
ABSTRACT

GUPTA, SARANSH. ScalaMemAnalysis-MultiLevel: A Compositional Approach to Multi-level Cache
Analysis of Compressed Memory Traces. (Under the direction of Dr. Frank Mueller.)

Traditional cache simulators use large trace files or statistical summaries that ignore valuable access

pattern details. Analyzing these files is expensive since one needs to constantly update the complete

cache state per trace under simulation. In previous work, ScalaMemTrace (SMT) and ScalaMemAnalysis

(SMA) were developed. SMT is a tool that records memory traces (load and store instructions) using

binary instrumentation and compresses them. SMA exploits these compressed traces to reduce the

duration of cache analysis for uniprocessor systems.

In this work, we present ScalaMemAnalysis-MultiLevel (SMA-ML), a redesign of SMA that enables

multi-level cache analysis. SMA maintains context-based reuse distance information at each loop level

and enhances it with context information during composition. It computes cache statistics but fails to

maintain miss patterns for next-level caches. We utilize SMA’s context-based information along with a

Local Cache Tree (LCT) to maintain the miss patterns in a compressed form, which is subsequently used

as input for next-level cache analysis. Experimental results confirm significant speedups in execution

time over and close accuracy compared to a trace-driven simulator.
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CHAPTER

1

INTRODUCTION

Over the past years, the demand for processing has increased exponentially. This has aided advances in

supercomputing, accelerators and distributed clusters with shared memory nodes spanning over hundreds

of cores. These systems usually keep frequently used data in cache but are constrained by small cache

capacity. Since large L1 caches increase the cost of infrastructure, an economical solution is to implement

multiple cache levels with slower but larger L2 and L3 caches providing more space. Even commodity

computers today use multiple cache levels to exploit spatial and temporal locality. However, these

systems still face frequent memory bottlenecks. In order to identify memory bottlenecks and best utilize

application data structures, developers may resort to cache simulators.

Understanding or analyzing memory constraints via traditional cache simulation is a cumbersome

and time-consuming process. This is because the trace files produced by computers and distributed

clusters easily exceed millions of memory references. Cache simulators use such lengthy trace files,

containing Gigabytes of data of memory addresses and access types, and maintain complete cache states.

The cache states are updated as the trace is processed to compute hit and miss statistics. As an alternative,

ScalaMemTrace (SMT) and ScalaMemAnalysis (SMA) were developed to reduce the size of trace files

and the analysis overhead in prior work [Bud12; BM14].

SMT uses binary instrumentation [Luk05] to generate memory traces and groups similar memory

access patterns to produce near constant size trace files on-the-fly. Related work on cache analysis [Li04]
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1.1. HYPOTHESIS CHAPTER 1. INTRODUCTION

with compressed traces either uses statistical summaries, which ignores essential details, or does not

identify data structures inhibiting cache performance. Furthermore, the processing time for these traces

prior to simulation is much higher than that of SMT due to excessive I/O. SMA analyzes compressed

traces and computes hit/miss statistics using context-based reuse distance. The reuse distance measures

distinct memory accesses between two identical memory accesses. To this end, context information of

arrays is tracked. SMA works on the lines of cache miss equations [Gho97; HK91] analyzing sets of

accesses rather than simulating single references at a time to determine hits and misses.

The compositional analysis approach used by SMA differentiates it from the previous work on

compressed traces and cache simulations [Jan07; Joh01; JH94; Tau]. SMA generates cache performance

(hit/miss) statistics but does not maintain miss patterns, which could serve as input for the analysis of the

next cache level. In order to determine cache performance, SMA frequently modifies and reorganizes the

context information of references. This restricts the domain of SMA to single-level cache analysis.

1.1 Hypothesis

We hypothesize that cache miss behavior for multi-level caches can be determined analytically from

compressed traces without uncompressing them or simulating accesses one at a time such that analysis

time remains constant irrespective of loop trip counts and provides sufficiently accurate miss rate

predictions for regular access patterns compared to conventional trace-base cache simulation.

1.2 Contributions

ScalaMemAnalysis-MultiLevel (SMA-ML) is a redesign of SMA that enables multi-level cache analysis.

SMA-ML maintains miss patterns along with miss counts and utilizes them to compute an input trace file

for next-level cache analysis. In order to preserve the miss pattern, we create a local cache tree (LCT).

The LCT maintains miss counts along with the memory stride for misses, thus avoiding expansion of

compressed traces. Furthermore, the LCT splits original access patterns into multiple new access patterns

to match the misses evaluated by SMA. The LCT ensures correct miss patterns by rearranging the new

memory access patterns amongst nested loops upon creation. SMA-ML still follows a compositional

analysis approach and provides loopwise cache performance statistics, which aids in the identification of

arrays/loops that degrade cache performance.

