered out.

We capture a super-set of the cache load miss stream, i.e., there are some loads in

the captured trace that would hit in the processor’s caches in the original target execution.

This occurs due to two reasons. First, in addition to missing in cache, loads can also be

delayed due to other factors such as a TLB miss or bus contention. Second, the instrumen-

tation mechanism perturbs the processor caches and causes additional misses to occur. As

we shall see in the experimental evaluation, even with these caveats, the number of loads

captured is still reduced by multiple orders of magnitude over the original full-sized trace.

Using timing thresholds, we can filter out many load accesses that hit in cache. The

case of store instructions is different. Even stores that hit in cache can cause invalidations to

occur in remote processors’ caches if the memory line being written to is shared. Since the

cache line states are not visible to software, there is no way to know whether a particular

stores caused an invalidation or not. Thus, we potentially must capture all the stores that

occur; the later coherence simulation will indicate whether the store actually resulted in an

invalidation. In our experiments, we vary the software sampling rates for the capture of

stores and evaluate its impact on the accuracy of the coherence simulation results.

2The instrumentation first reads the high-resolution timer. It then executes a load access to the data
location accessed by the instrumented load instruction and immediately uses the loaded register in a dummy
instruction. This use causes the in-order Itanium2 processor to stall until the data is loaded from memory.
The difference between the two readings was experimentally found to approximate the number of cycles
required to load the data from memory closely, even when disregarding the overhead to read the timer.
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4.5 Experimental Framework

In the following, “reduced-trace” refers to hardware-assisted methods (PMU-based

tracing and targeted tracing), which filter out some accesses from the trace. “Full-trace”

refers to the näıve software-instrumentation based tracing, which captures the entire mem-

ory access trace of the target program.

Figure 4.3 shows a high-level comparison of the full-trace based method and the

two hardware-assisted methods that we introduce in this work. In all of our methods, a

memory access trace is generated for the target benchmark. The trace is used offline for

incremental coherence simulation. The coherence simulator associates coherence metrics

with high-level source code constructs using symbolic information extracted from the target

executable. The chief difference between the methods lies in the generation of the memory

access trace. The näıve software tracer (extreme left in Figure 4.3) logs all memory accesses

irrespective of hits or misses. PMU-based and targeted tracing filter out some access, as

discussed before.

For full-tracing and targeted tracing, we use the PIN tool on the Itanium-2 for

software tracing of memory accesses [87, 59]. The instrumentation points are placed at
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memory accesses. As the benchmark executes, its memory access trace is captured and

written to stable storage. This approach is functionally similar to our previous work [65, 66]

using DynInst [10]. In addition, we instrument OpenMP constructs in the benchmark

source codes for all the methods. This instrumentation allows the coherence simulator to

partition the memory access traces and correctly model ordering semantics in the OpenMP

program.

The coherence simulator uses the extracted address traces for coherence simulation.

The simulator models the cache hierarchy of the target platform. For this work we model

the MESI coherence protocol that our target platform uses [46]. Note that when using

reduced traces (targeted tracing and PMU-based tracing), the trace does not contain the

vast majority of accesses that hit in cache and were filtered out by the PMU. In addition,

the PMU-generated trace is lossy. So, the simulation with PMU traces is not accurate with

respect to cache capacity constraints — since we do not have all references in the trace, we

cannot model the cache replacement policy accurately. For instance, it is possible that a

memory line that would have been flushed from the cache in reality is still resident in the

cache when another processor writes to it. In this case, we would inaccurately count this

event as an invalidation (since data was found in the cache). However, as our results show,

even with this constraint our results are quite accurate for the benchmarks we study.

Due to the above reasons, the simulation with reduced traces may not be accurate

with respect to absolute values of uni-processor related metrics (hits, misses, etc.). However,

we are interested in the relative ranking of source code references compared to their rankings

when using the original trace. The programmer uses hardware counters to first determine

that a coherence bottleneck exists, then the reduced trace methods can be used to obtain

the top-ranked references for coherence metrics. The purpose of this work is to assess how

close these results are to the full trace results.

The simulator generates coherence metrics per reference, i.e., a source code loca-

tion (filename::line number). Our evaluation considers these two coherence metrics:

• Invalidations Caused: The number of times a write generated by this source code

location caused an invalidation in the cache hierarchy of some other processor. A write

causes an invalidation if the data line is also cached in another processor in shared

state. The remote reference is invalidated while the local one becomes exclusive.

• Coherence Misses encountered: A coherence miss occurs when a processor accesses a

shared data element whose cache line state is Invalid, indicating that the memory
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Table 4.1: Description of Benchmarks

Name Suite Data Set Description

BT NAS-2.3 Class S, 20/60 iter. Block triangular solver

CG NAS-2.3 Class S Conjugate gradient

EP NAS-2.3 Class S Gaussian Random deviates generator

FT NAS-2.3 32x32x32 grid, 8 iter. 3-D FFT PDE

LU NAS-2.3 Class S LU solver

MG NAS-2.3 32x32x32 grid, 4/20 iter. Multigrid solver

SP NAS-2.3 Class S Pentadiagonal solver

IS NAS-2.3 Class W Integer sort

SMG2000 ASCI Purple 10x10x10 grid Semicoarsening multigrid solver

SPPM ASCI Purple 35x35x35 grid, 3/10 iter. Simplified Piecewise Parabolic Method

line containing the data element was previously invalidated by some other processor.

These metrics help the programmer to understand the sharing and movement of

data among processors. The full-trace based results are compared to the results obtained

using reduced traces generated by the hardware-assisted frameworks.

Our experiments use a set of 10 OpenMP benchmarks for our experiments. The

benchmarks are described in Table 4.1.

The NAS benchmarks are C language OpenMP versions of the original NAS-2.3

serial benchmarks [4] provided by the Omni Compiler group [2]. SMG2000 and sPPM are part

of the ASCI Purple benchmark set [1]. The benchmarks are used with comparatively small

data sets (class S for NAS) since the full-trace software tracing method used for comparison

has prohibitively high run time and trace size overhead with full-sized data sets. BT, IS

and SPPM are run with larger data sets for the PMU-based tracing method. (see “Data Set”

column depicting data set for software tracing runs / data set for pmu-based tracing runs).

Also, the original code for BT and LU had some manually unrolled loop iterations. We undid

this source-level unrolling to decrease the number of source code references taking part in

coherence activity (however, the compiler can unroll these loops during compilation). For

sPPM, we use a larger simulated cache size to allow the benchmark to exhibit coherence

activity.

For all benchmarks, the OpenMP scheduling policy for loops was set to static

scheduling, and the nowait clause was removed from OpenMP work-sharing constructs. For

PMU-based tracing, we bound each thread to a distinct processor. The experiments are
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carried out on a 2-processor Itanium-2 SMP Linux system. All benchmarks were compiled

at -O2 optimization level.

4.5.1 Design of the Comparison Metric

We evaluate the accuracy and usefulness of the simulator results that use reduced

traces. Results in the next section show that reduced traces usually contain far fewer

memory accesses compared to the full trace (reductions of over an order of magnitude).

Consequently, the reduced traces may cause the simulator to generate misleading coherence

traffic since many of the original accesses are absent. In the following, we describe our

quality measures to gauge the accuracy of reduced trace results compared to results obtained

using the full trace for the two coherence metrics of invalidations caused and load coherence

misses. We consider only load misses when looking at coherence misses since store misses

usually do not stall the issuing processor and, therefore, are not a bottleneck.

We consider two measures for quality:

• Coverage Fraction: Results using the reduced trace will give a set of top references

with respect to the coherence metric (e.g., for load coherence misses). The coverage

fraction indicates what fraction of the total coherence misses these reference account

for in the original results.

• Number of False Positives: Due to the large number of accesses missing from the

reduced traces, the coherence simulation may incorrectly attribute coherence traffic

to some reference. We count the number of references in the selected reduced-trace

based results that have a zero coherence value in original set of results.
We perform two different comparisons. First we compare the full-trace results

against the lossy trace-based results obtained with PMU-based tracing. Next, we compare

the full-trace results against the reduced trace-based results obtained with targeted tracing.

Full trace Results vs PMU-based lossy results: We generate the above

two measures as follows. Each benchmark is run twice. In the first run, we use software

instrumentation to extract the full memory access trace from the benchmark execution and

use it for coherence simulation. These simulation results constitute the original result set

for comparison of quality. Then, the benchmark is run again, and lossy traces are obtained

using our PMU-assisted method. These traces are similarly used for coherence simulation,

and the simulation results generated constitute the lossy result set.
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The coverage fraction is calculated as follows. The simulator output for a particular

input memory trace consists of a list of references. For the experiments in this work, a

reference is a source code location, i.e., a unique filename::line number identifier. Associated

with each reference are the values for each metric (load coherence misses or invalidations

caused). We have two sets of simulator results — one generated using the full trace (obtained

via software instrumentation) and the other generated using the lossy, PMU-generated

trace. Both these result sets are sorted in descending order for the particular metric being

considered (load coherence misses or invalidations caused). Then, we select the top-10

references from each result set and compare the coverage3 obtained by each.

V1 = Cumulative coverage in the original result set of the top-10 references ob-

tained using full traces for simulation.

V2 = Cumulative coverage in the original result set of the top-10 references ob-

tained using lossy traces for simulation.

Coverage Fraction = V 2

V 1
∗ 100%

What do the quality metrics signify?: The coverage fraction compares the

coverage obtained with references generated by lossy-trace based simulation vs. the op-

timal coverage that is possible with the top-10 references for the coherence metric under

consideration. The top-10 references in the lossy trace results may not be identical to the

top-10 references selected by the full-trace results. This happens when coherence activity

is diffused over many source code references, which end up having very similar coherence

metric values.

The number of false positives gives an indication of how potentially misleading the

lossy-trace based results potentially are. References from the top-10 lossy-trace result set

that have a zero metric value in the original results are classified as false positives. A low

number of false positives assures that lossy-trace results still correctly represent the actual

coherence traffic.

Full trace Results vs. Targeted tracing reduced trace results: We use the

same quality metrics of coverage fraction and false positives for this comparison. We char-

acterize the accuracy of the results for different store sampling intervals. The store sampler

uses a random number generator to sample store instances with varying probability. We

3To calculate coverage, consider the following example: If the top-10 references together accounted for X
load coherence misses out of a total of Y load coherence misses recorded by the simulator, then the coverage
value is X

Y
.



105

experiment with store sampling probabilities of 1.0, 0.25, 0.10 and 0.05, which correspond

to capturing an average of all, 25%, 10% and 5% of stores in the full trace.

4.6 Hardware Performance Counters

Before using the simulation tool to generate detailed source code correlated statis-

tics, the programmer should determine that a potential coherence bottleneck exists with

the benchmark running on the target execution platform. In this section, we describe this

characterization using hardware performance counters on our chosen platform (Itanium-2).

To our knowledge, this is the first reported use of these counters to characterize shared

memory OpenMP coherence traffic.

Performance Events

The Itanium-2 has four performance counters which can be used simultaneously.

We monitor the following four performance events [46]:

Event 1, BUS INVAL ALL HITM BUS BRIL (Read-invalidate) and BIL (invalidate)

Hit Modified Non-local Cache Transactions.

Event 2, BUS RD HIT Bus Read Hit Clean Non-local Cache Transactions

Event 3, BUS RD HITM Bus Read Hit Modified Non-local Cache Transactions

Event 4, BUS MEM READ ALL SELF Full Cache Line D/I Memory Read, BRIL

(Read-invalidate) and BIL (invalidate) Transactions

Event one counts a processor’s write cache misses for which the data was found in

some other processor’s cache whose cache line was in the “Modified” (i.e., dirty) state.

Events two and three count the processor’s read cache misses for which the data

was found in some other processor’s cache. (HITM stands for “Hit cache line in Modified(M)

state”).

Each of the above transactions implies bus traffic to transfer the cache line from

the remote cache to the requesting processor’s caches. The sum of events 1-3 gives an upper

bound on the coherence misses encountered by the processor.
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Figure 4.4: Characterization using Hardware Performance Counters

We compare this coherence miss value to the total number of data bus transactions

issued by the processor (event 4). A potential bottleneck exists if the coherence misses are

a significant portion of the total number of coherence transactions.

Characterization

Each OpenMP thread was bound to a distinct processor. Figures 4.4(a) and

4.4(b) show the normalized values for the four events for each processor. The graphs show

that many of the benchmarks have significant coherence activity. Event 3 constitutes the

largest percentage of transactions in most benchmarks with significant coherence activity.

Modified data lines are “pulled” from the local processor cache to the remote processor

issuing reads to the same data line. For BT, the bulk of the transactions are due to

event 1. This indicates that multiple processors are writing to the same shared data line

causing data to circulate among the local and remote caches. The results are not symmetric

across processors for many benchmarks; CG, SMG2000 and SP have distinctly different

compositions and magnitudes of coherence misses on processor-2 as compared to processor-

1.

Hardware counters can detect significant coherence traffic. However, counter val-

ues do not indicate the cause of the coherence bottleneck. Our lossy-trace-based framework

provides detailed source code-correlated statistics that provide a “drill down” into the bulk
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(b) Stores Traced

Figure 4.5: Memory Accesses Traced with PMU-based tracing, Normalized to Number of
Accesses in Full Trace

statistics and, thus, insights into the sharing patterns at application source-code level.

For EP, the total coherence misses amount to only 0.6% of the total transactions.

This is expected as EP is an “embarrassingly parallel” benchmark and there is little com-

munication between processors. Similarly, IS has very few coherence misses (2.4% of total

transactions). Thus, we do not further analyze the EP and IS benchmarks.

4.7 Evaluating PMU-based Lossy Tracing

In this section, we shall evaluate the PMU-based Lossy Tracing method with

respect to cost and accuracy. Cost comprises the execution overhead of tracing and the

volume of accesses that are captured. Accuracy measures how good the generated lossy

trace is compared to using the full trace.

We obtained lossy traces with the hardware PMU configured at sampling intervals

of 1,2,3,4 and 8 (OV1 to OV8 in the graphs). We used a cycle threshold of 8 cycles, i.e., a

load (or xchg) can only qualify for PMU tracking if it takes eight or more cycles to complete,

which corresponds to the access latency of an L2 cache miss for loads on the Itanium-2 [46].

The latency thresholds can only be set in powers of 2, and a threshold less than 8 cycles

(i.e., 1, 2 or 4 cycles) is not useful as it would also capture loads which hit in the L1 or L2
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caches. 4

4.7.1 Trace Sizes

Figures 4.5(a) and 4.5(b) compare the volume of loads and stores traced for full

tracing vs. PMU-based tracing at different sampling intervals. The y-axis is on a logarithmic

scale. Access volumes are normalized to the number of accesses in the full trace.

The graphs show that our method decreases the number of accesses collected by

one to two orders of magnitude compared to full tracing. This considerable decrease results

from the PMU’s ability to discriminate and track only long-latency loads, ignoring the

far more frequent low-latency accesses that hit in the L1 and L2 caches. The number of

accesses logged linearly decreases for larger sampling intervals. The normalized fraction of

stores traced is remarkably similar across benchmarks while there is more variation in the

fraction of loads traced. Our annotation mechanism for stores causes this effect: all dynamic

instances of the annotated stores will miss in cache and will be eligible for PMU tracking.

However, only those dynamic instances of loads that miss in cache (i.e, long-latency loads)

are eligible for PMU tracking; hence, the fraction of loads tracked varies with data cache

hit rates of different benchmarks. The actual sampling rate of stores will depend on several

factors including: the mix of floating point and integer instructions; the temporal rate of

memory accesses; and the ratio of reads to writes. However, some filtering will always occur.

4.7.2 Accuracy of Results

Figures 4.6 and 4.7 depict the accuracy of the results using lossy traces for the

two metrics of invalidations caused and coherence misses. Due to space constraints, only

the results for processor 1 are shown. The results for the other processor are similar.

We compare the accuracy of the results using the yardsticks of coverage fraction

and number of false positives, as described in section 4.5.1.

4We observed that the bulk of the “xchg” accesses, which represent store instrumentation, take only 12
cycles to execute on our test platform (probably because the instrumentation induces a bank conflict that
delays the xchg). Setting the latency threshold higher than 8 cycles would cause most of the instrumented
stores to be filtered out. In future work, we intend to explore alternate store instrumentation schemes that
do not have this limitation.
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(a) Coverage Fraction for PMU-based Lossy-

Tracing vs. Full-Tracing
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(b) Number of False Positives with PMU-

based Lossy-Tracing Approach

Figure 4.6: Top-10 References Causing Invalidations on Processor 1, PMU Sampling Rates
of 1-8

Metric: Invalidations Caused

Consider the results for invalidations depicted for coverage fraction and the number

of false positives in Figures 4.6(a) and 4.6(b), respectively. The results are shown for

different sampling intervals (OV1 to OV8). For OV1, the coverage fraction ranges from

36-100%, averaging 86%. Except for SP, all benchmarks show a very high coverage fraction

of greater than 82%. Looking at the number of false positives, no benchmark, except for FT

and SP, has any false positives at sampling interval OV1. Thus, in most cases, we achieve

very high coverage fraction values without false positives in the lossy-trace results.