2



1.3. RELATED WORK CHAPTER 1. INTRODUCTION

1.3 Related Work

Conventional trace-driven simulation methods to evaluate cache behavior have been studied for a long

time with the aim of improving simulation time. To reduce simulation time, without the help of extra

hardware, single-pass simulation approaches [Haq11; Haq09] have been efficient. A trace file indicating

the data blocks accessed during the execution of an application serves as input to single-pass cache

simulators. These simulators read one data block access at a time and check its availability in the

simulated cache state. The cache state is represented by an array or a list, which enables the simulator

to estimate the cache behavior under a number of cache configurations at once. Furthermore, special

data structures [Haq15] and inclusion/intersection properties [Haq11] are applied along with single-pass

cache simulators to reduce the need for extensive computation, thus reducing simulation time.

CIPARSim [Haq11] is a single-pass cache simulator that exploits intersection properties of the

First-In-First-Out (FIFO) cache replacement policy. It utilizes three intersection properties that hold

only for FIFO caches. These intersection properties indicate the correlation of elements in one cache

configuration with another. Custom tailored space and time-saving data structures further reduce the

simulation time. In comparison to a traditional single-pass simulator, CIPARSim reduces the simulation

time by a factor of 3, but its overhead increases with trace size.

SuSeSim [Haq09] exploits a bottom-up strategy to detect absent memory address tags in multiple

cache configurations without evaluating them individually. This simulator reduces the number of memory

tags to be searched by studying the correlation of cache associativity and set sizes between cache

configurations. With the help of a special data structure [Haq09], SuSeSim reduces the number of cache

ways to be searched in a set associative cache. This technique further reduces the simulation time by

updating the cache behavior for multiple configurations at once. SuSeSim’s simulation time is dependent

on the maximum associativity of a cache and maximum cache set size in the search space. Furthermore,

it is limited to predicting cache behavior for the L1 level, only.

Most simulation techniques are not fast enough to work with hybrid volatile and nonvolatile memory

cells. BCPEM [Haq15] assumes that line wear out in one cache configuration does not affect other cache

configurations and that the line size is the same in all cache configurations. In contrast to simulating each

cache configuration, BCPEM evaluates each cache set’s performance individually. This reduces the cache

set configurations to be evaluated and the storage space significantly. BCPEM is faster than CIPARSim

and not constrained to FIFO caches.

These simulators predict cache behavior accurately as well as exploit data structures, intersection

properties and modeling equations to achieve reduced simulation time but are unable to produce an order

of magnitude improvement like SMA-ML. Furthermore, SMA-ML is not limited to a specific cache level

prediction or cache replacement policy. A change in replacement policy would only require SMA-ML to

3



1.3. RELATED WORK CHAPTER 1. INTRODUCTION

adapt the data used to populate the context information.
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CHAPTER

2

BACKGROUND WORK

2.1 ScalaMemTrace

ScalaMemTrace [Bud12] is a scalable trace compression tool that is capable of collecting memory traces

from uniprocessors. It uses binary instrumentation [Luk05] to collect memory traces and compresses

large trace files into near constant sized trace files on-the-fly. Unlike other compression-based tech-

niques that often neglect the loss of information about access patterns while removing redundant data,

ScalaMemTrace (SMT) enables lossless compression for regular memory access patterns that is achieved

by using special data structures like Regular Section Descriptors (RSDs) and Power Regular Section

Descriptors (PRSDs). A RSD maintains details like address accessed, address stride and address type

(fetch/store). A PRSD stores information such as loop count and number of RSDs within a loop.

Figure 2.1 depicts the compression of raw trace files into compressed RSDs and PRSDs. The raw

traces produce two RSDs, one for the inner loop and other for the outer loop. The start address for both

the RSDs is same but they differ in stride pattern and loop length. They can be further compressed to

form one PRSD with multiple strides that keep the access order intact. In the appendix, an example of

RSDs and PRSDs is shown for better understanding. PRSDs enable preservation of memory references

and access patterns across nested loops as well as across threads. SMT supports multi-level strides, which

enables the creation of compressed traces with highly accurate memory reference counts and access

5



2.2. SCALAMEMANALYSIS CHAPTER 2. BACKGROUND WORK

0x777F8880 x[0][1]
0x777F8884 x[0][2]

   .
   .

0x777F88BC x[0][16]

0x777F88C0 x[1][1]
0x777F88C4 x[1][2]

   .
   .

0x777F88F8 x[1][16]
   .
   .
   .
   .