For SP, the benchmark has a large number of invalidation-causing store references.

There are more than 100 source code store references with a non-zero count of invalidations

in the full-trace results. The lossy-trace results are similarly diffused over many store

references. The top-10 references selected by lossy-trace results do not include some of the

top references from the full trace results due to which the coverage fraction is low.

For FT, there are 3 false positives. All these false positives are stores that imme-

diately follow the correct invalidation-causing store. For example:
808: xout[k][j][i+ii].real = ...;

809: xout[k][j][i+ii].imag = ...;

The first store on line 808 causes the actual invalidations. However, due to lossy-tracing,

the first store is sometimes not recorded, but the second store on line 809 is. In this case,

the invalidation is mis-attributed to line 809 since both the stores access the same cache



110

�
��
��
��
��
��
��
��
��
	�

���


��� 
��� 
��� 
���

�
��

��
���

���
���

���
�

�� ��
�� ��
���	
 ��
���� ��
�������

(a) Coverage Fraction for PMU-based Lossy-

Tracing vs. Full-Tracing
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(b) Number of False Positives with PMU-based

Lossy-Tracing Approach

Figure 4.7: Top-10 References Resulting in Coherence Misses on Processor 1, PMU Sampling
Intervals of 1-8, PMU-based tracing

line. Advanced dependence analysis might help eliminate this type of false positives.

Interestingly, the coverage fraction and the degree of false positives do not change

significantly as the sampling interval increases. Thus, accuracy does not degrade perceptibly

even with smaller traces and less execution overhead (and larger sampling intervals).

Metric: Coherence Misses

Figures 4.7(a) and 4.7(b) show that accuracy metrics for coherence misses, for

which accuracy is dependent on the benchmark. The coverage fraction at OV1 ranges from

57% to 99% with an average value of 81%. SP and BT have comparatively low coverage

fraction values of 63% and 58%, respectively. Four of the eight benchmarks (CG, FT, LU,

SMG2K) have coverage fraction values greater than 95%.

At OV1, most benchmarks have a low number of false positives (Figure 4.7(b)),

except for BT(5) and CG(4) with an average of two. Thus, on average, eight of the top-10

references generated using lossy-traces are correct. As the sampling interval increases from

OV1 to OV8, the average coverage fraction decreases from 81% to 71%, mainly due to a

large drop in the coverage fraction value of BT. Similarly, increasing the sampling interval

from OV1 to OV8 increases the average number of false positives from two to three, mainly

due to a steep rise in the number of false positives for BT (9). The anomalous behavior
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of BT is explored in more detail below. Except for BT, most other benchmarks have large

coverage fraction values and relatively low number of false positives.

4.7.3 BT

As seen in the last section, lossy-trace based simulation generates very poor coher-

ence miss results for BT. As Figures 4.7(a) and 4.7(b) show, BT has a very large number

of false positives, even at the highest sampling interval of OV1. As the sampling interval

increases, the number of false positives increases, which also causes the coverage fraction

value for BT to decrease sharply (since most of the lossy-trace generated references have

zero metric value in the full-trace results).

There are multiple causes for BT’s poor behavior. First, the simulation results

with full traces show that over 90% of the overall coherence misses are store misses. How-

ever, for our experiment, we only considered the load coherence misses since store misses

usually do not stall the issuing processor. The bus cycle breakdown for BT obtained using

hardware counters is shown in Figure 4.4. This confirms that store misses are the dominant

factor for only the BT benchmark (event BUS RD INVAL ALL HITM dominates other

bus transactions). Due to this, the overall number of load coherence misses is low, and the

actual coherence related references get lost in the false positive “noise” references in the

simulation results generated with lossy traces.

Second, BT is an array-intensive program. Many of the false positives occur with

the following situation:

lhs[i][j][k][BB][temp1][temp2]= .....; //Store

......

...... = lhs[i][j][k][BB][temp1][temp2] ; //Load

The load cannot miss in cache since the cache line is brought into the cache (if not already

present) by the preceding store. With lossy tracing, the load reference can be traced when

the store is not. Thus, the coherence miss may be falsely attributed to the load reference.

However, with full traces, the load reference always hits in cache and, therefore, has zero

coherence miss value. Thus, the load reference is a false positive. 5

5It should be noted that with ideal tracing of the load miss stream, the load cannot be traced since it
is a hit. However, the Itanium PMU traces long-latency loads, which constitute a superset of the load miss
stream (other conditions can cause long-latency loads including TLB misses, bank conflict and queue full
conditions). In addition, the tracing framework can perturb the data cache, causing the load reference to
miss in cache. Due to a combination of these two factors, we do see the second load reference in the lossy
trace, which shows that false positives may occur due to these uncontrolled effects.
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Figure 4.8: Execution Time: Full-tracing vs. PMU-based tracing

4.7.4 Execution Overhead

Figure 4.8 quantifies the payoff in terms of reduction of application runtime over-

head. It shows the execution time incurred by the benchmarks at different sampling intervals

(OV1-OV8) and with full access tracing (FULL) using the dynamic instrumentation tool.

The numbers are normalized to the execution time of the original unmodified program. The

y-axis is on a logarithmic scale. The “Instrumented” bars show the normalized execution

time of the application annotated with our store-annotation scheme described in Section

4.4 without the use of hardware monitoring. The improvements in runtime for our lossy

tracing method compared to full software-based tracing are very large: from one to over

two orders of magnitude. The store instrumentation scheme by itself adds comparatively

low overhead. The overhead shows a linear decrease from OV1 to OV8 allowing a trade-off

between runtime overhead and the accuracy of results using the lossy trace.

4.8 Evaluating Targeted Tracing

In the preceding section, we evaluated the PMU-based tracing with respect to

execution overhead, trace sizes and accuracy. The PMU-based tracing is very efficient with

respect to execution overhead and trace sizes. However, due to the lossy nature of the trace,

the number of false positives is large for a few benchmarks (e.g., for BT). In the following,
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(b) Stores Traced

Figure 4.9: Memory Accesses Traced with Targeted tracing, Normalized to Number of
Accesses in Full Trace

we evaluate an alternate method, targeted tracing, that uses software instrumentation to

trace memory accesses but uses hardware features to cut down on the accesses traced. We

explore the tradeoff between having more control over the accesses that we capture (since

that is now decided in software) vs. the accuracy of the resulting trace and the execution

overhead of capturing the trace.

As described before, we first run the un-instrumented program with a large latency

threshold (64 cycles). The load instruction addresses that do not appear in this generated

trace do not miss in cache and can be ignored for coherence purposes. In the second pass,

we instrument only the reduced set of load instructions (which have appeared in the PMU-

generated trace). Further, for each load instance, we measure the time it took for the load

to complete. If it is greater than a software-defined threshold (64 cycles), we trace the load,

else we ignore it. Thus, we essentially emulate the hardware PMU’s capability to filter out

loads by latency, but without the PMU’s lossiness.

For store instructions, we experiment with different software-defined sampling in-

tervals. The C-library srand() and random() functions are used to capture stores with

probabilities of 1, 0.25, 0.1 and 0.05. The default random number generator is very ac-

curate; the corresponding number of stores captured are approximately 100%, 25% , 10%

and 5% of the total stores, respectively. The sampling intervals are shown in the graphs

as SMPL-1, SMPL-4, SMPL-10 and SMPL-20 (i.e., all stores, 1 in 4, 1 in 10 and 1 in 20
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stores on average are captured).

4.8.1 Trace Sizes

Figures 4.9(a) and 4.9(b) compare the number of loads and stores traced with

targeted tracing compared full tracing. The values are normalized to the number of accesses

in the full trace. The y-axis is on a logarithmic scale. Figure 4.9(a) show that for all

but one benchmark (SMG2K), targeted tracing cuts down on the number of loads in the

trace by more than two orders of magnitude over the full trace. The number of loads

traced decreases slightly as the software store sampling interval is increased from SMPL-1

to SMPL-20, probably due to the reduced cache perturbation of the instrumentation. The

large decrease in loads over the full trace also confirms that the tracing framework does not

significantly perturb the data caches, in that many of the original loads still hit in cache.6

Figure 4.9(b) shows that the number of stores captured decreases as expected when

the software sampling interval is increased from SMPL-1 to SMPL-20. The impact of this

lossy tracing of stores is explored in the following paragraphs.

It is instructive to compare these figures vs. the corresponding ones (Figures 4.5(a)

and 4.5(b)) for PMU-based tracing. The number of loads traced for OV-1 in PMU-based

tracing are comparable to the number of loads captured by targeted tracing, even with the

differing latency thresholds used (8 cycles for the PMU-based tracing, 64 cycles for targeted

tracing). With the lower latency threshold, many more loads qualify for capture by the

PMU, but this is offset by the lossiness of the PMU, which captures only a fraction of the

eligible loads. Also, observe that the number of stores captured at OV-1 and OV-2 for the

PMU-based method is very close to the number of stores captured by the software sampler

in targeted tracing at sampling intervals SMPL-10 and SMPL-20, respectively.

4.8.2 Accuracy of Results

As for the PMU-based results, we evaluate accuracy with the two yardsticks of

coverage fraction and number of false positives. Figures 4.10 and 4.11 show these yardsticks

applied to the metrics of invalidations caused and coherence misses, respectively. The results

shown are for processor-1.

6A large perturbation of the cache would have been indicated by observing that almost all the target
loads miss in cache, thus increasing their latency of access and qualifying for capture.
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(a) Coverage Fraction for Targeted Tracing vs.

Full-Tracing
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(b) Number of False Positives with Targeted

Tracing Approach

Figure 4.10: Top-10 References Causing Invalidations on Processor 1, Store Sampling Rates
of 1,4,10,20

Metric: Invalidations Caused

Figures 4.10(a) and 4.10(b) show the coverage fraction and number of false posi-

tives for this metric, over different store sampling intervals ranging from SMPL-1 to SMPL-

20. At SMPL-1, when all stores are captured, the coverage fraction is extremely high

(average: 99.54%) and the number of false positives is zero for all benchmarks except for

FT. As the sampling interval increases to SMPL-20, the average coverage fraction reduces

to 86% while the coverage for SP decreases more significantly. This behavior of SP is similar

to its performance with PMU-based tracing (Figure 4.6(a)).

Even at sampling interval SMPL-20, most benchmarks have no false positives,

except for FT (3 false positives) and SP (1 false positive). The false positives for FT are

the same references as for PMU-based tracing (see Section 4.7.2). These false positives again

appear because of lossiness in the store trace that is captured (Section 4.7.2) at sampling

intervals other than SMPL-1.

Metric: Coherence Misses

Figures 4.11(a) and 4.11(b) show the coverage fraction and number of false posi-

tives for coherence misses over the different store sampling intervals. The average coverage

fraction ranges from 95% at SMPL-1 to 90% at SMPL-20. At SMPL-1, all benchmarks have
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(a) Coverage Fraction for Targeted Tracing vs.
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(b) Number of False Positives with Targeted

Tracing Approach

Figure 4.11: Top-10 References Resulting in Coherence Misses on Processor 1, Store Sam-
pling Rates of 1, 4, 10, 20

a coverage fraction greater than 91%, except for MG (75%). The average number of false

positives is less than one (Figure 4.11(b)) at SMPL-1, and increases to 1.3 at SMPL-20.

The behavior for BT and CG is interesting. At SMPL-1, i.e., capturing all stores,

the number of false positives for these benchmarks is 0 and 1, respectively. With increasing

lossiness of stores beyond SMPL-1, the number of false positives increases sharply. Finally,

at SMPL-20, CG has 5 false positives and BT has 4. Similarly, with PMU-based tracing,

these benchmarks show many false positives even at OV-1 (Figure 4.6(b)). Thus, these

benchmarks are very sensitive to the degree of lossiness of stores.

4.8.3 Execution Time

Figure 4.12 compares the execution time for targeted tracing vs. the full tracing.

The numbers are normalized to the original execution time for each benchmark. The saving

in execution time, compared to full tracing, range from 40% to 68%. For each benchmark,

the increasing sampling intervals do not much impact the execution time. This is because

the trace framework has been optimized so that most of the time per access is spent in

deciding whether to capture the access or not (using the random number generator). With

a simpler sampling strategy (e.g. using a counter) we saw increasing savings in execution

time as the store sampling interval increased, but we do not report those results here.
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Figure 4.12: Execution Time: Full-tracing vs. Targeted tracing

The execution time savings, though useful, are not as dramatic as those for PMU-

based tracing. The chief benefit of targeted tracing over full tracing comes in the large

trace size reductions (especially loads), which makes it easier and faster to use the trace for

offline activities, e.g., for incremental coherence simulation in our case.

4.9 Comparing True Sharing and False Sharing

We maintain per-cache-line bit vectors indicating which parts of the cache line

have been accessed (either by a load or a store) from the attached processor. This allows us

to classify stores that cause invalidations as either true-sharing invalidations or false-sharing

invalidations. When a store reference on a processor causes an invalidation to occur in some

other processor’s cache and when at least one byte in the range of addresses being written

to (determined by the storage width of the store instruction) has been accessed by the other

processor, we classify the invalidation as a true-sharing invalidation. Otherwise, we classify

the invalidation as a false-sharing invalidation.

Classifying invalidations into these subtypes gives the programmer additional in-

sight into the sharing behavior of the program. False-sharing invalidations, in particular,

indicate potential for optimization by data layout or code transformations [66].

In the results below, the PMU-based runs used a sampling interval of 1 (OV-1).
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(b) Correct References vs. False Positives

(P=PMU-based Tracing, T=Targeted Tracing)

Figure 4.13: Coverage and False Positives for PMU-based and Targeted Tracing with Re-
spect to True-sharing Invalidations

The targeted tracing used store sampling of 1 (SMPL-1), i.e., all stores are captured.

4.9.1 Comparing True Sharing Invalidations-Caused

We compare the two reduced-trace based methods (PMU-based tracing, targeted

tracing) against the results obtained from full tracing for coverage and number of false

positives. For comparing true-sharing, we only select references from the reduced-trace

based results that accounted for at least 2% of the overall true-sharing invalidations in the

simulation results up to a maximum of 10 references. By setting this lower threshold, we

are trying to reduce the number of false positives that are generated, potentially at the

expense of reducing the coverage fraction. Reducing the number of false positives is more

important to ensure that the stand-alone reduced-trace based results are not misleading.

Figures 4.13(a) and 4.13(b) compare the coverage fraction and number of false

positives.

We observe:

• Consider Figure 4.13(b): in some cases, our strict selection criteria enables less than

10 references to be selected from the reduced trace results (e.g., for BT, only 3 total

references are selected with PMU-based tracing). The small number of references

usually reduces coverage values for these benchmarks (e.g., BT has only 22% coverage
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(b) Correct References vs. False Positives

(P=PMU Tracing, T=Targeted Tracing)

Figure 4.14: Coverage and False Positives for PMU-based and Targeted Tracing with Re-
spect to False-Sharing Invalidations

Table 4.2: True and False-Sharing Invalidations Caused Measured with Full Traces

Name TrueSharing FalseSharing Total FalseSharing %

BT 278538 48646 327184 14.86

CG 20059 4194 24253 17.29

FT 20642 428 21070 2.03

LU 95850 1852 97702 1.89

SMG2K 90205 286346 376551 76.04

SP 176863 385050 561913 68.52

SPPM 16521 52970 69491 76.22

MG 4585 167 4752 3.51

fraction with PMU-based tracing).

• Consider PMU-based tracing: it produces few false positives and only MG and FT

have any false positives. The coverage fraction is high, (except for BT) averaging

70%. For BT, our thresholding scheme allowed only three references to be selected

leading to the low coverage value.

• Consider targeted tracing: it produces no false positives. The coverage values are

also much higher (averaging 89%) than those for PMU-based tracing. Thus, targeted

tracing produces results very similar to full tracing.
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4.9.2 Comparing FalseSharing Invalidations-Caused

The benchmarks we considered had distinctly different false-sharing behavior. Ta-

ble 4.2 shows the total number of true and false sharing invalidations caused by references

in processor-1 based on full address traces. For FT, LU and MG, the false sharing invalidations

constitute less than 4% of the total invalidations. In contrast, for SMG2K, SP and SPPM, the

false sharing invalidations account for more than 68% of the total invalidations.

Ideally, when using reduced traces, we have two expectations. For benchmarks

with a low fraction of false sharing invalidations (FT, LU, MG), it is more important

to reduce the number of false positives than to obtain a high coverage value. For the

benchmarks with large fraction of false-sharing invalidations (SMG2K, SP, SPPM), it is

important that we obtain a high coverage value in addition to a low number of false positives.

When using reduced traces for finding false-sharing invalidations, we came across a

unique problem. Due to the lossy nature of the trace, many of the actual true-sharing invali-

dations were classified as false sharing invalidations. This occurred because the target cache

had no record of access to the cache line by the attached processor (due to trace lossiness).

This problem is exacerbated by another factor. Since our reduced trace methods attempt

to avoid tracing loads that hit in cache, we lose potential information, i.e., we cannot tell

which which parts of the cache line were actually accessed by the processor. Typically, the

load access that missed and brought the memory line into the cache is recorded, but the

subsequent accesses to the other bytes in the memory line (self and cross reuse [110]) may

be lost since they hit in the cache and are filtered out. This limitation only applies to loads

as all stores are enabled for tracing in both PMU-based and targeted tracing.

We attempted to overcome this problem by being more strict when selecting ref-

erences from the reduced trace based results. For a reference to be selected as a false-

sharing reference, it must have at least twice the number of false-sharing invalidations as

true-sharing invalidations (in order to compensate for some of the “fake” false-sharing in-

validations, which are actually true-sharing invalidations). In addition, the reference must

account for at least 2% of the total false-sharing invalidations and for at least 2% of the total

invalidations. This restriction ensures that we only qualify references that occur somewhat

frequently, otherwise we cannot rely on their values. As before, our focus is on reducing the

number of false positives, at the potential expense of lowered coverage fraction.

Figures 4.14(a) and 4.14(b) show the coverage fraction and number of false posi-
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tives caused by false-sharing invalidations.

We observe:

• Consider PMU-based tracing: it produces few false positives for all benchmarks other

than MG while its coverage fraction varies. For BT, our restrictive selection policy

did not allow even a single reference to be selected so that the coverage value is 0.

The coverage value is high for all other benchmarks (except for SP) averaging 65%.

• Consider targeted tracing: it produces almost no false positives its coverage values are

high for benchmarks with significant false sharing (e.g, SPPM) and lower for other

benchmarks. For LU and MG, the coverage is 0 since not a single reference was

selected from the reduced trace-based results. Since both LU and MG have a very

low fraction of false-sharing invalidations, this result is expected (Table 4.2).

• Consider MG: PMU-based tracing produces many false positives. Table 4.2 shows that

this benchmark has the lowest absolute number of false-sharing invalidations. With

PMU-based tracing, many of the references that had only true-sharing invalidations

in reality had a large number of false-sharing invalidations. Our reference selection

restrictions were ineffective in this case. Thus, PMU-based tracing can give misleading

results when there inherently exists no false sharing in the benchmark, though that

occurred for only one benchmark in our evaluation.

4.9.3 Limitations of Reduced-Trace Based Simulation

We have demonstrated that the number of false positives generated in the reduced-

trace based results is low for false-sharing invalidations with a strict selection criteria. This

indicates that, in general, reduced-trace based results generate the same list of references

as those obtained with full-trace-based simulation. If we want to use reduced-trace based

results in a stand-alone fashion, we must also answer another question: For the given list

of selected references, does it make sense to optimize these references for false sharing? In

other words, does the false sharing incurred by the selected references play a dominant role

in the overall invalidations generated for the program? It will not be worthwhile optimizing

the references to reduce false sharing if they do not dominate.

This question can be answered by comparing the accumulated false-sharing in-

validations incurred by the selected references vs. the total invalidations recorded for the
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Table 4.3: Ratio of False-Sharing Invalidations to Total Invalidations for the Selected Ref-
erences in PMU Tracing and Full Tracing

# Selected False Sharing % of Selected Refs in:
Name Refs PMU-Tracing Full Tracing Similar ?

BT 0 0 0 Yes
CG 7 89.28 11.61 No
FT 6 79.03 1.44 No
LU 2 16.21 1.81 No

SMG2K 10 61.73 48.12 Yes
SP 6 22.69 30.57 Yes

SPPM 10 43.96 44.85 Yes
MG 10 66.94 2.84 No

benchmark. Table 4.3 shows such a comparison. First, our selection criteria is used to

select the top set of references (up to 10 references) for PMU-based tracing for false-sharing

invalidations (column 2). Then, the number of false-sharing invalidations for this set as a

percentage of the total invalidations recorded in the simulation is calculated (column 3). A

similar calculation is done for the same set of references for full tracing (column 4). The

ideal case has similar values in the two columns, i.e., either both are low or both are high.

On the other hand, if PMU-based tracing produces a much higher percentage of false shar-

ing invalidations than full tracing then the reduced-trace based results are exaggerating the

degree of false sharing for the benchmark. As the table shows, the values are similar for

four benchmarks (BT, SMG2K, SP, SPPM) and dissimilar for the remaining four (CG, FT,

LU, MG). The four benchmarks that have dissimilar values have an inherently low degree

of false sharing, as seen from Table 4.2. When these benchmarks are simulated with PMU-

based trace, there are many cases where true-sharing invalidations are incorrectly classified

as false-sharing invalidations (see Section 4.9.2). Thus, if a benchmark has inherently low

false sharing, reduced-trace simulation can give misleading results.7 For benchmarks that

do have significant false sharing, the reduced-trace based simulation gave correct results

(e.g., SPPM, MG, SMG2K).

Thus, we can only trust the reduced-trace based results for false-sharing invali-

dations caused if we know that the benchmark has significant false-sharing behavior. A

straightforward method to do this would be to add an additional performance counter to

7Targeted tracing produces very similar results to PMU-based tracing when compared to full tracing.
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count the false-sharing invalidations. The idea is to first run the program without tracing

overhead and check whether the program has significant false sharing. If so, our lossy-trace

based framework can be used to find the actual source code references that account for this

false sharing quickly and accurately. Adding this hardware support would require keeping

track of which parts of the cache line have been accessed by the attached processor. This

could be achieved by keeping a bit vector for each cache line. The space overhead for the

bit vector can be reduced by “chunking”, i.e., making a single bit responsible for multiple

bytes in the cache line (trading off precision for space overhead). Let C be the cache line

size in bytes. If we assign 1 bit for 4 consecutive bytes (the typical size of an unsigned

integer), the space overhead per cache line would be (C/4)/8, i.e., only 3.1%. We plan to

explore this approach in future work.

4.10 Comparing Targeted Tracing and PMU-based Tracing

In the earlier sections, we compared the execution cost, trace sizes and accuracy

for each of the hardware-assisted methods to full tracing. PMU-based tracing has at least

an order of magnitude less execution overhead compared to full tracing. The overhead also

decreases linearly with increasing sampling intervals (OV-1 to OV-8). However, PMU-based

tracing lossiness causes some false positives for particular benchmarks. The false positives

are more pronounced for the coherence misses metric with an average of 2 false positives

(out of 10) at OV-1. Some benchmarks are especially sensitive to the lossy nature of the

trace and have many false positives (5 false positives for BT and 4 false positives for CG, at

OV-1). In addition, when comparing false-sharing invalidations, almost every benchmark

had at least one false positive, and some had even more (MG).

With targeted tracing, we have more control over the tracing process at the cost

of higher execution overhead (compared to PMU-based tracing). Still, the method saves

40% to 68% execution overhead compared to full tracing. What we lose with execution

overhead, we gain with trace size and result accuracy. The reductions in the trace size are

comparable to the ones achieved with PMU-based tracing (over two orders of magnitude

over full tracing). Targeted tracing has greater accuracy than PMU-based tracing, especially

for the coherence miss metric. For this metric, PMU-based tracing has an average coverage

value of 81% and an average of 2 false positives at OV-1 compared to 95% average coverage
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Figure 4.15: Execution Overhead Comparison

and 0.25 average false positives at SMPL-1 for targeted tracing. Also, targeted tracing was

generally superior to PMU-based tracing when comparing true and false sharing. For true

sharing, targeted tracing had no false positives at all and had much larger coverage values.

For false sharing, the number of false positives was also much lower than for PMU-based

tracing.

4.11 Related Work

Several software and hardware-based approaches for shared memory characteri-

zation have been described in literature. Gibson et al. provide a good overview of the

trade-offs of each approach [35].

Several frameworks simulate hardware and architecture state at the instruction

level, which incurs considerable simulation overhead [43, 88]. Our simulator is more

lightweight. We only focus on memory hierarchy and coherence simulation. More im-

portantly, these simulators provide only bulk statistics intended for evaluating architecture

mechanisms. Our framework is intended to provide application programmers with detailed

source-level information about the coherence behavior of their programs enabling program

transformations to avoid coherence bottlenecks.

Execution-driven approaches are popular for simulating memory accesses. They

utilize annotations of memory access points, which trigger calls to the memory access sim-

ulator ( [80, 7, 28]. MemSpy [69] and CProf [55] are cache profilers that aim at detecting
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uniprocessor memory bottlenecks. Lebeck and Wood also applied binary editing to sub-

stitute instructions that reference data in memory with function calls to simulate caches

on-the-fly [56]. SIGMA uses post-link binary instrumentation and online trace compression

[30]. Like us, SIGMA supports tagging of metrics to source code constructs, however, it

only supports uniprocessor workloads. These approaches use software instrumentation to

capture the trace. We measured the cost of just the trace instrumentation without process-

ing the trace at all using the PIN dynamic instrumentation framework. The NULL series in

Figure 4.15 denotes this value. This is the minimum overhead that execution-driven simula-

tors must incur, as it measures only the cost of instrumenting the program for tracing. The

execution overhead of our hardware-assisted tracing is denoted as OV-1, and the cost of the

software tracing scheme including the trace storage overhead is shown by FULL. Thus our

technique has at least one order of magnitude less overhead compared to execution driven

simulators. Our approach can therefore scale to large data sets or long-running real-world

programs at significantly less cost. In the closest related work, Tao and Weidendorfer re-

port a multiprocessor cache simulation approach for OpenMP programs [101] based on

the SIMT multiprocessor simulation tool [100]. They use binary rewriting to extract the

complete memory access trace using Valgrind [77] similar to the full-tracing approach we

compare against in this work. The authors report a slowdown factor of 1000 over the origi-

nal unmodified program. We are not only an order of magnitude faster, but, our trace sizes

are over two orders of magnitude smaller, enabling much faster simulation.

Several tools provide aggregate metrics obtained at low cost from hardware per-

formance counters. HPCToolkit uses statistical sampling of performance counter data and

allows information to be correlated to the program source [70]. A number of commercial

tools (Intel’s VTune, SGI’s Speedshop, Sun’s Workshop) also use statistical sampling with

source correlation, albeit at a coarser level that HPCToolkit or our approach.

Hardware counters complement our lossy-trace based approach: a programmer

first determines if a coherence bottleneck exists through hardware counters. Then, our

framework extract the lossy trace efficiently generates detailed source-correlated coherence

statistics.

There are many interesting approaches to tuning applications using information

provided by hardware counters. Tikir et al. describe a profile-driven online page migration

scheme using hardware performance counters [104]. Buck et al. use the Itanium-2 data

tracing PMU support to associate load misses to source code lines and data structures in
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uniprocessor programs [12]. Buck et al. also compare different hardware mechanism for

detecting uniprocessor memory hierarchy bottlenecks [11]. Satoh et al. study data-flow

techniques to analyze data sharing patterns at compile time for OpenMP programs [92].

While these approaches focus on application tuning, our contribution is on efficient large-

scale performance analysis. Thiffault et al. compare the cost of dynamic and static software

instrumentation for large-scale OpenMP and MPI programs [103]. We, in contrast, promote

hardware-assisted sampling due to overheads resulting from software instrumentation in

general.

4.12 Conclusion

In this chapter we presented two novel hardware-assisted approaches to determine

cache coherence bottlenecks. Our first method, PMU-based tracing, uses the Itanium-2

hardware performance monitor (PMU) that accurately associates data addresses with load

instructions and filters interrupts for these instructions based on a latency threshold. The

PMU also provides sampling frequency support. We combine the PMU support with an

efficient software technique to capture store data addresses to provide a lossy-trace mecha-

nism.

We also describe another hardware-assisted method, targeted tracing that provides

more control on the tracing process. With targeted tracing, we first use the PMU lossy load

tracing feature to cut down on the number of instructions to instrument. The reduced

set of instructions is instrumented using software instrumentation. Each load instance is

timed, and loads are captured only if they cross a software defined latency threshold. Store

instructions are sampled with different sampling intervals.

We evaluated both methods with a large set of OpenMP benchmarks and ex-

plored the tradeoffs between accuracy and overhead in terms of trace sizes and run-time

slowdown. These approaches provide a low runtime overhead to identify coherence bottle-

necks in OpenMP applications. PMU-based tracing has two possible sources of inaccuracy:

coherence misses omitted due to sampling and the omission of a store that actually causes a

coherence miss. Further, due to the lossiness of the trace, this method had a larger number

of false positives when comparing false-sharing invalidations. With targeted tracing, the

lossiness of load tracing is removed, and we experiment with different sampling intervals
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for tracing stores. In addition, we also characterized the accuracy of both these meth-

ods with respect to true-sharing and false-sharing invalidations. We found a weakness of

reduced-trace methods for certain programs when evaluating false-sharing invalidations and

suggested possible solutions to resolve it.

We show that both our methods reduce the number of loads captured by over

two orders of magnitude over full tracing. PMU-based tracing is more than an order of

magnitude faster than full tracing and has high accuracy on most benchmarks. Targeted

tracing provides even higher accuracy and control over the tracing process at the cost of

relatively more overhead compared to PMU-based tracing.
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Chapter 5

Hardware Profile-guided

Automatic Page Placement for

ccNUMA Systems

5.1 Summary

Cache coherent non-uniform memory architectures (ccNUMA) constitute an im-

portant class of high-performance computing platforms. Contemporary ccNUMA systems,

such as the SGI Altix, have a large number of nodes, where each node consists of a small

number of processors and a fixed amount of physical memory. All processors in the sys-

tem access the same global virtual address space but the physical memory is distributed

across nodes, and coherence is maintained using hardware mechanisms. Accesses to local

physical memory (on the same node as the requesting processor) results in lower latencies

than accesses to remote memory (on a different node). Since many scientific programs are

memory-bound, an intelligent page-placement policy that allocates pages closer to the re-

questing processor can significantly reduce number of cycles required to access memory. We

show that such a policy can lead to significant savings in wall-clock execution time.
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In this paper, we introduce a novel hardware-assisted page placement scheme based

on automated profiling. The placement scheme allocates pages near processors that most

frequently access that page. The scheme leverages performance monitoring capabilities

of contemporary microprocessors to efficiently extract an approximate trace of memory

accesses. This information is used to decide page affinity, i.e., the node to which the page

is bound. Our method operates entirely in user space, is widely automated, and handles

not only static but also dynamic memory allocation.

We evaluate our framework with a set of multi-threaded benchmarks from the

NAS and SPEC OpenMP suites. We investigate the use of two different hardware profile

sources with respect to the cost (e.g., time to trace, number of records in profile) vs. the

accuracy of the profile and the corresponding savings in wall-clock execution time. We show

that long-latency loads provide a better indicator for page placement than TLB misses.

Our experiments show that our method can efficiently improve page placement,

leading to an average wall-clock execution time saving of more than 20% for our benchmarks,

with a one-time profiling overhead of 2.7% over the overall original program wallclock time.

To the best of our knowledge, this is the first evaluation on a real machine of a completely

user mode interrupt-driven profile-guided page placement scheme that requires no special

compiler, operating system or network interconnect support.

5.2 Introduction

Cache-coherent non-uniform memory architectures (ccNUMA) constitute an im-

portant subset of current high performance computing platforms. Contemporary ccNUMA

platforms, such as the SGI Altix, consist of a large number nodes, where each node has

a small number of processors and a fixed amount of physical memory. All processors can

access the same global virtual address space, but the physical memory is distributed across

the entire system and coherence is maintained using hardware mechanisms.

In a ccNUMA system, accesses to virtual memory mapped on the same node as the

requesting processor typically experience much shorter latencies than accesses to physical

memory on a different node. We constructed an OpenMP micro-benchmark to evaluate

access latency on our target platform, the SGI Altix. The program counts the processor

cycles required to access physical memory on the local and remote nodes. The results are



130

shown in Table 5.1. We see that, on average, it takes more than twice as long to load from

remote memory than from memory on the local node.