0x777F8970 x[4][16]

Creating
 

RSDs

Inner Loop

Loop Begin - Count: 16
Addr:777F8880, Stride: 0x4

Loop End

Outer Loop

Loop Begin - Count: 4
Addr:777F8880, Stride: 0x64

Loop End

Loop Begin - Count: 4 
    Loop Begin - Count: 16

Addr:777F8880, Stride: 0x4, 0x64
    Loop End
Loop End

Inner Loop

O
ut

er
 L

oo
p

Actual Memory Traces
Regular Section Descriptor(RSD)

Power Regular Section Descriptor(PRSD)

C
reating

 
P

R
S

D
s

Compressed
 

Trace 

Figure 2.1 Trace Compression for nested loop using ScalaMemTrace

patterns. The replay tool [Mes07] can uncompress the traces to produce accurate memory reference

counts along with the addresses as present in the original trace file.

A binary instrumentation tool, Pin [Luk05], generates a raw trace file containing memory accesses,

which are fed into SMT for compression. SMT recognizes the repetitive pattern [Bud12] of memory

accesses and produces a compressed trace file. A stack walk is used to compute a unique signature per

memory access. Since a single instruction can result in multiple memory operations, the signature acts

as a criteria for the identification of memory access patterns. Figure 2.2 depicts the dynamic matching

and compression of access patterns in detail. Memory references Ref1, Ref2 and Ref3 are present in

the list and a new reference of Ref1 is added. This becomes the “right tail” and a matching reference is

searched, which becomes the “left tail”. A reverse traversal [Bud12] of the right and left tail analyzes the

matching pattern. The right and left portions are then merged, incrementing the RSD count. This process

is repeated with every new reference addition.

2.2 ScalaMemAnalysis

ScalaMemAnalysis (SMA) is a tool that works on compressed traces generated through SMT to analyze

cache hits and misses. SMA operates along the lines of cache miss equations [Gho97] and calculates

miss counts through analysis rather than simulation, which reduces the runtime significantly compared

6



2.2. SCALAMEMANALYSIS CHAPTER 2. BACKGROUND WORK

Figure 2.2 Dynamic Pattern Matching for Compressing Memory References.

to simulation. SMA [BM14] also provides a loopwise analysis of cache performance in an application,

which helps in identifying the data structures that degrade performance. These two features give SMA

a distinctive advantage compared to other tools that operate on compressed traces [Jan07; Joh01]. The

following subsections provide a brief insight into SMA, which is necessary to understand the redesign

for SMA-ML extension.

2.2.1 Assumptions

There are three kinds of cache misses: compulsory, capacity and conflict [Wika]. SMA [BM14] determines

only capacity and conflict misses. Compulsory misses are not identified separately because they are

folded into capacity misses. In SMA, the term array corresponds to a strided RSD in a loop. The stride

multiplied with the length of a loop indicates the size of the array for dense and sequential accesses. SMA

does not consider arrays partially present in the cache as it increases the code complexity prohibitively.

Such arrays are assumed to be not present in the cache.

SMA accepts cache size, cache block size and cache associativity as configuration parameters. SMA

uses a Least Recently Used (LRU) cache replacement policy, which can be easily modified to another

policy by adapting the data used to populate the context information. The context information defines the

size of the arrays present in the cache with respect to the size of the entire cache.

2.2.2 ScalaMemAnalysis Design

2.2.2.1 PRSD Tree Structure

The compressed traces on which SMA operates contain PRSDs and RSDs [BM14]. The heads in the

tree are represented by PRSDs and below them are the RSDs that represent actual memory references. A

7
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PRSD may contain RSDs as well as other PRSDs to account for nested loops.

2.2.2.2 Context-based Reuse Distance

The loop heads (PRSDs) along with loop count and number of RSDs contain context information. The

context information is a measure of the number of arrays present in the cache within a specific loop. This

information is maintained at each loop head and determines whether all accesses fit within the cache.

This helps in deriving the cache statistics. Each loop head maintains a left context of cache capacity that

contains the first set of arrays and a right context that contains the last set of arrays within a loop bounded

by a cache. The cache replacement policy of SMA [BM14] can be modified by changing the ordering

within the right context. In this work, the right context is ordered from Least Recently Used (LRU) to

Most Recently Used (MRU).

2.2.2.3 Context Composition

The tree is initialized with a root that represents a loop head with one iteration. SMA [BM14] sequentially

reads the PRSDs in the compressed trace file. As the trace is scanned, if the trace is a PRSD (loop head),

then a new node is created and added as a child to the current loop head. If this trace is a RSD (memory

access), then it is added as a child node to the current loop head. A child here represents a PRSD, which

differs from a child node that refers to a RSD.