Table 5.1: Access latencies on the SGI Altix

Access Type Average Latency Standard Deviation
(Cycles)

Local Node Memory 207 121

Remote Node Memory 430 176

In this paper, we focus on multi-threaded OpenMP benchmarks. Many of these

programs are memory bound i.e., the overall wallclock execution time of the program is

significantly affected by the performance of the memory hierarchy. If the physical page

placement is sub-optimal, i.e., the bulk of the accesses are to pages whose physical memory

has been allocated on a remote node, the program will take much longer to execute. On

the other hand, an intelligent page-placement scheme, that allocates physical memory on

nodes closer to the processors with most frequent accesses to a page, can reduce the average

access latency leading to potentially significant wallclock time savings.

To effect this intelligent page placement, we must efficiently determine the overall

memory access pattern of the program. In practice, even for reasonably-sized programs, it is

difficult for programmers to know the best page placement for each page. Furthermore, on

systems using “first-touch” page allocation, compulsory initialization of data elements (e.g.,

from a file) in one thread can cause the page to be allocated permanently on a particular

node. We have encountered OpenMP programs that have not been specifically tuned for

ccNUMA environments and often initialize all data elements in the master OpenMP thread.

This causes the bulk of the data space to be allocated in physical memory on only a single

node, thereby drastically increasing the number of memory load instructions that access

remote memory. Finally, even programs that specifically initialize (“touch”) data in parallel

on multiple threads can still achieve sub-optimal page allocation. This commonly occurs

when the number of accesses to a particular page during the stable execution phase (e.g., a

single timestep) of the program may indicate a better page placement than the one effected

by the parallel initialization with multiple threads.

To tackle these problems, we need an efficient whole-program analysis tool that

considers the overall run-time memory access pattern of the program during its stable



131

execution phase and uses this information to decide the best page placement. In this paper,

we contribute precisely such a scheme.

Our scheme works as follows. First, we execute a truncated one-timestep version of

the program. We use the performance monitoring capabilities in existing microprocessors to

efficiently extract an approximate trace of the memory accesses from all the active processors

during this partial (truncated) run. We then use this access information to decide the best

page placement, i.e., the physical node on which a particular virtual page should be allocated

(“affinity hints”). Finally, we run the complete program and use the affinity hints to allocate

pages on the assigned physical node. The allocation is achieved by “touching” the target

page from a processor on the assigned node, i.e., by leveraging the default “first-touch”

page allocation policy of the operating system. Our method handles both statically defined

and dynamically allocated regions of memory. For statically defined memory regions (in the

bss segment), the page touch takes effect at startup. For dynamically allocated regions, we

delay the page touch till the region has been allocated.

Overall, we show that long-latency loads provide a better indicator for page place-

ment than TLB misses and result in average wall-clock execution time savings of greater

than 20% over all benchmarks, with a average one-time profiling overhead of 2.7% over the

wallclock time for the complete original program. These results may make automatic page

placement a cheap commodity without requiring user intervention.

The paper is structured as follows. First, we describe our page placement mech-

anism in detail. Then, we evaluate the placement mechanism with respect to the profile

collection cost, the quality of the collected profile and the performance impact on the target

program execution. We explore the use of two different profile sources, namely TLB misses

and long latency loads, and the impact of different sampling intervals. Finally, we contrast

our approach to related work and summarize our contributions.

5.3 Profile-guided Page Placement

Figure 5.1 shows our scheme. There are 3 distinct phases — profile generation,

affinity decision and profile-guided page placement. In the profile-generation phase, we

run a truncated version of the multi-threaded program (e.g., a single timestep) and col-

lect information about the memory access pattern for each thread. For the experiments
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in this paper, we explicitly bind each OpenMP thread to a different processor using the

sched setaffinity primitive. We also intercept and log any dynamic allocation requests

generated by the program. The collected information is used during the affinity decision

phase to choose the most favorable mapping of pages to nodes, i.e., the page affinity. Fi-

nally, we re-run the application and use the affinity information to force allocation of pages

on their assigned affinity nodes.

We have automated our approach extensively such that user interaction is only

required in three steps. First, a special header file transparently wraps allocation functions

like malloc with calls to handler functions. Second, a call to an initialization function is

placed at the very start of the program. This function effects page placement for statically-

defined memory regions during profile-guided runs and initializes the hardware performance

monitor during the profile collection run. Third, the user must identify the stable execution

phase of the program and mark the phase with calls to handler functions. For example,

in time-stepped programs, the stable execution phase is a single timestep. The idea is to

collect a snapshot of the program’s memory access patterns during a snippet of its stable

execution phase and use that to guide page placement decisions. Next, our framework is

described in more detail.
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5.4 Profile Generation

We want to capture 2 types of profile information — memory accesses of each

thread and calls to dynamic memory allocation.

Capturing Memory Accesses: We leverage the capabilities of the Itanium-

2 performance monitoring unit (PMU) to capture an approximate trace of the memory

accesses. We use the libpfm library to access the hardware counters of the processor [41].

The PMU operation is described in detail elsewhere [46]. In this paper, we use the PMU to

capture two different types of memory access data — long latency loads and data translation

lookaside buffer (DTLB) misses. A simplified view of the PMU operation for capturing long

latency loads is shown in Figure 5.2. In this mode, the PMU supports selective tracking

of load instructions based on a latency threshold. However, the PMU does not capture all

Issuing Load

Incr. sampling counter,
Ignore Load
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Figure 5.2: Simplified PMU Operation

long-latency loads that exceed the latency threshold. There are two reasons for this. First,

due to hardware restrictions, the PMU can only track one load at a time out of potentially

many outstanding loads. Second, in order to prevent the same data cache load miss from

always being captured in a regular sequence of overlapped cache misses, the PMU uses
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randomization to decide whether or not to track an issuing load instruction. Due to these

reasons, the load miss trace that can be captured is lossy.

If a PMU-tracked load exceeds a user-configured latency threshold value, it qual-

ifies for capture, otherwise it is ignored (Filtering). Since the access latencies increase

monotonically for cache levels further away from the processor, the latency threshold allows

selective capturing of the load miss stream (L1-D misses, L2 data load miss stream, etc.).

Due to hardware limitations, the latency threshold can only be set in in powers of 2, with a

lower bound of 4 cycles (i.e., valid threshold values are 4 cycles, 8 cycles, 16 cycles, etc.) .

Each filtered load increments the PMU overflow counter. By appropriately initial-

izing this counter, the user can vary the sampling rate for the captured long-latency load

stream (Sampling). The Itanium-2 has special support to capture the exact instruction

address (IP) and the corresponding data address being loaded (EA) for the sampled long-

latency load. In contrast, counter-overflow based sampling on other processor architectures

can give misleading instruction addresses for the missing load due to superscalar issue, deep

pipelining and out-of-order execution [46].

The mechanism for capturing DTLB misses is similar, though there is no support

for the latency threshold. Various specific sub-types of the DTLB misses can be captured

(described in more detail in [46]). In this paper, we enable all types of DTLB misses

for capture by selecting the corresponding libpfm event DATA EAR TLB ALL. Each captured

sample contains the address of the memory access instruction that caused the TLB miss and

the accessed data address. This profile source includes DTLB misses caused by both loads

and stores while the the long-latency capture mechanism described earlier only monitors

load instructions.

Capturing Dynamic Allocation Information: For profile-guided page place-

ment, we leverage the “first-touch” allocation policy that is used by SGI’s Linux version for

the Altix to allocate physical memory pages. To “touch” a particular virtual page address,

we need to know the earliest point in the program at which such an address becomes valid.

This requires the logging of memory allocation calls for each OpenMP thread.

The logger intercepts the program calls to malloc, calloc and free. We also log

executions to Fortran allocate statements. The Itanium architecture has a high-resolution

timer called the “interval timer counter” (itc). By logging the itc timestamp for each call

and knowing the skew between the itc registers of each processor, a post-processing tool

builds a unified ordering of allocation calls across all the threads.
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5.5 Affinity Decision

Next, the approximate memory access trace and the dynamic memory allocation

information is used to determine page affinity, i.e., to decide the node on which physical

memory should be allocated for a particular virtual memory page. The affinity decision

module currently uses a simple decision criterion for mapping the page — the page should

be allocated on the node that had the maximum number of accesses to that page. The

idea is that by allocating pages closer to the most active requesting processors, the average

latency of access can be reduced.

First, the accesses are grouped by page address, and the total accesses from all

threads to each page are calculated by map2page, as shown in Figure 5.1. On our target

platform (SGI Altix), each node has two processors that have identical latencies when

accessing local physical memory. So the affinity decision module groups the accesses by each

processor to calculate the per-node access count for each page. The page is recommended

for allocation on the node with the maximum number of accesses to that page. The affinity

decisions are generated differently for statically defined and dynamically allocated regions

of memory.

Statically defined memory (i.e., the bss segment) contains space for uninitialized

global variables. The starting address and extent of the static region is determined at link

time. The affinity decision module simply generates a per-node list of page address offsets

that have affinity to that node. The first logical processor in a node is responsible for

using these page offsets to issue the actual “first-touch” page placements during the final

profile-guided program run.

Dynamically allocated regions pose an additional challenge since the starting ad-

dress of the allocated region can and does change over multiple runs of the same program.

For the benchmarks evaluated, two distinct dynamic memory allocation patterns were ob-

served. Many programs had a small number of calls, each of which allocated a large chunk of

contiguous memory. For such cases, we adjust the affinity page offsets relative to the start-

ing address of the region. During the profile-guided run, just after the region is allocated,

the affinity offsets will be used to “touch” the pages on the appropriate nodes.

Other programs had a large number of calls clustered in time, each allocating a

very small region of memory (e.g., NAS-2.3 MG). For such cases, we rely on the fact that

these regions will most often be allocated contiguously in space. Since the memory access
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trace is lossy, we observe in practice that we do not have even a single access record for

many small allocated regions (“silent regions”). But we still handle these regions correctly

because physical memory is allocated on page granularity, and we have trace records for

other small regions whose page tends to include the silent region.

5.6 Profile-guided Page Placement

In this final phase, we re-run the original program and use the affinity information

we generated in the earlier phase to guide our page placement decisions. At the time of

writing, the operating system (SGI’s Linux version for the Altix) does not support dynamic

page migration at all. Instead, we leverage the existing “allocate-on-first-touch” policy to

effect our page placement. This policy allocates physical memory for the virtual page on

the node that first accesses (“touches”) a data element on that specific node. Thus, to force

page placement on a particular node, we “touch” the page by executing a load followed by

a store to an address in the particular page from a processor on that node.

For this mechanism to succeed, we must touch the page before any other processor

accesses that page. For static regions of memory, each processor reads its static affinity file

on program startup and touches all the page address offsets listed in that file, as shown in

Figure 5.1. All processors synchronize at a barrier after the touching phase, to ensure that

no processor accesses a statically-defined page before the affinity hint for the page has been

applied. Since the static allocation is done only once, at startup, it has minimal execution

overhead.

The process for dynamically allocated regions is similar, except that we must delay

the page touch till the target memory region is allocated. In this case, we know that, in

a legal program, no other processor can access the allocated region before the allocation

function (e.g. malloc) has completed. We take advantage of this to ensure that our first-

touch scheme will effect the page allocation we want before any other processor touches the

memory region. The idea is to insert a wrapper around the allocation call. The behavior

of the wrapper is controlled by an environment variable. During unoptimized runs of the

program, the wrapper does no work. During the profiling phase, the wrapper records the

allocation request parameters (size of region, starting address, thread id, timestamp). The

affinity generation phase tags each allocation request with affinity hints. Finally, during the

profile-guided runs, the wrapper uses affinity hints to effect page allocation as follows.
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When the wrapper is invoked, it first calls the real allocation function. The dy-

namic affinity hints provide information about which parts of this dynamically allocated

regions should be allocated on which target processors. This information consists of a list

of processor identifiers and the address offsets that need to be touched on these processors.

For each such processor, the current thread reschedules itself on the target processor by

using the sched setaffinity function call. When the sched setaffinity call returns,

the thread is now executing on the target processor. Then the touch mechanism “touches”

the given list of address offsets, thereby causing page allocation on the physical memory in

the target processor’s node. After all affinity hints for all processors for the dynamic region

are processed, the thread re-schedules itself on its original processor.

This scheme is completely transparent to the user-level program, except for the

addition of the wrapper function. However, it has high execution overhead. For every

allocation request for which there are affinity hints for n processors, there are n+1 context

switches (one switch to every target processor, and the final switch back to the original

processor). We found during our evaluation (Section 5.7) that this scheme has substantial

execution overhead, which erases the gain due to reduction in remote accesses for several

benchmarks. The overhead can be reduced by a less transparent scheme that involves more

effort on part of the user. A simple way to reduce overhead would be to group the touching

effort for multiple dynamically allocated regions. For each group, there would be only one

context switch for each processor in the list of affinity hints. The user would also need to

insert additional synchronization to ensure that no thread begins accessing the dynamically

allocated region before the touching has occurred (to prevent inadvertent page allocation).

We leave this idea for future work.

There is one additional issue for dynamically allocated regions. In the benchmarks

we evaluate, programs allocate memory only at the start of the program and do not free it till

the end of execution. If, on the other hand, programs repeatedly allocate and free memory

in the stable execution phase, then the effectiveness of the “first-touch” scheme would be

reduced. This occurs because portions of the virtual address space may be “recycled” by

the allocation function after they were initially freed, but the physical memory will only be

allocated once on the node where the page of virtual memory was first touched. This is a

limitation of using the first-touch mechanism. This issue could be solved if our operating

system (Linux) supported dynamic page migration, which is not available at the present
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time.1 With migration support, the virtual pages in the dynamically allocated region could

be simply migrated to the target processor given by the affinity hint.

5.7 Evaluation Framework

We described the scheme for profile-guided page placement in the previous sec-

tion. In the following we present a cost versus benefit analysis as we vary the configurable

parameters shown in Figure 5.1.

There are two configurable parameters that we shall vary — the choice of the

profile source and the sampling interval for capturing memory access samples. The hardware

provides two profile sources — long-latency loads and DTLB misses. The sampling interval

provides a method to trade-off sampling overhead vs. the amount of profile data collected.

For each profile source, we experiment with different sampling interval values (Sections 5.8

and 5.9).

As we vary these two parameters, the amount and type of profile information that

we collect will change. How good are the affinity hints generated using these profiles? How

effective are the affinity hints in reducing the overall wallclock execution time? To answer

these questions, we need to compare the performance of these profiles with respect to the

performance of affinity hints based on a reference profile. We call this reference profile

the “maximum information profile”. The reference profile answers this question: What

affinity hints will be generated, if we knew as much as possible about the memory access

pattern of the program? How much improvement in performance can be achieved using

these hints? By comparing our profiles against the results achieved with the maximum

information profile, we can clearly evaluate the tradeoff between profile collection cost and

the optimization benefit.

Initially, we experimented with a software memory tracing tool to capture all

memory loads and then used this access trace as the maximum information profile. However,

this method had too much execution overhead for the benchmarks we evaluated. Instead,

we configure the PMU with the lowest latency threshold setting (4 cycles) and the highest

sampling frequency (1) and use the collected trace as the maximum information profile.

1Draft APIs for manual page migration have been proposed, and are expected to be available with future
Linux systems.
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Since the L1 cache hit access latency is 1 cycle, this corresponds to capturing a fraction of

all accesses that miss in the L1 data cache.

In the discussion below, the “reference results” refers to the affinity hints generated

using the maximum information profile. Similarly, the “target profile results” denote the

affinity hints generated by the profile being evaluated.

Our evaluation has three aspects - the profiling cost, the quality of the collected

profile, and the resulting execution benefits. The profiling cost is the cost of collecting the

access trace, which is determined by the size of the profile and by the execution overhead

inflicted on the benchmark during the profile collection phase. As the sampling interval is

increased, both the profile size and the profiling overhead are expected to decrease.

For evaluating the quality of the profile, we shall compare the target profile results

to the reference results using three different metrics. Coverage denotes the fraction of the

pages in the reference results for which we have an affinity hint in the target profile results.

The affinity node values for the page do not need to be the same between the reference

and target profile results. Accuracy denotes the fraction of the pages in the target profile

results that have the same affinity hint node value as the reference results. If the coverage

value is low, it indicates that for large number of pages we simply do not have enough

information in the target profile to generate an affinity hint. If the coverage value is high,

we are confident that the target profile contains affinity hints for almost the same number

of pages as the reference profile (though the affinity node values might be different).

In contrast, accuracy measures the stand-alone usefulness of the target profile. It

answers the question: If the target profile were to be used to generate affinity hints, what

fraction of the affinity hints are identical to those present in the reference results? If the

accuracy value is high, it indicates that the target profile is as useful as the reference profile

(though at a potentially much reduced overhead). On the other hand, a low accuracy value

indicates that the target profile is potentially misleading in the sense that the affinity hints

do not match the hints in the reference results.

Finally, the Useful Fraction metric combines the information from these two

metrics. It measures the fraction of the affinity hints in the target profile that are not only

present in the reference trace, but also have the same affinity node value.

The coverage, accuracy and useful fraction are computed as follows. Let

Ref = # hints in reference results;

Targ = # hints in target profile results;



140

C = # hints in target profile results that are also present in the reference results

(though the affinity node values might not match);

A = # hints in target profile results that are also present in the reference results

AND the affinity node values match. Then,

Coverage= C
Ref

∗ 100%

Accuracy= A
Targ

∗ 100%

UsefulFraction= A
Ref

∗ 100%

These three metrics each provide a different understanding of the profile character-

istics. For example, a high accuracy value might still not indicate an effective profile if the

coverage is low. This is because we simply will not have affinity hints for many pages (low

coverage), but the few hints that we do generate are accurate (high accuracy). Similarly,

a low useful fraction value could be either due to low coverage or to low accuracy of the

hints. Thus, there is the need for all three metrics.

So far, we have seen the metrics for cost and profile quality. For assessing profile

benefit, we measure two things - the net reduction in remote accesses and the reduction in

wallclock execution time. The net reduction is compared by taking the difference between the

metric values (remote accesses, wallclock execution time) between the original unmodified

program run and the program run with our profile-guided page placement scheme.

The evaluation process works as follows. First, the target program is run for one

time step and profile data is collected. This profile data is used to compute the affinity hints

and the entire program is re-run using this profile data. Thus, the profile cost is the cost to

capture the samples over one timestep of the program. On our platform, there is no easy

way to measure the number of remote memory accesses generated by the program. Instead,

we present an approximate measure of the reduction in remote memory accesses as follows.

We set the PMU latency threshold to 512 cycles2 and count the number of accesses that

exceeded this threshold for the original program. The high latency threshold ensures that

almost all loads that hit in cache or in local memory will be filtered out (though some remote

loads may also be filtered out, as indicated by the latencies in Table 5.1). Then, we run

the program with our page placement scheme and count the number of accesses exceeding

the latency threshold (512) as before. The difference between the two values provides an

2Due to PMU limitations, the latency threshold can only be set in powers of 2. The next lower threshold
(256 cycles) would not filter out a significant fraction of local memory loads, as indicated by the latencies
in Table 5.1.
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approximate measure of the net reduction in remote memory accesses. In practice, we have

found this value to be quite consistent across multiple runs.

When comparing wallclock execution time, we compare the wallclock time for

the complete run of the original program to the wallclock time of the program with profile-

guided page placement, including the overhead of the page touching mechanism. During our

experiments, we noticed that the execution time of the program varied measurably across

runs. This may be due to several reasons. First, the difference in scheduler allocation

of processors for the batch runs affects the degree of benefit obtained with profile-guided

page placement (the benefit will be less if the allocated processors are closer). Second,

all operating system calls on the Altix must go through a small collection of CPUs in the

interactive login partition. Thus, the load on the interactive nodes affects the performance

of the jobs running on the batch nodes. This is especially significant for the dynamic

page touching mechanism, which potentially involves multiple context switches for a single

affinity hint.

In order to account for this variability in execution time, we ran each benchmark

for 6 times (5 times for BT). Each time, the profile-guided runs and the non-profile guided

runs were executed on the same scheduler-assigned processor allocation. The wallclock

execution time graphs show the average benefit obtained with each sampling interval. The

error bars denote the confidence interval range for a 95% confidence interval.

Benchmarks: We use a set of 9 OpenMP benchmarks. This includes 7 out of

the 8 NAS-2.3 benchmarks (excluding EP). The NAS benchmarks are C versions of the

original NAS-2.3 serial benchmarks [4], provided by the Omni Compiler group [2]. We

do not evaluate EP since it does not have significant sharing of data [67]. In addition,

we also evaluate the 320.equake and 332.ammp benchmarks from the SPEC OMPM2001

benchmark set. These benchmarks have significant dynamic memory allocation, thereby

putting our dynamic touching mechanism to the test.

All programs were compiled at the -O2 optimization level. All NAS benchmarks

use Class C data sets, while the SPEC benchmarks use the reference data set. All ex-

periments were carried out on a non-interactive (batch) allocation of eight processors. On

our current platform, there are two processors per node. A total of four nodes were used.

All programs were run with eight OpenMP threads. Each thread is bound to a separate

processor using the sched setaffinity primitive. OpenMP thread scheduling was set to

static. Our hardware platform has Itanium-2 processors running at 1.5GHz, each with a 6
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MB L3 cache, 256 KB L2 cache and 16 KB L1D cache.

For each program, we inserted markers delineating the start and end of the timestep.

For 332.ammp, we disabled the pre-existing round-robin allocation of the “atom” element

for the profile-related runs. However, we still compare the benefit metrics (wallclock time,

number of remote accesses) against the original program. For the IS benchmark, we perform

a one-time dynamic allocation for the prv buff1 array since the program failed to execute

with the default stack allocation for this variable.

Out of the 9 benchmarks, 4 benchmarks — MG, 332.ammp, 320.equake, IS —

utilize dynamic memory allocation. The remaining benchmarks operate with statically

declared global arrays.

5.8 Evaluation with Long-latency Load Profiling

We evaluated the performance of our page-placement scheme with long-latency

loads as the profile source. Figure 5.3 shows the performance using the cost / quality /

benefit approach that was described in the last section.

For these experiments, we fix the latency threshold in the PMU to 128 cycles.

This filters out most of the load accesses that hit in the L1D, L2 and L3 caches. We select

sampling intervals of 1, 10, 50, 100, 200 (OV-1 to OV-200 in the graphs).

Profiling Cost: The graph for cost comparison shows the cost for the “maximum

information profile” (denoted as FULL in the graphs) and the results for each of the reduced

sampling intervals. The reduced sampling results are normalized to the FULL profile values.

Number of Captured Samples: The number of accesses captured at OV-1,

depicted in Figure 5.3(a), is about an order of magnitude lower than the FULL profile for

most benchmarks (except IS). By keeping the latency threshold much higher (128 cycles

instead of 4 cycles for the FULL profile) we filter out most of the loads that hit in cache.

These loads can be ignored since they do not propagate past the cache to memory. Hence,

they will not be affected by page placement.

With increasing sampling intervals, the total number of samples captured decreases

linearly. At OV-200, the average number of accesses in the trace has been reduced by 1000

times over the FULL trace.

Profiling Execution Overhead: The absolute execution overhead for profiling
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(d) Quality: Accuracy

�
��
��
��
��
��
��
��
��
	�
���


� �� � �� �� �� �� ������ ���� ����

�
��
��
� 
!�
"#
$%
&'
(

)�*� )�*�� )�*�� )�*��� )�*���

(e) Quality: Useful Fraction

������
���

�

��

��

��

��

���

�� �	 
� � � �� �� ������ ���	 ���

�
��
��
��
�� 
!�
�!
��
�"

 �
��
��

��
##
�# 
��� $��� $���� $��%� $����� $�����

(f) Benefit: Reduction in Remote Accesses

Over Original Program
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(g) Benefit: Reduction in Wallclock Time Over

Original Program

Figure 5.3: Evaluation with Latency threshold=128, Profile Source=Long Latency Loads

is extremely low, since it is sufficient to only a single timestep for the benchmarks that we

considered, i.e., the partial execution saves significant overhead over an execution of the

entire benchmark without any loss in accuracy for the benchmarks studied.

On average, over all benchmarks, we measured the execution overhead for profiling

a single timestep at OV-1 to be 2.7% of the overall original program execution time.

The relative profiling execution overhead (compared to FULL) is shown in Figure
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5.3(b). We see that the overhead flattens out with increasing sampling intervals. This

indicates that the profile collection cost does not dominate the time to execute the timestep.

The results show that OV-1 or OV-10 are the “sweet spot” values for the sampling interval,

since increasing sampling intervals beyond that point does not reduce overhead by much.

On average, profiling execution overhead at OV-1 is about 20% of the FULL profile

cost, with the exceptions of SP and IS that have lower savings.

Profile Quality: As the sampling intervals increase, the size of the profile col-

lected will tend to decrease. This has an effect on the quality of the profile, i.e., the coverage,

accuracy and useful fraction metrics. The maximum values of all these metrics is 100%.

Coverage: Figure 5.3(c) depicts the coverage results for different sampling inter-

vals. At OV-1, the average coverage is 99% indicating that we have affinity hints for almost

all of the FULL profile pages. The OV-10 coverage still remains high at 94%. After that,

we observe a noticeable decline in coverage at sampling intervals of OV-50 and beyond. The

average coverage falls from 94% at OV-10 to 76% at OV-50 and finally to 47% at OV-200.

Thus, at OV-50 and higher, we simply do not have enough profile data to generate affinity

hints for page placement for a significant number of pages.

Accuracy: The accuracy values, depicted in Figure 5.3(d), are very close across

sampling intervals for each benchmark. Also, accuracy remains uniformly high across in-

creasing sampling intervals for all benchmarks (except for LU). This is very encouraging as

it indicates that even with a reduced number of accesses, the affinity node recommenda-

tions match the recommendations given by the FULL profile for most of the affinity hints

generated. LU’s behavior is explored in more detail later.

Useful Fraction The useful fraction is the fraction of the FULL profile affinity

hints that are present and have the same affinity node value in the target profile results. A

high useful fraction indicates that we are obtaining almost the same results as the FULL

profile results, with much smaller profile input data.

The average useful fraction, depicted Figure 5.3(e),is high for OV-1 (93%) and

OV-10 (87%). From OV-50 to OV-200, the metric degrades from 68% to 40% on average.

This trend occurs because the coverage values fall with increasing sampling intervals while

the accuracy remains steady. The degradation is much more pronounced for benchmarks

like IS, FT and MG whereas there is almost no degradation for CG.

Profile Benefits: We explore the impact of the page placement scheme on two

metrics: (1) the number of remote accesses generated by the program and (2) the wallclock
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execution time of the program.

Reduction in Remote Accesses: Figure 5.3(f) shows the net reduction in the

number of remote accesses for the full-program run using automatic profile-guided page

placement vs. the original program. The figure compares the reduction in remote accesses

using the FULL profile, vs. the reduction achieved at latency threshold 128, and the different

sampling intervals.

For all but one case (LU:FULL profile), there is a net reduction in the number of

remote accesses. Almost all the remote accesses for CG and MG are eliminated as shown

by a 98% and 97% reduction at OV-1 for CG and MG, respectively.

Other benchmarks also have significant reduction in remote accesses. The average

reduction at OV-1 is 60% and decreases significantly from OV-50 (48%) to OV-200 (28%).

OV-10 appears to be the sweet spot. The average reduction is, in fact, slightly higher for

OV-10 (55%) than OV-1 (54%). Only LU shows a 28% increase in remote accesses when

using the full profile. This anomaly of LU is discussed in more detail later.

Reduction in Wallclock Execution Time: This is the most important measure

to assess the overall benefit as it indicates the performance improvement of an application

with profile-guided placement compared to the original unmodified program. Figure 5.3(g)

shows the improvement in wallclock time. As described before, the error bars represent the

95% confidence interval range. The ranges for MG, LU and IS are large, indicating that

these programs have more variable execution times.

Except for IS, every other benchmark shows a reduction in wallclock execution

time. The average reduction is 21% at OV-1. CG achieves exceptionally large savings with

over 73% shorter executions at OV-1. Many other benchmarks (SP, FT, MG, Equake) also

achieve greater than 15% reductions.

With increasing sampling interval, the wallclock improvements tend to decrease,

though the magnitude of decrease is program-dependent. CG does not show much degra-

dation with increasing sampling intervals, but there is a noticeable degradation with SP

between OV-10 and OV-200.

IS represents an exceptional case where the wallclock execution time increases

with profile-guided page placement. We determined that the cause of the degradation is

the cost of the page-touching mechanism for dynamically allocated regions. Each hint on

a dynamically allocated region potentially represents at least two context switches — one

to switch to the target processor and “touch” the page and the other to switch back to
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the processor that originally requested the allocation. (Note that we bind each OpenMP

thread to a different processor. Hence, we refer to processors instead of threads here.)

With increasing sampling intervals, fewer dynamic hints are generated (as coverage falls).

This reduces the overall overhead on the target. Thus, we see less degradation in wallclock

execution time for IS with increasing sampling intervals.

Similar to IS, the potential wallclock savings for other programs with dynamic

memory allocation (MG, Equake, AMMP) are also affected by the overhead of the touch-

ing mechanism. Given that over 98% of the remote accesses for MG are eliminated by

page placement, the wallclock reductions for MG would increase even further with a more

optimized touch mechanism.

The LU Anomaly: LU represents an anomalous case. For this benchmark, the

affinity hints generated by the full profile do not match the affinity hints generated by the

other profiles (OV-1 to OV-200). This causes low accuracy and useful fraction values, as

seen in Figures 5.3(d) and 5.3(e). Furthermore, using the full profile leads to an increase

in the number of remote accesses (Figure 5.3(f)) while OV-50 leads to a 10% decrease

in remote accesses. The corresponding wallclock time reduction is higher for OV-50 (8%

improvement) than that of the full-profile results (0% improvement).

The underlying cause is as follows. The affinity node values differ between the full

profile and the OV-1 profile (and higher sampling interval profiles) for parts of the large rsd

global static array. The full profile uses the lowest possible latency of 4 cycles to sample the

address trace. This captures all possible loads, irrespective of whether the loads hit in cache

or not. For the pages of the rsd array that have different affinity hints in the full and OV-1

profiles, most of the accesses on the affinity node given in the full-profile are hits in the

local caches. Hence, the affinity decision is different from the OV-1 profile-based decision

(which filters out the cache hits). First, we observe that loads which are hits in cache will

not be affected by page placement decisions. Second, the full-profile based page placement,

in fact, worsens the average access latency for cache misses since the corresponding pages

are allocated on a node that only has infrequent cache misses for those pages. This explains

the increase in the average number of remote accesses for the full-profile results compared

to the OV-1 based experiment. Thus, the average wallclock time improvement is lower for

full-profile than for OV-50 in this case.

Conclusions: Long-Latency Profiling: 1) Overall, we observe that the size of

the profile data at OV-1 is one-tenth the size of the FULL profile on average. With increasing
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sampling intervals (OV-1 to OV-200), the profile size decreases linearly. 2) For most bench-

marks, the execution overhead of profile collection decreases sharply from FULL to OV-1,

yet it does not decrease significantly with larger sampling intervals (OV-10 to OV-200).

Thus OV-1 or OV-10 appears to be the sweet spot for profile collection. 3) With increas-

ing sampling intervals, the coverage drops significantly, which indicates insufficient profile

information to generate affinity decisions for many pages. 4) Nevertheless, the accuracy of

the profile information does not degrade significantly with increasing sampling intervals. 5)

A significant reduction in the wallclock execution time and the number of remote accesses

is possible with profile-guided page placement. However, for programs with dynamic allo-

cation, the page touching mechanism is expensive and adversely affects wallclock execution

time. A more optimized touching scheme should lead to even better wallclock reductions

for these programs. 6) For one benchmark (LU), using the reference profile (FULL) actually

resulted in a degradation of performance. For this benchmark, the filtering effect of the high

latency threshold used by the target profiles (128 cycles) removed loads that hit in the cache

and resulted in a more accurate picture of which pages are frequently accessed by which

processors. Thus, using the full memory access trace may actually result in sub-optimal

page placement in rare cases. For all other benchmarks, the reference profile almost always

had the maximum (or close to maximum) performance benefits, i.e., reduction in remote

accesses and wallclock time.

5.9 Evaluation with Data TLB Misses Profiling

Figure 5.4 depicts the results using data TLB misses as the profile source obtained

with PMU support. We evaluate results for sampling intervals values of 1, 2, 4, 8 and 16

(denoted OV-1 to OV-16 in the graphs). For the discussion below, we shall refer to the

results presented in the last section using long-latency loads as the profile source as the

load-based results. In the following, we describe the DTLB miss results and contrast them

with the load-based results.

Profile Cost: As before, the cost metrics are compared against the cost incurred

for the “maximum information profile” (denoted as FULL in the graphs).