On discovery of a new RSD (memory access), the array is compared to the right context of the current

loop head to determine if the array has been assessed previously and if it exists in the context. If so, then

the array is moved to the MRU position, otherwise, if there are no conflicting arrays in right context and

cache capacity permits, the array is added to the context. Cache classifiers are then assigned to arrays

indicating their performance.

Loop composition occurs when all leaf nodes (RSDs) for the current loop have been added. Composi-

tion is a phase where SMA identifies any conflicting arrays between the left and right contexts. Loop

composition starts with a comparison between the contexts at current loop head and the array’s conflicts

under a cache replacement policy to indicate conflict misses for the current loop. At the end of loop

composition, the left and right contexts are repopulated to indicate arrays accessed and present in cache.

The next stage analyzes the next higher loop to determine the effect of the parent’s loop context on the

cache.

At this stage, SMA [BM14] analyzes the right context of the parent and the left context of the current

loop. This effectively compares the latest arrays accessed by the parent with the first set of array accesses

in the current loop. If a parent’s loop context data conflicts with the current context, the array is removed

from the parent’s right context and a new array is appended at the end. If the array is already present in

8
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the right context, it is promoted to the MRU position. In these cases, the cache performance counters

are updated to reflect the changes. When an array is already present, hits are incremented; in conflicting

cases, misses are incremented. If a parent’s loop context is uninitialized, the current context data is passed

to the parent because the current loop is the first access for the parent loop, and the counters remain

unchanged.

At the end of this composition stage, the right context of the parent loop is compared with the right

context of current loop to ensure that parent loop still contains older arrays along with the new ones.

This analysis is performed recursively at the end of each loop per loop level to provide updated cache

counters per loop level. At the end of the analysis, the root node contains cumulative statistics of cache

performance counters.

9



CHAPTER

3

SCALAMEMANALYSIS-MULTILEVEL
REDESIGN

3.1 Design

Today’s supercomputers, clusters and commodity computers exploit multi-level cache structure to

improve performance. SMA aims at assisting the user in identifying the data structures that degrade

cache performance. Figure 3.1 depicts the analysis of the previous framework along with the multi-level

redesign. In order to determine cache statistics, SMA analyzes the compressed traces generated by

SMT. SMA builds a PRSD tree by processing the compressed file sequentially. After addition of all the

RSDs for a specific loop, the tree undergoes a composition stage. As described in the previous section,

the composition stage modifies, duplicates, rearranges and deletes arrays from the left as well as right

contexts along multiple loop levels. This results in disintegration of RSDs and disables replay capabilities

for memory access patterns. In effect, SMA only computes cache performance but does not preserve the

memory miss patterns, which prevents next-level cache analysis.

The accuracy of a cache analysis tool is hampered by the loss of information about access patterns. In

order to perform multi-level cache analysis, SMA must preserve memory miss patterns along with miss

statistics. To this end, we create a Local Cache Tree corresponding to the PRSD tree. The LCT is updated

10
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Figure 3.1 Workflow Through ScalaMemTrace (SMT), ScalaMemAnalysis (SMA) along with
ScalaMemAnalysis-MultiLevel (SMA-ML) redesign.

each time the PRSD tree undergoes addition or composition. The LCT has miss counters associated with

miss patterns depending on the miss type. These counters are updated when a miss is recorded. The basic

structure of the LCT remains intact enabling perseverance of memory access patterns and generation

of new miss patterns. The miss patterns computed along with miss statistics produce compressed trace

files, which can be processed by SMA with next-level cache parameters. This enables multi-level cache

analysis.

3.1.1 Assumptions

SMA-ML is a redesign of SMA and follows all the assumptions stated in Section IV.A. SMA-ML makes

additional assumptions in order to estimate and record miss patterns. This estimation enables SMA-ML

to generate RSDs and PRSDs for next-level cache prediction. SMA-ML assumes that the start address

for the new RSD is same as its parent RSD. Furthermore, a new stride pattern is assumed to follow the

11



3.1. DESIGN CHAPTER 3. SCALAMEMANALYSIS-MULTILEVEL REDESIGN

formula:

newStride = (oldStride*loopLength)/missCount

The loopLength is the length of the PRSD causing the miss.