Number of Captured Samples: The average number of samples captured at

OV-1 is less than one-tenth of the number of samples in the full profile, as seen in Fig-
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(c) Quality: Coverage
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(d) Quality: Accuracy
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(e) Quality: Useful Fraction
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(f) Benefit: Reduction in Remote Accesses

Over Original Program
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(g) Benefit: Reduction in Wallclock Time

Over Original Program

Figure 5.4: Evaluation with Profile Source=Data TLB Misses

ure 5.4(a). With increasing sampling intervals (OV-1 to OV-16), the number of captured

samples decreases almost linearly.

In contrast to the load-based results, the difference between FULL and OV-1 tends

to be program-dependent. Ammp and MG have more than 1000 times less profile data at

OV-1 compared to FULL while IS has almost the same number of samples as FULL.
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Profiling Execution Overhead: The results for the relative profile overhead,

depicted in Figure 5.4(b), are similar to load-based results. The average execution overhead

for trace collection at OV-1 is 18% of the FULL profile’s cost. With increasing sampling

intervals (OV-1 to OV-16), the execution overhead is not significantly reduced.

Profile Quality: As before, we evaluate the three quality metrics of coverage,

accuracy and useful fraction shown in Figures 5.4(c), 5.4(d) and5.4(e), respectively.

Coverage: The average coverage at OV-1 (74%) is sharply lower than the average

coverage at OV-1 in the load-based results (99%), as depicted in Figure 5.4(c). This is due

to significantly lower coverage values for FT, MG, LU, Equake and Ammp, as compared to

the load-based results. With increasing sampling intervals, the coverage begins to degrade

significantly, except for LU. Coverage falls from 74% at OV-1 to 35% at OV-16.

The low coverage values indicate that we have insufficient information to generate

page affinity hints for a significant number of pages. The problem is more acute for the

DTLB case than for the load-based results, as indicated by the lower coverage values.

Low coverage lessens the effectiveness of the page-placement scheme resulting in a reduced

potential for performance benefits.

Accuracy: The results in Figure 5.4(d) indicate that accuracy is benchmark-

dependent. For most benchmarks (except Equake and Ammp), the accuracy values for

increasing sampling intervals are similar. This indicates that accuracy is less sensitive to

reduction in the size of the profile trace.

We also observe sharply lower accuracy for FT, BT, LU and AMMP compared to

the load-based results. This indicates that page-affinity decisions based on DTLB misses

do not agree with affinity decisions based on the FULL trace or long-latency load-based

results.

Useful Fraction: Due to the sharply lower coverage (FT, MG, LU, Equake,

Ammp) and lower accuracy (FT, BT, LU), the useful fraction values are also significantly

lower than for the load-based results. The average value at OV-1 is 58% compared to 93%

at OV-1 with long-latency loads as the profile source.

With increasing sampling intervals, the useful fraction value tends to fall signif-

icantly for most benchmarks. The average useful fraction degrades from 58% at OV-1 to

22% at OV-16.

Profile Benefits: We have seen that the coverage, accuracy and useful fraction

for DTLB-based results are significantly lower than their load-based counterparts for most



150

benchmarks. This will impact the performance benefits obtainable with profile-guided page

placement. Figures 5.4(f) and 5.4(g) show the reductions in remote accesses and overall

wallclock execution time, respectively.

Reduction in Remote Accesses: As before, the reduction in remote accesses

using profiles obtained at different sampling intervals is compared to the reduction obtained

with results based on the full profile (marked FULL) seen in Figure 5.4(f).

Two benchmarks, BT and LU, experience an increase in remote accesses with

DTLB-guided page placement. The increases are significant (more than 30%) and occur

with all sampling intervals. In comparison to the load-based results, the reduction in remote

accesses is much lower for many benchmarks, especially for MG (98% vs. 67%) and Equake

(69% vs. 20%). The average reduction of remote accesses is 29% at OV-1, which is much

lower than the 54% average reduction at OV-1 for the load-based results.

Reduction in Wallclock Execution Time: As with remote accesses, the DTLB

miss-based scheme generally performs worse than the long-latency load-based mechanism.

The average wallclock reduction at OV-1 is 11% for DTLB misses (see Figure 5.4(g)) vs.

20.6% for the load-based results.

IS, LU and BT show an increase in execution time with DTLB-guided feedback.

CG has the maximum improvement (67%), while improvements reduce sharply for MG

(17% vs. 7%), Ammp (18% vs. 6%) compared to load-based results at OV-1.

Conclusions for DTLB-Profiling: 1) Overall, the cost of profile collection is

similar for both DTLB misses and long-latency load-based schemes. 2) The coverage and

accuracy for DTLB-based results are significantly lower for DTLB-based results compared

to the long-latency load-based results. 3) Due to sharply lower coverage and accuracy, the

useful fraction values are also low. This indicates that DTLB-based affinity decisions are

not representative of decisions that would be made with the full profile. 4) The performance

benefits (reduction in remote accesses and wallclock time) are also much lower for DTLB-

based results. 5) The profile costs for both DTLB misses and long-latency loads are similar,

but the quality of the profile and the resulting performance benefits are much larger for

long-latency load-based profiles compared to the DTLB miss based profiles.

We conclude that DTLB misses are not a good candidate to decide page placement.

This shows that, for the benchmarks we considered, DTLB misses do not correlate well with

the relative volume of loads from a processor to a particular memory page. This could occur,

for example, if the program has few DTLB misses but a large number of cache misses going
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to memory. Then, the information about the frequency of accesses to each page is lost if we

only consider the DTLB misses (since repeated accesses to the same page will tend to hit

in the DTLB). 3

5.10 Related Work

Tikir and Hollingsworth describe a dynamic user-level page migration scheme

based on an approximate trace of memory accesses obtained by sampling the network inter-

connect [104]. This is the closest related work. The trace is used for deciding page affinity.

Pages are dynamically migrated using the madvise system call. In contrast, we focus on

profile-guided page placement leveraging the simpler “first-touch” page allocation policy of

the operating system. 4

Our method uses a different profile source (long-latency loads or DTLB misses)

with varying sampling intervals. Our method is simpler in that it is processor-centric. More

specifically, we not require special network instrumentation support, we only rely on the

ability of the PMU to time load accesses. Because their approach is network-centric, i.e.,

the hardware counters are embedded in the network interconnect and do not distinguish

between different processes, only one application can use them at a time. In contrast, there

is no such restriction with our approach. In addition, our mechanism is interrupt-driven,

i.e., the PMU raises an interrupt only when the sampling counter overflows and generates

virtual addresses directly. In contrast, their method must poll the network interconnect

counters to collect a trace of physical addresses, which must subsequently be mapped to

virtual addresses using a separate system call.

Finally, our page hints are abstracted, i.e., they are relative to the starting address

of the region (static or dynamic). Touching is deferred till the region is actually allocated.

Thus, the affinity hints are potentially portable across platforms in that hints generated on

one platform can be used on another if it supports first-touch page placement. We intend

to explore this potential in future work.

3Another possible scenario is a large number of DTLB misses with few cache misses going to memory.
In this case also, the DTLB trace will not be representative of the relative distribution of load requests to a
page from each processor.

4In the future, our approach can be extended in a straightforward way to eliminate the need for a separate
profiling run by migrating pages. This depends on proposed future extensions in Linux to support dynamic
page migration under user control.
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Nikolopoulos et al. describe a user-level dynamic page migration scheme that uses

per-page hardware reference counters that capture the frequency of accesses from each node

to a particular page [81, 83]. The method depends on the compiler for identifying the pages

of virtual memory using whole program analysis. In contrast to our method, they do not

handle dynamic memory allocation. In addition, we don’t require any compiler or operating

system support, and our page-placement mechanism is completely transparent to the target

program (i.e., no explicit calls are necessary for page placement).

Verghese et al. describe a simulation-based kernel-level implementation of dynamic

page migration [106]. They consider both number the of load-misses to a page and the

number of data TLB misses as profile sources. In our work, we found data TLB misses to

be less effective for deciding the best page placement, which confirms results presented in

their work.

Other approaches to kernel-level dynamic page migration and replication are dis-

cussed in Noordergraaf et al. [84] and in Bolosky et al. [6]. In contrast, we operate

completely in user-space and leverage the simpler first-touch page allocation policy to steer

page placement at region initialization.

Bull and Johnson study the tradeoffs between page migration, replication and data

distribution for OpenMP applications on the Sun WildFire system [13]. In their study, they

find that page replication performs better than page migration and static data distribution.

Lastly, the hardware mechanism for capturing long-latency loads and DTLB misses

is described in the Itanium-2 manual [46]. In previous work, we used this facility in

conjunction with software rewriting to efficiently obtain a lossy load/store trace and exploit

its information to analyze the coherence behavior of OpenMP programs [67].

5.11 Conclusion

In this work, we developed and evaluated a low-cost whole-program analysis tool

that considers the overall run-time memory access pattern of the program during its stable

execution phase. It uses this information to decide the best page placement. The novelty

of our work also lies in the exploration of hardware-assisted performance monitoring tech-

niques, completely in user mode, without any special compiler, operating system or network

interconnect support.
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Our technique operates as follows. First, we execute a truncated one-timestep

version of the program. We leverage performance monitoring capabilities in existing micro-

processors to efficiently extract an approximate trace of the memory accesses from all the

active processors during this partial (truncated) run. We then use this access information

to decide the best page placement, i.e., the physical node on which a particular virtual page

should be allocated (“affinity hints”). Finally, we run the complete program and use the

affinity hints to allocate pages on the assigned physical node. The allocation is achieved

by “touching” the target page from a processor on the assigned node, i.e., by leveraging

the default “first-touch” page allocation policy of the operating system. Our method han-

dles both statically defined and dynamically allocated regions of memory. For statically

defined memory regions (i.e., the bss segment), the page touch is effected at startup. For

dynamically allocated regions of memory, we delay the page touch till the region has been

allocated.

Our framework is currently constrained to work with the “first-touch” page place-

ment policy, as dynamic page migration is not supported on Linux at the present time. Due

to this, we cannot do effective page allocation for programs whose memory access patterns

change over time, e.g., adaptive mesh refinement (AMR) codes, and programs with multiple

execution phases. Also, the first-touch based scheme would lose effectiveness on programs

which frequently allocate and free memory during the stable execution phase (none of the

programs in this study show this behavior). When page migration support is added to

Linux, we shall overcome both these limitations.

Overall, we show that long-latency loads provide a better indicator for page place-

ment than TLB misses that results in average wall-clock execution time savings of more

than 20% over all benchmarks. with an average one-time profiling cost of 2.7% over the

overall original program wallclock time. The low overhead may make automatic automatic

page placement a cheap commodity without requiring user intervention.
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Chapter 6

PFetch: Software Prefetching

Exploiting Temporal Predictability

of Memory Access Streams

6.1 Summary

CPU speeds have increased faster than the rate of improvement in memory access

latencies in the recent past. As a result, with programs that suffer excessive cache misses,

the CPU will increasingly be stalled waiting for the memory system to provide the requested

memory line. Prefetching is a latency hiding technique that tackles this problem. If the

address of the memory line that misses in cache can be predicted sufficiently in advance, it

can be prefetched into the cache before it is accessed, reducing the effective latency of that

access.

In this work we propose a novel software-only data prefetching scheme that works

at the instruction level and exploits predictability in the access stream to prefetch memory

lines accessed in the future. Working at the instruction level gives us a global view of memory

accesses patterns across function, module and library boundaries. Conceptually, our scheme
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monitors the memory locations being by loads and stores, as well as their contents. It tries

to find instances of predictability such that the address of a load miss can be pre-determined

from a limited number of past accesses.

We make the following contributions in this work. First, we present a novel

prefetching strategy that unifies and generalizes a number of past approaches that each tar-

get a specific source of address predictability. Specifically, our scheme unifies all these past

approaches: next-line prefetching, self-stride prefetching, “intra-iteration” stride prefetch-

ing and same-object prefetching. In addition, it extends and generalizes the SPAID scheme

for pointer and call-intensive programs. Second, we present a new threshold-based approach

that addresses the issues of prefetch accuracy, prefetch timeliness and prefetch redundancy.

Third, we evaluate our scheme both with a cache simulator and on a real machine where

we evaluate it with hardware performance counters.

Overall, we demonstrate that a significant reduction in L1 cache misses can be

achieved for several benchmarks on a real machine with our approach. However, the result-

ing reduction in processor cycles is lower than anticipated, and we detail several possible

causes explaining this phenomenon.

6.2 Introduction

In the recent past, processor speeds have been increasing at a much faster pace

than improvements in memory access latencies. As a result, the cost of a cache miss in

terms of processor cycles keeps increasing. Due to limited out-of-order window sizes of

contemporary processors, a load miss in the second or futher levels of cache will typically

stall the processor as it runs out of parallel instructions to process. Consequently, the overall

wallclock time for applications is often dominated by the efficiency of their memory access

patterns.

Prefetching is a latency hiding strategy that attacks this problem. If the address

of a load that misses in cache can be predicted sufficiently early, then the corresponding

memory line can be prefetched into the cache well in advance of its access. If the prefetch

completes before the load, then the erstwhile miss would be transformed into a hit.

In this work we focus on integer intensive programs that typically contain few

regular array accesses. Software prefetching algorithms for arrays accesses are well estab-
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lished(e.g., [73]), and we do not target these in our approach1.

Conceptually, our scheme monitors the memory locations being accessed by loads

and stores, as well as their contents. It tries to find instances of predictability such that the

address of a load miss can be pre-determined from a limited number of past accesses. Our

scheme is based on offline analysis using profile feedback. First, the program is run with a

small training data set and an annotated trace of memory accesses is extracted. This trace

is analyzed offline for detecting predictability and a set of prefetch predictors is generated.

The prefetch predictors are used to place explicit software prefetch instructions directly in

the assembly code of the program. In contrast to earlier hardware solutions ([76, 117]), our

scheme operates completely in software and we present results from an implementation on

a contemporary processor platform.

Our scheme has several advantages over past work. By examining the overall

memory access streams of the executing program, we get a global view of a program’s

memory access pattern across function and module boundaries. This is hard for a static

compiler to achieve, especially with irregular integer programs due to aliasing and input-

dependent control flow. At the same time, our analysis is powerful and general enough to

encompass and unify multiple separate approaches from past work. Specifically, our scheme

unifies all these past approaches: next-line prefetching [96, 50], self-stride prefetching [111,

60, 86, 33], “intra-iteration” stride prefetching [45] and same-object prefetching [114]. In

addition, it extends and generalizes the SPAID scheme [57] for pointer and call-intensive

programs. A detailed discussion of related work is presented in Section 6.5. Examples

of the access patterns targeted by our scheme are shown in Figure 6.1, along with the

past work that addresses that pattern. The bold arrows depict the source and target of

prefetching. Our scheme does not target each pattern specifically, it turns out that all these

patterns can be effectively handled by a standard approach to analyzing memory accesses.

Figure6.1(a) shows an example of self-striding that typically arises in pointer chasing code

where consecutive instances of the data structure tend to be placed at regular offsets from

each other. Figure 6.1(b) shows “same-object” prefetching, where different fields of an object

are frequently accessed close together in time. Since field layout is statically determined,

the address of any field can be computed if the address of any other field of the same object

is known. Figure 6.1(c) demonstrates “intra-iteration” stride prefetching. In many cases,

1Our baseline executable for performance comparison has compiler-inserted software prefetch instructions
for array accesses.
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for(...) {

....

....
ptr = ptr−>next;

}

(a) Self-Stride

Prefetching

[111, 60]

.... = ptr −> Y;

for(...) {

....

....

}

.... = ptr −> X;

(b) Same-Object

Prefetching [115]

ptr = new ...;
ptr−>s = new ..;
...
for(...) {

.... = ptr −> field1;

}
... = ptr−>s−>field;

(c) Intra-Iteration

Stride Prefetching

[45]

.... = ptr −> Y;

for(...) {

....

....

}

ptr = ....;

(d) (En-

hanced)

SPAID [57]

Figure 6.1: Example Patterns

data structures are allocated at the same time as their children. As a result, the address of

the children fields can be predicted from the parent object’s address or the address of some

other child. Inagaki et. al demonstrate that this occurs frequently with Java programs [45].

Finally, Figure 6.1(d) shows a generalized scenario targeted by a SPAID-like scheme. If the

field dereference (ptr-¿y) is sufficiently distant from the pointer initialization, then the field

can be prefetched in advance. Lipasti et. al only target pointers being passed as function

arguments at call sites and also do not consider offsets from the pointer, as typically occurs

with the dereferencing of a field of an object or a structure. We have generalized SPAID to

consider any pointer load or store as a potential prefetch source. In addition, we consider

load misses to a contiguous region of memory around the pointer as prefetch targets. This

supports the common case of field dereferences that the original SPAID scheme did not

consider.