3.1.2 Local Cache Tree Structure

The LCT is constructed in a manner similar to that of the PRSD tree. The PRSDs act as loop heads and

RSDs represent memory accesses. The structure of a sample LCT in Figure 3.2. Each PRSD denotes a

loop and a certain number of memory accesses (RSDs) below it. Nested PRSDs depict nested loops. The

LCT constructed using a matrix-multiplication example in Figure 3.2 consists of an outer loop (PRSD1),

followed by the next-level loop (PRSD2) with two RSDs and the innermost loop (PRSD3). The innermost

loop has two memory accesses, RSD2 and RSD3. The distinctive feature of PRSDs and RSDs within the

LCT is that they maintain access patterns for misses, which are stored as a linked-list of Miss Nodes. A

new link is added to the list each time a new miss is analyzed by SMA. Stage 1 in Figure 3.2 refers to the

complete update of the LCT using Algorithm 1. The LCT without miss nodes, in this example, denotes

the memory references to be analyzed for the L1 level cache. The PRSDs consist of:

• Loop Count: Denotes the number of loop iterations.

• Loop Size: Denotes the number of memory accesses within a loop. This establishes nested loops.

• A linked list containing details of accesses pattern for misses. Each node within the list maintains:

– The order of the accesses.

– The memory access stride pattern.

– Miss statistics along with miss stride patterns per RSD.

– The updates to miss statistics.

– Identical RSDs may exist at different levels under the same PRSD. A unique ID is used to

identify them as well as maintain their location. It also helps in restructuring the file and

maintaining the access patterns between loops.

• The miss statistics maintain details separately for capacity and conflict misses per RSD. This

effectively means that similar counters and flags are individually updated depending on miss type.

Since array classifiers play a significant role in determining the correlation between loop levels, it

is necessary to derive capacity and conflict misses separately.
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for(i=0; i<32; i++)
for(j=0; j<32; j++)
{

tmp = c[i][j]; //load
for(k=0; k<32; k++)

tmp += a[i][k] *b[k][j];
c[i][j] = tmp; //store

}

PRSD {Number of 
Memory References per 

Loop, Loop Length}

RSD {Start Address, 
Strides, Type(l-load or 

s-store)}

PRSD1
{ref:6, len:32}

PRSD2
{ref:6, len:32}

PRSD3
{ref:2, len:32}

RSD4
{&c, (4, 128), s} 

RSD3
{&b, (128, 4, 0), l}

RSD2
{&a, (4, 0, 128), l}

Root

PRSD2
{ref:5, len:32}

RSD1
{&c, (4, 128), l}

PRSD1
{ref:12, len:32}

PRSD3
{ref:1, len:32}

RSD4
{&c, (4, 128), s} 

RSD3
{&b, (128, 4, 0), l}

RSD2.1**
{&a,(64, 0, 128),l}

Root

PRSD2
{ref:6, len:32}

PRSD4*
{ref:1, len:63}

RSD1.1**
{&c, (128), l}

PRSD5*
{ref:1, len:2}

RSD1.2**
{&c, (64, 128), l}

PRSD6*
{ref:1, len:2}

RSD3.1**
{&b, (4096, 4, 0), l}

RSD3
{&b, (128, 4, 0), l}
Pt1

RSDs & PRSDs maintain a list of Miss 
Nodes (Pt1, Pt2,.., Pn) updated each 
time SMA analyzes a miss. 

RSD3
Pt2

PRSD1
Pt2Pt1

Miss Nodes rearranged using Algorithm-2

LCT constructed using 
Algorithm-1, at the end 
of SMA’s analysis.

* Represents newly constructed PRSD.
** Represents a RSD with a different 
access pattern as compared to its parent.

New PRSDs constructed using Algorithm-3

Stage 1

Stage 2

Pt2

Figure 3.2 ScalaMemAnalysis-MultiLevel: Workflow of SMA-ML using the Local Cache Tree (LCT) through
an unblocked matrix-multiplication example.
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The above mentioned list of miss nodes is also present in RSDs along with memory access details

like start address and type. Formally, an LCT is defined as a graph G with the set of nodes P (parents), R

(leaves), M (miss nodes) and E (edges).

LCT : G = (P∪R∪M, E, ro)

where ro ∈ P represents the root and E represents the set of edges connecting PRSD nodes P with each

other and with RSD nodes R. Furthermore, edges E also connect miss nodes M with each other. An LCT

node n builds on the notion of a striding pattern. For p ∈ P and r ∈ R we defined

n = {p,r : s≤ 0 | p ∈ P,r ∈ R}

where s is the stride derived from the input of the compressed trace. If the stride is greater than zero, the

node is a leaf RSD; otherwise, it is a PRSD.

3.2 Implementation

3.2.1 Local Cache Tree’s Miss Pattern Updation Algorithm

The LCT’s miss statistics are updated during SMA’s addition [BM14] and composition stages. During

these stages, SMA’s performance counters per loop level are constantly modified. In order to keep track

of the miss patterns, each time a new miss is analyzed for a specific RSD, its unique ID is passed to

the LCT as nodeID and its mode is updated to either Add or Compose. SMA’s array classifiers aid in

categorizing misses into conflict and capacity misses. SMA-ML uses missType to differentiate between

the two categories. The LCT determines the miss statistics to be updated using nodeID and missType. The

miss count and loop level is stored in newCount and levelBit, respectively. Depending on the composition

stage, levelBit may range between the next-outer and the outermost loop level. The miss count, previous

stride and loop length of the PRSD causing the miss are used to calculate newStride. The miss statistics

maintain the number of miss nodes using the missNum counter.

The LCT’s update method is described in Algorithm 1. Since the LCT updates operate on SMA

information, pure conflicts, partial conflicts, varying loop levels and varying strides may need to be

recalculated. A description of the composition stage is provided in Section IV.B4. At the end of populating

the context information for a specific RSD, the left and the right contexts are compared and conflicting

arrays are updated as conflict misses for this RSD. These updates of the LCT are depicted in lines 11-17,

where for a specific nodeID, missType and Add mode a new miss node is created in the miss statistics.

In the next stage, the parent’s right context is compared with current loop’s left context. In case of

conflicts due to the replacement policy, the LCT is updated in Compose mode and for the parent’s loop

14
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Algorithm 1 Analyze Misses per RSD

1: Input: mode, newstride, updateInfo, levelBit, newCount and missType

2: Access miss statistics of (type == missType)
3: if (updateIn f o == update) then
4: for (i=0 to missNum) do
5: if (missUsage greater than bitLevel) then
6: missStride = newStride
7: missUsage = levelBit
8: end if
9: end for

10: else
11: if (mode == Add AND newCount != 0) then
12: Create new entry
13: newCount = missCount
14: missStride = newStride
15: missUsage = levelBit
16: missNum++
17: end if
18: if (mode == Compose) then
19: for (i = 0 to missNum) do
20: if (missUsage greater than bitLevel) then
21: Delete miss entry
22: missNum- -
23: end if
24: if (newCount != 0) then
25: Create new entry
26: end if
27: end for
28: end if
29: end if

level of levelBit. This is shown in lines 18-28. If the parent’s loop is uninitialized the miss statistics of the

child are passed on to the parent and the LCT is updated in update mode. This effectively recalculates

the missStride and missUsage of specific misses in the child. This is shown in lines 2-10. The missUsage

counter denotes the loop level at which the miss pattern was last used/updated. This eliminates any

redundancy of misses during the recursive composition phase of SMA [BM14].

SMA assigns array classifiers to each array within a loop during its addition to the context. These

classifiers determine the behavior for an array within the current loop context and are modified during the

composition stages as the arrays are moved between contexts. This enable higher accuracy in estimating

cache performance. CONF_MISS and ALWAYS_MISS [BM14] refer to conflict misses in same/adjacent

loop and across distant loops, respectively. If a new array completely replaces an older array in the

15
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current/adjacent loop, it is assigned CONF_MISS and later if it conflicts with arrays in an upper loop’s

context, the classifier is modified to ALWAYS_MISS for that loop’s context. During the completion of

the composition stage, these array classifiers determine whether the number of misses in the current loop

repeat, i.e., have to be multiplied with its parent’s loop length or not. If the misses are CONF_MISS, they

are restricted to the current level and do not repeat (no multiplication). A similar pattern is followed with

FIRST_MISS and CAP_MISS, where the current loop’s miss count is multiplied with the parent’s loop

length for the later.

3.2.2 Miss Pattern Reconstruction Algorithm

During the addition and composition stages, the LCT’s update algorithm records startAddress, missCount

and missStride per loop level for every miss node within a RSD. If a RSD contains more than one miss

node (miss pattern), each miss node is treated as a new (separate) RSD. The new RSD has the same start

address, stack signature and type as that of the parent RSD. The loop length and stride pattern of the

RSD is determined by the missCount and missStride, respectively. The miss pattern is usually “uneven”,

i.e., it does not iterate for every loop level. The uneven nature of misses is due to the cache state, which

results in a non-regular pattern of capacity and conflict misses between loop levels. This unevenness is

identified using the missStride array that maintains stride information corresponding to the loop levels.

This requires a rearrangement of the new RSDs to accurately maintain the miss pattern.

The reconstruction algorithm consists of two stages, (1) rearrangement of new RSDs and (2) creation

of new PRSDs. These stages do not differentiate between capacity and conflict misses. (1) The rearrange-

ment stage starts from the bottom-most RSD in the LCT and traverses upwards. Algorithm 2 applies to

every miss node within a RSD. After all the miss nodes within a RSD have been rearranged, control

moves to the next-upper RSD. This continues until the execution reaches the root. As depicted by lines

1-17 of Algorithm 2, each miss pattern identifies the uppermost iterating loop level. After determining

the loop level, the miss node is added at this level and is removed from the current RSD as shown in lines

18-20. This is also shown in Figure 3.2 as a part of stage 2.