We make the following contributions in this work:

• We present a novel software-only prefetch scheme that finds miss address predictability

by monitoring the memory accesses of the program at the instruction level.

• Our approach unifies and encompasses several separate past efforts that each targeted

different sources of predictability.

• We enhance and generalize the SPAID scheme that targets pointer dereference misses
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at function call sites.

• We also present novel measures to filter prefetch predictors based on prefetch accuracy,

prefetch timeliness and prefetch redundancy. We are not aware of any past work that

uses this approach.

• We implemented our scheme on a real machine and evaluate its performance with

hardware performance counters.

6.3 Framework

We are looking to exploit the predictability of memory access streams for reducing

the number of load cache misses. We monitor the address (EA) generated by load and store

instructions. In addition we also monitor the contents of the memory location being accessed

(EA Contents) for loads/stores that might be accessing pointers.2 Conceptually, for each

load miss, we consult the recent history of memory accesses, constrained by a window

size, to see if the load miss address was predictable using the captured EA, EA Contents

information of a retired dynamic instruction P. If so, then the load miss can be potentially

transformed into a hit by inserted prefetch instructions that use the EA/EA Contents value

of P to prefetch data into the cache. In addition, we also try to address prefetch timeliness

by checking whether the load miss is too close temporally to the predictor instruction P. If

the load miss is found to be too close, the prefetch would not be useful.

For a target benchmark we proceed through the following stages. First, we generate

the assembly source code for the benchmark and use an annotation tool to instrument

memory access instructions. In addition, we insert instrumentation to maintain a pseudo

“instruction counter” that conceptually increments after every instruction is issued3. We

call this variable the instruction distance (Inst Dist) counter. The idea is to tag each

traced memory access with the Inst Dist counter value. Later, during analysis, this helps

in improving prefetch timeliness by detecting whether prefetch predictors may be issued

too close (temporally) with respect to the target load miss instruction, in which case the

2Our experiments were performed on the Power architecture, where pointers are usually accessed using
32-bit lwz and stw instructions and their variants.

3We reduce the overhead by appropriately updating this counter only at basic block boundaries and
before memory access instructions.
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prediction would not be useful. Our experiments were performed on the Power architecture.

We considered annotating the memory accesses with the values from the hardware high

precision timebase register in place of our software instruction distance counter. However,

reading the timebase register is too expensive ( 1000 cycles for back-to-back reads of the

timebase register), which significantly distorts the actual number of cycles between memory

accesses. On other architectures (e.g., Itanium2) the cost of reading the high precision timer

is much lower. This may make it feasible to use the timebase register in place of the software

instruction distance counter.

In the second step, we run the instrumented program and collect the memory

access trace. Third, we analyze the trace using our framework and generate prefetch predic-

tors. Each prefetch predictor is a tuple <IP, EA/EA Contents, Delta>.‘IP’ is the unique

identifier for a load or store instruction. ‘EA/EA Contents’ describes whether the effective

memory address accessed by the instruction or the contents of that memory address should

be used for prediction. Finally, ‘Delta’ is a constant value that denotes the offset from

EA/EA Contents to the memory line that needs to be prefetched. In the final phase, we

insert a prefetch snippet just after the target instruction indicated by the prefetch predic-

tor IP. The prefetch snippet issues a prefetch for the address EA/EA Contents + Delta

using the “Data Cache Block Touch” (dcbt) instruction. All these steps are completely

automated.

Even with train data sets, the number of loads and stores in the full trace is very

large. We therefore implemented bursty tracing to reduce the number of samples in the

trace. The bursty tracing used a duty cycle of 10% with each burst containing 2 million

accesses 4.

We shall now describe our analysis in more detail. Figure 6.2 shows the steps in

the analysis. We maintain a cache simulator “filter” that models the first-level L1D cache.

The filter tags each memory access as a hit or a miss. Only load misses are targeted for

prefetch prediction. All memory accesses are considered as potential prediction sources. For

each memory access described by <IP, EA, EA Contents, Inst Dist>, we generate candidate

predictors off both EA and EA Contents. The idea is to keep track of a fixed contiguous

region of memory around the EA and EA Contents address, for a certain number of accesses

in the future. If any of these future accesses are load misses in this region, then those load

4In other words, we captured 2 million accesses and then ignored the next 18 milllion accesses.
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IP
EA
EA_Cont OLD_EA_Cont

OLD_EA
OLD_IP

1

3

4

4

2

3

1

2

Trace

Pred.Non_Redundant++

Yes, Pred:<IP, Inst_Dist, delta, type>

Yes

Pred.Too_late++ No

Cache Filter

Memory Line
Address (MLA)
HashMap

(INST_DIST − Pred.Inst_Dist < Threshold)

Sliding Window 

<IP, EA, EA_CONTENTS, INST_DIST>

Load Miss?

Access

Yes

Push Pop

Type: Off OLD_EA_Cont, delta=j*C, −20 <= j <= 20

Type: Off OLD_EA, delta=i*C, 0 < i <= 10

     REMOVE Predictors:INSERT Predictors: IP, Inst_Dist, Delta, Type

Type: Off EA_Cont, delta=j*C, −20 <= j <= 20

Found Predictor 
At MLA(EA) ?

Predictor Too Late?

FILTER:   Pass EA Through Cache Filter: Decide: is_EA_Miss?

INSERT:

 Is Any  Predictor Found at MLA(EA)?CHECK:

REMOVE:  Pop from sliding window, remove predictors from MLA Hash Map 

STEP:

 Push element into sliding window, predictors into  MLA Hash Map

Type: Off EA, delta=i*C, −10 < i <= 10

Figure 6.2: Overall Framework

misses can be prefetched using the value of EA or EA Contents and a constant offset value

Delta, as described before. The size of the contiguous region is configurable. We empirically

determined that region sizes of 10 and 20 cache lines in each direction (positive/negative)

gave good results for EA and EA Contents, respectively5. A smaller region potentially

reduces the number of load misses detected as suitable for prefetching, but with the benefit

of reduced analysis overhead.

How long should we keep the predictors around? This is a configurable parameter

and is implemented by a sliding window scheme. The length of the sliding window decides

the number of future accesses that the predictors will be active. The trace record (EA,

EA Contents, IP) is put into the sliding window when the candidate predictions are gener-

ated. When the trace record pops out of the sliding window, the predictors are removed.

The candidate predictions are hashed by their memory line addresses and stored in the

Memory Line Address Hash Map (MLA map). For each load miss, the load miss address is

checked in the MLA map. If there are existing predictions for the load miss address, each

5In Figure 6.2 C is the cache line size.
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predictor is considered further for validity. The Inst Dist values of the predictor and the

load miss are checked. If the difference in instruction distance is below a certain thresh-

old, the prediction is classified as “too late”. Otherwise the prediction is considered useful

(Non Redundant).

After the entire trace has been processed, we prune the predictors using various

thresholds. First, we consider the accuracy of predictions. Predictors are considered highly

accurate if the predicted cache line is either already in the cache or is accessed within the

sliding window before the predictor was removed (when popping off accesses from the end

of the sliding window). This is known as the seen ratio.

seen ratio = (# predicted line seen in sliding window or already in cache) / (# predictions)

The idea is to reduce the overhead of useless prefetches by only selecting predictors with high

accuracy. Useless prefetches are very expensive because they bring in data that is seldom

accessed and may evict frequently accessed memory lines from the cache, in addition to the

overhead of executing the prefetch snippet.

Our second threshold addresses the issue of prefetch timeliness. The Inst Dist

difference between a predictor and its target load miss denotes the number of dynamic

instructions issued between them. This is a conservative lower bound on the number of

processor cycles between these two events, since it does not account for multi-cycle instruc-

tions such as loads that miss in cache. If this difference is lower than a certain threshold,

we consider the predictor to be “too close” temporally to the target load instruction that

missed. Hence, the prediction is not useful. The too late ratio is calculated as:

too late ratio = (# predictions classified as too late/ # predictions)

If the too late ratio is above a certain value, the predictor is pruned.

Finally, we attempt to reduce the number of redundant prefetches. Consider, for

example, a structure S with three elements A, B and C that reside in different cache lines

with the fields always accessed in the order S.A, S.B and S.C. If S.C is a miss, then the

load miss address can be predicted using both S.A and S.B. However, the second predictor

(off S.B’s EA) is redundant and should be pruned. The redundant predictors are pruned

as follows. First, the set of predictors pruned using the other thresholds discussed above is

generated. Then, the trace is re-processed from the start and passed through a new cache

filter. At the end, the redundancy ratio for each predictor is calculated as follows:

redundancy ratio = (# predicted line already in cache / # predictions)

If the redundancy ratio is above a certain threshold then the predictor is pruned.
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At the end of the analysis, we have obtained a set of predictors that are highly

accurate, have good timeliness and are highly relevant. These predictors are inserted back

into the assembly source code as described earlier. Our current scheme is based on annotat-

ing assembly code, though our framework can be implemented in the back-end of a compiler

as well. The prefetch snippets as well as the instrumentation snippets need at least two free

registers. In our current implementation, we reserve two registers using a compiler flag6

when generating the target program’s assembly source. This requirement can be removed

by selecting dead registers using live variable analysis [60].

Our scheme is not targeting load misses incurred by regular array accesses. Prefetch-

ing algorithms for such accesses are well established. Our compiler (gcc) is able to generate

prefetches for such array accesses. In our analysis we take into account the effect of this

compiler-generated prefetching in the following way. When tracing memory accesses, we

also trace the prefetch instructions inserted by the compiler. During analysis, the effect

of these prefetch instructions is simulated by the cache filter. It is important to do this

because, otherwise, our analysis might generate prefetch predictors for array accesses that

are also targeted by the compiler-generated prefetch. Our predictors would be redundant

in this case.

6.4 Experiments

We evaluated our framework for a set of memory intensive benchmarks shown in

Figure 6.1. The benchmarks have been selected from the SPEC CPU 2000 [40], Ptrdist [3]

and Olden [18] suites, except for boxedsim [20]. We selected benchmarks that had signifi-

cant L1D cache miss rates. Smaller data sets were used for the training phase, while larger

data sets were used for measuring execution benefits. For the boxedsim benchmark and the

benchmarks from the Olden and PtrDist suites we increased the data set sizes from their

default values to make the programs run sufficiently long.

6We used gcc for our experiments. The corresponding flags for gcc are -ffixed-r15 -ffixed-r16
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Table 6.1: Benchmarks and data sets

Benchmark Suite Train Data Set Arguments Ref Data Set Arguments
181.mcf SPEC CPU2000 train/inp.in ref/inp.in
300.twolf SPEC CPU2000 train ref
255.vortex SPEC CPU2000 bendian.raw bendian1.raw
175.vpr SPEC CPU2000 net.in arch.in place.out net.in arch.in place.out

dum.out -nodisp -place only dum.out -nodisp -place only
-init t 5 -exit t 0.005 -init t 5 -exit t 0.005
-alpha t 0.9412 -inner num 2 -alpha t 0.9412 -inner num 2

197.parser SPEC CPU2000 2.1.dict -batch < train.in 2.1.dict -batch < ref.in
boxedsim - -n 500 -t 0.75 -n 1000 -t 1.0
ft PtrDist 10000 40000 10000 40000
bh Olden 8192 1 65536 1
bisort Olden 10000000 1 20000000 1
em3d Olden 10000 100 75 1 1000000 100 75 1
health Olden 5 3000 1 5 4000 1
mst Olden 4096 1 8192 1
treeadd Olden 24 1 26 1
tsp Olden 2000000 1 3000000 1
voronoi Olden 500000 1 10000000 1

6.4.1 Procedure

All experiments were conducted on a multi-user p655 Power4 SMP system. The

system has 8 processors, but we used only one of them since our programs are single-

threaded. Each Power4 processor has a 16 KB 2-way associative L1D cache, 1.5 MB 8-way

associative unified L2 cache and a 32 MB 8-way associative L3 cache. The L1D and L2

cache lines are 128 bytes wide.

For each program the compiler was used to generate assembly code. We used

the gcc compiler with high optimization settings (-O3 -mpower -fprefetch-loop-arrays7). In

addition, as stated before, we also reserved two registers for our prefetch snippet in the

generated assembly code using the flags “-ffixed-r15 -ffixed-r16”. The executable built from

this assembly source is our baseline for performance evaluation. In the profiling/analysis

pass, this assembly source was instrumented for bursty tracing and the generated traces were

analyzed using our framework. The generated predictors were inserted into the assembly

source that was assembled and linked to create our modified executable for evaluation.

We only had access to a shared multi-user Power4 platform. The shared usage

caused variability in our performance measurements. In order to address this problem

7The “-fprefetch-loop-arrays” directs the compiler to insert explicit prefetch (dcbt) instructions for loop-
resident array accesses.
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each measurement run was repeated for 10 times, and the minimum values were chosen for

comparison.

6.4.2 Self-Striding Comparison

Past related work on data prefetching has focused on self-striding [60, 111]. We

implemented a self-striding scheme and compared its performance to our framework. The

implementation of the self-striding scheme is based on Wu et al.’s scheme [111]. For each

load instruction, the load access trace generated is examined. Up to 4 most frequent strides

are selected. Strides that account for less than 25% of the accesses at that instruction

are pruned. We keep track of the average instruction distance B (Section 6.3) between

consecutive accesses at an access point. If the access point is in a loop, this represents an

approximate estimate of the number of cycles that the loop body takes to execute. If the

cache miss penalty is L cycles, the prefetch multiplier K is calculated as:

K = min(d L/B e , C) , where C is the maximum distance multiplier. We use L=120,

C=10. 120 cycles is the latency for an L2 miss on the Power4. The value for C is chosen to

be similar to past work reported in Wu et al. [111] to permit a fair comparison.

The prefetch predictor has a distance of K*stride and is inserted into the assembly

source code as described before.

6.4.3 Measurement Metrics

We use two metrics — L1D load cache misses and the total number of processor

cycles executed by the program. We used hardware performance counters to measure these

two metrics with the hpmcount performance monitoring tool (events PM LD MISS L1 and

PM CYC, respectively). The performance measurements were undertaken with a different

and larger data set compared to the training data set used for tracing and analysis (Figure

6.1).

In addition, we also measured the L1D load cache misses on a cache simulator

using only the train data set for both the original and predictor-inserted variants. The

simulator is event-based (i.e., it does not model timing), and the cache size is same as

the as the real machine’s L1D cache (32 KB). It also does not model the hardware stream

prefetcher available in the Power4 platform. In spite of its limitations, the simulator output
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provides a useful indication of the magnitude of potential miss rate savings possible, as will

be shown.

6.4.4 Analysis

Table 6.2: Analysis Parameters

Parameter Value

seen threshold 0.85
too late threshold 0.6
redundancy threshold 0.95
inst dist threshold 64
sliding window size 450
ea locality lines 10
ea contents locality lines 20

Table 6.2 shows the values of the parameters used during our analysis. Thus,

predictors were pruned if they did not satisfy these conditions: the predicted memory line

was “seen” at least 85% of the time, the prediction was too late more than 60% of the time

or the prediction was redundant (i.e., target memory line was already in cache) more than

95% of the time. The sliding window size was 450 and candidate predictors were generated

for up to 10 and 20 cache lines in each direction for EA and EA Contents respectively.

Figure 6.3 shows the percentage reduction in L1D cache misses as reported by

the simulator processing the traces from the train data set. It gives a useful indication of

the benchmarks where our technique is applicable. Figure 6.4 and 6.5 show the percentage

reduction in (a) L1D cache misses and (b) processor cycles, respectively, on the real machine

as reported by the hardware performance counters with the reference data set.

Consider the simulation results shown in Figure 6.3. In 8 benchmarks (out of 14),

our scheme is able to reduce the L1D cache miss rates by 5% or more, with more than 20%

reduction in 5 benchmarks (mcf, parser, em3d, mst, treeadd, tsp). Self-striding performs

significantly worse in 6 of these benchmarks (vortex, parser, boxedsim, em3d, mst, tsp),

shows comparable performance in 2 (mcf, treeadd) and is significantly better for FT. FT

is discussed in more detail below. For the other benchmarks, the difference in performance

with respect to self-striding can be attributed to the fact that our scheme targets multi-

ple different sources of predictability (Section 6.2) while self-striding only focuses on the
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Figure 6.3: Simulator: % Reduction in L1D load misses (Training data set)

regularity of the access stream at individual access points.

Consider the actual reduction in L1D misses obtained with the reference data

sets in Figure 6.4. We observe that there are significant savings for many benchmarks,

but the values are uniformly lower as compared to the simulator predictions (except for

vortex, where they are higher). For our scheme, vortex and tsp show significant reduction

(> 30%) while mcf, boxedsim, em3d and mst exhibit appreciable reduction ranging from

4.9% to 17%. In comparison, self-striding has significantly worse performance in 4 of these

benchmarks (vortex,em3d, mst, tsp), comparable performance in 2 (mcf, boxedsim) and

performs significantly better for FT. Some benchmarks that show significant improvement

with the simulator do not show a corresponding improvement on the real machine with the

larger ref data set (parser, mst, treeadd). The potential reasons for this discrepancy are

discussed below.

Figure 6.5 shows the corresponding reduction in processor cycles. The performance

results are mixed. 6 benchmarks (mcf, vortex, vpr, bisort, em3d, tsp) show appreciable re-

duction, ranging from 2% to 7.6%. However, 4 benchmarks (parser, boxedsim, ft, treeadd)

experience slowdowns ranging from -2% to -12%. Except for FT, self-striding always per-

forms worse for all benchmarks, with no benchmark showing an improvement of 2% or more.

For self-striding, mcf achieves significant L1D miss reduction, but almost no processor cycle
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Figure 6.4: H/W: % Reduction in L1D load misses (Reference data set)

reductions. We suspect that the cause is suboptimal instruction scheduling for the prefetch

snippet, as discussed below.

We have seen that for many benchmarks, the simulator results are much better

than the results on the actual machine. In addition, for several benchmarks the L1D miss

reductions on the real machine do not correspond to a reduction in processor cycles. In

fact, some benchmarks show a degradation in performance. What could account for these

anomalies? To attain a definitive answer, we would need a cycle accurate simulator that

models our target (commercial) Power4 processor. There are several plausible explanations:

• Simulator: Our simulation results are expected to be optimistic, since the simulator is

event-based and does not model prefetch timeliness. In addition, it does not currently

model the hardware stream prefetcher present in the Power4 platform. Some of the

predictable prefetches may also be recognized by the hardware prefetcher, reducing

the observed L1D miss savings on the real machine.

• Prefetch snippet Cost: We do not account for the cost of the prefetch snippets.

This cost can overwhelm the benefits of reduced misses if there are many redundant

prefetches.
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Figure 6.5: H/W: % Reduction in processor cycles (Reference data set)

• Prefetch scheduling: Our current approach is based on annotating the assembly

source code. In the course of our experiments, we found that scheduling of the prefetch

snippets has a big impact on the overall processor cycles. Implementing our scheme

in the backend of the compiler would solve this problem.

6.4.5 FT

FT illustrates a potential weakness of our scheme. Self-striding performs excep-

tionally well for FT, while our scheme did not find significant prefetch predictors. In this

benchmark, there is a single load access in a tight pointer-chasing loop that accounts for

the bulk of the load misses. The access point exhibits a regular stride of -120. Self-striding

is able to detect this stride and generates a prefetch predictor distance of -1200 (since the

maximum distance multiplier, C, is 10) off the effective address (EA) of the access point.

Recall that our sliding window analysis only generates predictors for a limited region around

the access point’s EA. In our experiments this was set to 10 cache lines, so the predictors

generated had prefetch distances of -1152, -1024,...-128. However, all these prefetch predic-

tors were classified as “too late” because of the tight nature of the pointer-chasing loop nest

and, hence, they were rejected.
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Thus, in this case, self-striding was able to generate prefetch predictors while the

sliding window analysis failed to do so. The cause was that the high instruction distance

threshold (64) was too pessimistic — because it did not consider the number of cycles

the processor was stalled due to a cache miss, but only considered the actual number of

instructions issued between the candidate predictor and the target dynamic load instruction.

In future experiments we shall evaluate the impact of lowering the instruction

distance threshold from 64. This would definitely help for FT but may impact other bench-

marks adversely.

6.5 Related Work

Sair et al. performed a simulation-based study to classify program load misses

into next-line, stride, same-object and pointer misses [91]. A significant fraction of the load

misses was found to be of one of the first three types for many of the SPEC benchmarks. It

is precisely these misses that are targeted by our framework. Hardware implementations of

next-line and stream prefetching have been proposed earlier [96, 50]. The Power4 platform

has a stream-based hardware prefetcher. However, this prefetcher needs a “warm-up” period

of a certain number of misses to consecutive cache lines before it starts to prefetch the

stream. Hur et al propose a memory-side prefetcher for the Power5+ system that targets

such short-length streams [44]. In contrast, our approach is completely software-based and

uses explicit prefetch instructions to target such streams successfully.

Stride-based prefetching has been explored both in hardware and software. Unlike

our scheme, much of the past work has focused on the striding regularity of individual access

points, i.e., they do not consider predictability among accesses from different load/store in-

structions. Wu et al. [111] and Luk et al. [60] describe such software self-striding schemes.

Hardware stride prefetchers have also been proposed [86, 33] and implemented in the Pen-

tium microprocessor. As shown in this work, our scheme performs significantly better than

self-stride prefetching in isolation for most benchmarks. This is because our approach is able

to detect multiple other sources of predictability in addition to most cases of self-striding.

However, in a few situations, self-striding may perform better than our scheme (e.g., for

FT). Zhang and Torrellas propose a hardware scheme to group fields or objects that are

used together, and prefetch all these at the same time [115]. In comparison, our scheme will
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also recognize groups of field accesses that occur together and target them for prefetching if

they miss frequently in cache. However, our scheme is implemented completely in software.

Lipasti et al. propose SPAID, a prefetching heuristic for pointer and call intensive

programs [57]. SPAID inserts prefetches for the target of pointer parameters at call sites,

on the assumption that the pointed object will be dereferenced soon. Our scheme extends

SPAID in that any pointer load is analyzed as a potential prefetch candidate, not just the

pointers at call sites. In addition, when looking for predictable cache misses we look at

a large contiguous area of memory around the candidate pointer, while SPAID will only

prefetch at most one cache line (the one pointed to by the pointer). Our experiments

indicate that our approach is better because pointers pointing at objects or structures are

often used to deference fields of an object that spans multiple cache lines. Finally, our

detailed trace information allows much better pruning of harmful or useless prefetches.

The dynamic instruction distance allows us to model prefetch timeliness for SPAID-like

prefetch predictors, pruning away those that would be too late to be useful. The redundancy

threshold prunes away predictors whose targets are most often already in cache.

Inagaki et al. present a software prefetching approach for targeting both “inter-

iteration” (self-striding) and “intra-iteration” predictability (predictability across instruc-

tion points) [45]. This is the closest related work. During just-in-time compilation of a

hot Java loop, the load dependence graph is constructed. An interpreter runs the first few

iterations of the loop and attempts to determine stride patterns among the different loads in

the dependence graph. This information is used to insert software prefetches, and speedups

of up to 20% are reported on some benchmarks. Our scheme shares the goal of determining

address predictability among multiple memory access points. However, our offline approach

allows us to conduct a much more detailed analysis by accounting for prefetch timeliness and

prefetch redundancy. Our scheme targets misses from all loads, not just the loop-resident

ones. Finally, our scheme can potentially group multiple prefetches because it considers

memory lines and not just the strides between two loads in a pair — since multiple fields

typically share the same cache line.

Hardware schemes have been proposed that assess predictability in misses gen-

erated from different access points [76, 117]. In contrast, our approach is completely in

software and is therefore more portable.

Finally, there are other prefetch schemes that are complementary to our approach.

Software prefetching for regular array accesses in loop intensive programs is well estab-
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lished [73]. We do not target these misses, but focus on other sources of address pre-

dictability in irregular integer-intensive programs. Prefetching of pointer chains, for exam-

ple using Markov predictors, has been previously proposed in both hardware [49, 27, 26, 89]

and software [22, 90]. Our scheme does not address this problem. Finally, helper-thread

based approaches leverage additional hardware contexts to prefetch data for the main pro-

gram [58, 51]. In contrast, we focus on prefetch instructions inserted inline in the target

program that can be single-threaded or multi-threaded.

6.6 Conclusions and Future Work

In this chapter, we have presented a novel software-only prefetch scheme that

exploits predictability in the memory access stream to create prefetch predictors. Our ap-

proach unifies and extends several past approaches that each targeted a different source of

address predictability. Our approach is fully automated, portable and uses novel threshold-

based mechanisms for addressing prefetch accuracy, prefetch timeliness and prefetch redun-

dancy.

We have evaluated our scheme on a real machine as well as a cache simulator.

We have shown that significant reductions in L1D load cache misses are achievable on real

hardware with our approach. However, the performance improvements in terms of processor

cycles has been lower than anticipated (and, in some cases, negative). Based on experience

with microbenchmarks, we conjecture that prefetch scheduling has a significant impact on

the overall processor cycles. In future work, we hope to port our framework to the back-end

of a compiler, which will allow us to schedule prefetch snippets. In addition, we hope to port

our framework to other memory constrained architectures such as the Itanium2 platform.
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Chapter 7

Conclusion

In the past chapters, we have described several performance analysis and opti-

mization frameworks. All these ideas are united by the common theme of using memory

access traces as the primary input for analysis.

With these tools, we have demonstrated that that memory traces are a rich source

of information about program behavior and can be used for analyzing and optimizing many

different performance aspects of software programs, thus answering the primary thesis prob-

lem statement in Section 1.1. With respect to the other objectives listed in the thesis

problem statement, we make the following observations.

1. What are the different methods to obtain the program’s memory access

trace? We explored three ways to obtain memory traces — in software, using dy-

namic binary instrumentation, in hardware, exploiting performance monitoring unit

(PMU) support, and hybrid schemes that use a combination of software annotation

and alternative hardware support (such as high precision timing registers).

2. What are the quality versus overhead tradeoffs between these trace gen-

eration methods? We compared the tradeoff between trace quality and generation

overhead in several of our frameworks. In general, software tracing is the most ex-

pensive, but allows all trace accesses to be captured. Thus it provides the maximum

information for trace-based analyses among all tracing methods. PMU-based tracing

is usually much faster and allows filtering of loads by cycle thresholds directly in hard-
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ware. However, the resulting trace is lossy and the PMU has restrictions on types of

memory accesses that can be traced (e.g., stores cannot be logged by the Itanium2

PMU). Finally, hybrid tracing allows software to control the degree of lossiness but

still drastically reduces the volume of captured accesses by using high precision timer

information.

3. What are the different performance analysis and optimization frameworks

that are feasible using memory traces? We discussed five frameworks based on

memory traces that cover a variety of performance analysis and optimization tech-

niques.

4. What are the pre-requisites in terms of trace information and detail that

these analyses entail, and is it possible to satisfy them with memory traces

and additional instrumentation? Each framework placed different pre-requisites

on the input trace. Some frameworks worked well with PMU-generated lossy traces

(e.g., automated page placement) while others experienced degradation in some spe-

cific areas (e.g., false-sharing with PMU-generated traces). The prefetching frame-

work, in contrast, required non-lossy traces because of its reliance on modelling pro-

cessor caches.

Most frameworks required auxiliary information in addition to memory traces. For

the prefetching framework, we also added extra instrumentation to keep a count of

the dynamic instructions issued and used it for prefetch timeliness. For ccSIM and

METRIC, we extracted symbolic information from the executable and used it for

abstracting the generated event metrics, e.g., the instruction to source location map-

ping, the address and size of global variables, etc.. Finally, for ccSIM we also obtained

OpenMP synchronization information by instrumenting the compiler-generated func-

tions that correspond to OpenMP compiler directives.

Now we shall revisit each framework and highlight our contributions.
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7.1 METRIC: Memory hierarchy analysis for single-threaded

benchmarks

In this work, we demonstrated a trace-based framework for analyzing the memory

performance of single-threaded programs. We used a novel instrumentation strategy based

on dynamic binary rewriting that allow extraction of partial access traces from executing

programs. We contributed a framework for selective instrumentation of load and store

instructions on-the-fly. We also introduced a new light-weight compression strategy to effi-

ciently compress the trace online. We demonstrated that our compression strategy achieves

better compression than the previous known state-of-the-art algorithm for a majority of the

benchmarks (7 out of 12), and has comparable compression for the rest.

Our tool generates a rich set of metrics tagged to source code constructs that

provide detailed information about the program’s memory behavior. These include per-

reference cache metrics, evictor information and stream metrics generated by the compres-

sion algorithm. We demonstrated the use of these metrics to detect and understand memory

access inefficiencies with several use-cases that are hard to achieve with static compiler anal-

ysis.

7.2 ccSIM: Source-Code Correlated Cache Coherence Char-

acterization of OpenMP Benchmarks

In this work, we described a new, user-level approach to analyzing coherence bot-

tlenecks. Our framework is the first tool to analyze the sharing pattern of multithreaded

OpenMP programs. We introduced a new cache coherence simulator, ccSIM. ccSIM ob-

tains coherence metrics and tags them to high level source code constructs using symbolic

information embedded in the binary.

Our results indicated a good match between our simulations and the observed

hardware performance counters for coherence events. The detailed metrics generated by

ccSIM were useful in understanding the flow of data across processor caches. This enabled

the detection, understanding and resolving of potential sharing bottlenecks.

We used ccSIM to obtain significant run-time savings in several large real-world
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benchmarks. The optimizations based on ccSIM data ranged from coarsening of access gran-

ularity over data alignment to call parallelization, critical section removal with privatization

and prefetching.

7.3 Hybrid Hardware/Software Coherence Analysis

In this work, we presented two novel hardware-assisted approaches to determine

cache coherence bottlenecks. We compared these two methods to our earlier full-trace based

method used in our ccSIM work.

Our first method leveraged the performance monitoring unit (PMU) to efficiently

obtain filtered lossy memory access traces (PMU-based tracing). We described a new source

annotation approach that transforms store instructions into equivalent instruction snippets

that can be logged by the PMU. Our second method (targeted tracing) leveraged the high

precision timer register to perform load filtering in software, which allows greater control

over the degree of lossiness but at relatively larger overhead compared to the PMU-based

method.

We evaluated both these methods for trace collection overhead and trace sizes and

compared the accuracy of results based on these traces to the results obtained with full

software tracing with respect to true and false sharing invalidations as well as coherence

misses.

We found that both methods reduced the number of loads captured by more than

two orders of magnitude over full tracing. We discovered that both our methods have a

weakness for certain programs when evaluating false-sharing, and we suggested possible

solutions to resolve it. Because of trace lossiness, PMU-based tracing has larger number

of false positives, in general, compared to targeted tracing. Targeted tracing allowed more

control over the degree of lossiness, at the cost of much increased execution overhead.
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7.4 Hardware Profile-guided Automatic Page Placement for

ccNUMA

In this work, we demonstrated the use of hardware-generated filtered lossy traces

for automated page placement. Our technique exploited the Itanium2 PMU to obtain

low-cost whole-program traces describing a program’s memory access pattern in its stable

execution region (e.g., a time step). This information was used to decide a good page

placement.

In contrast to previous work, our technique operated completely in user space, and

requires no special support from either the compiler, linker or operating system. Further-

more, it supported both static and dynamically allocated regions of memory. Finally, our

technique was more portable because it uses processor-centric hardware that is available in

all Itanium2 processors, in contrast to previous work that used special proprietary hardware

specific to a particular platform or interconnect.

We evaluated two sources of hardware profile sources — long-latency loads and

translation lookaside buffer (DTLB) misses. Overall, we showed that long-latency loads

provide a better indicator for page placement than TLB misses. Page placement based

on long-latency loads resulted in average wallclock time savings of more than 20% over

all benchmarks, with an average one-time profiling cost of 2.7% over the overall original

program wallclock time. The low overhead may make automatic automatic page placement

a cheap commodity without requiring user intervention.

7.5 PFetch: Profile-guided Data Prefetching

In this work, we used memory traces to create a novel software-only prefetch

scheme. Our scheme exploited predictability in the memory access stream to create prefetch

predictors. Our approach unified and extended several past approaches that each targeted

a different source of address predictability.

Our approach was fully automated, portable and uses novel threshold-based mech-

anisms for addressing prefetch accuracy, prefetch timeliness and prefetch redundancy.

We evaluated our scheme on a real machine as well as a cache simulator. We

demonstrated that that significant reductions in L1D load cache misses are achievable on real
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hardware with our approach. However, the performance improvements in terms of processor

cycles were lower than anticipated (and, in some cases, negative). Based on experience with

microbenchmarks, we reported the probable causes for this result and suggested solutions

for them.

Overall, we demonstrated that memory traces represent a rich source of informa-

tion about a program’s behavior and can be effectively used for a wide range of performance

analysis and optimization strategies.
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