On completion of the rearrangement stage, the final phase of stage 2, i.e., creation of new PRSDs and

RSDs, takes place. This stage of the algorithm iterates from top to bottom. RSDs without miss nodes are

removed from the LCT. Every miss node within an PRSD and RSD is subject to steps in lines 1-8 of

Algorithm 3. Each miss node identifies the lowermost iterating loop and creates a PRSD with loopLength

equal to missCount. Under this PRSD, the miss access pattern is stored as a RSD with information like

start address, stride details and type. As shown in lines 9-15, if the miss node iterates with any intermittent

loops in between the outermost and innermost loop, then a new PRSD is created for that loop. This

PRSD has the same loopLength as that of the intermittent loop. Figure 3.2 provides an example for this

16
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Algorithm 2 For every Miss Node per RSD

1: for i=(maxStrideCount) to 0 do
2: if (missStride[i]!=−1) then
3: Break
4: end if
5: end for
6: for j=(i) to 0 do
7: if (missStride[i]==−1) then
8: Break
9: else

10: newLevel=maxStrideCount-i
11: end if
12: end for
13: for i= 0 to newLevel do
14: tmpNode=currentRSD
15: tmpNode=tmpNode→parent
16: end for
17: if (tmpNode→loopLevel != currentRSD→loopLevel) then
18: Create tmpMissPattern in tmpNode
19: tmpMissPattern = currentMissPattern
20: tmpMissPattern→tmpLevel = maxStrideCount - newLevel
21: Delete currentMissPattern
22: end if

algorithm, where RSD1 disintegrates into two new access patterns, RSD1.1 and RSD1.2, under PRSD4

and PRSD5, respectively. Furthermore, RSD3.1 is moved up two levels and iterates with PRSD1. The

final LCT does not maintain miss information for capacity and conflict misses separately. This is because

the misses at this level will be analyzed by SMA as a new set of memory access patterns. At the end

of this stage, the LCT denotes the misses from L1 that are analyzed at the L2 cache level. This pattern

can be used by SMA along with the next-level (L2 in this case) cache parameters to predict the cache

behavior.

The final output might contain multiple individual loops that either have a single striding pattern or

do not iterate with the outer encompassing loops. This occurs either due to new miss patterns formed

during the composition stages of SMA or due to existence of multiple individual loops in the input trace

itself. In such cases, to accurately represent the miss patterns, the single striding patterns are moved out

of the outer loop, or on certain occasions the outer loop is skipped entirely. The latter is implemented

in cases where all loops within a trace have unique (pairwise different) striding patterns. Since these

patterns are removed from the original loop, the striding pattern is altered. In order to restore the pattern,

the RSDs are sorted based on their address and previous loop level.

Furthermore, if loops have similar striding patterns, i.e., they iterate with the same outer loops or

17
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Algorithm 3 For every PRSD and RSD in LCT

1: level = tmpMissPattern→tmpLevel
2: for (i = 0 to level) do
3: if (missStride[i]!=−1) then
4: Create new PRSD
5: loopLength = missCount
6: loopSize++
7: end if
8: end for
9: for j=(i) to 0 do

10: if (missStride[i]!=−1) then
11: Create new PRSD
12: Create new RSD
13: loopLength = loopLength of corresponding lower loop
14: Increment all previous loopSizes till parent PRSD
15: end if
16: end for

have the same parent RSD or parent loop level, they should be sorted in descending order of loop count

for more accurate representation of miss patterns. This is valid for all the RSDs within the LCT and not

restricted to single striding RSDs.

3.2.3 Regularization

SMA’s evaluation of cache performance counters is based on the cache miss equations [Gho97], which

help in predicting the performance between nested loop levels as well. The left and right context

information in SMA tracks misses per loop level. In case of nested loops, SMA predicts misses accurately

between loops that are nested with each other, but it does not identify the patterns individually for each

access or RSD. This results in new RSDs with higher aggregate miss count. When this RSD is converted

into output for the next-level cache, it results in an approximate representation of the miss pattern. This

has a significant effect on cases with multiple loops that have a high loop counts.

In order to improve the miss pattern representation, SMA implements regularization based on the

maximum loop length, number of accesses per loop and number of loops. If these parameters exceed

a certain limit, the program is bound to have the above mentioned approximate representation of miss

patterns. During the regularization stage, based on the loop level, two sets of sequential RSDs are split

into three RSDs. Of these three RSDs, two have the same loop count and one new RSD encompasses the

irregularity. This helps in reducing the irregularity in the miss patterns. Depending on the parameters and

limits, multiple cycles of regularization may be executed to generate more accurate miss patterns.
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EXPERIMENTATION

We used an AMD Opteron 6128 platform. We performed experiments to compare the execution time

and accuracy of SMA-ML with a trace-driven simulator, Dinero[DI12]. The experiments consisted of

matrix multiplication [Wikb] (blocked as well as unblocked), a SPEC [Hen06] benchmark suite and a

NAS [Bai91] benchmark suite. All programs were compiled using gcc with O3 optimization level. In

order to extract memory traces, Pin [Luk05] was used to instrument load and store instructions. From a

Pin-instrumented execution of a binary, we generate (1) a compressed trace file using ScalaMemTrace

[Bud12] and (2) an uncompressed trace file. The compressed trace file was fed into ScalaMemAnalysis-

MultiLevel and the uncompressed trace file was fed to Dinero. Using this setup, we compared the cache

performance predictions by SMA-ML with Dinero for L2 caches.

4.1 Analysis Cost

In this section, we compare the results for execution time of SMA-ML and Dinero for various cache

configurations. These experiments utilize L1 and L2 data caches of 16KB and 64KB, respectively, with

32 byte blocksize that are 4-way set associative. The first set of results are for unblocked and blocked

matrix multiplication. Figure 4.1 depicts results for unblocked matrix multiplication. Figure 4.2 depicts

results for blocked matrix multiplication. SMA-ML is represented by the blue line and red line represents
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Figure 4.1 Execution Time Results for Unblocked Matrix Multiplication

Figure 4.2 Execution Time Results for Blocked Matrix Multiplication

Dinero results.

In Figure 4.1 and 4.2, the x-axis represents quadratically increasing matrix sizes and the y-axis

represents time (in seconds) on a logarithmic scale. As observed in Figure 4.1, SMA-ML’s execution

time remains constant whereas the execution time for Dinero increases linearly with the matrix size. This

is because Dinero maintains the entire cache state by processing uncompressed traces one reference at a

time so that I/O becomes a bottleneck. SMA-ML reduces the cost by analyzing the references together

for each loop. This is done only once irrespective of the loop count and loop nesting levels. Furthermore,

it is evident that the implementation of the LCT does not increase the analysis cost. In Figure 4.2, SMA

shows up to over an order of magnitude difference in execution times compared to Dinero.

The analysis cost of SMA depends on the level of compression achieved, i.e., the regularity of

references and number of individual arrays/loops. The compression achieved by ScalaMemTrace [Bud12]

is high for regular/rectangular loop nestings. Frequently executing conditional statements within such
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Figure 4.3 Execution Time Results for SPEC Benchmark Suite

Figure 4.4 Execution Time Results for NAS Benchmark Suite
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loops can break their regularity and produce less compressed trace files. The irregularity in traces can be

removed by filtering the traces for those infrequent references that otherwise partition large break huge

loop nestings into multiple individual loops. The SPEC benchmark Soplex and NAS benchmark Ep have

such irregularity. To address this issue, we filtered out the irregular accesses from the trace, keeping the

loop structure and behavior intact. After filtering, significant improvements are achieved in analysis cost

and losses in accuracy are minimal. It should be noted here that filtering might not be possible when

irregular memory references dominate within an application.

Figure 4.3 and Figure 4.4 depict results of the SPEC and NAS benchmark suite, respectively. The

x-axis represents test cases and the y-axis depicts time logarithmically. In most cases, SMA-ML incurs

less analysis cost than Dinero’s simulation cost except for SPEC Sphinx3. Sphinx3 consists of excessive

number of individual access streams that produce a significant number of uncompressed trace events. As

mentioned earlier, the analysis cost rises with the increase in the level of uncompressed references. In

this case, that occurs due to the larger number of loops to be analyzed and the small number of references

contained within each loop. These traces, when passed through SMA for the L1 level cache analysis,

result in further uncompression of loops, which increases the L2 analysis cost. We will see in the next

sub-section that this does not affect the accuracy of SMA-ML.

4.2 Accuracy

In this section, we compare the percentage miss rate of SMA-ML with Dinero to determine the perfor-

mance of SMA’s redesign. In further discussion the percentage miss rate difference between SMA-ML

and Dinero will be referred as accuracy. These experiments utilize data caches with 16KB and 64KB

sizes for L1 and L2, respectively, with varying block size and associativity. The first set of benchmarks

are matrix multiplication, unblocked as well as blocked. Figure 4.5 and 4.6 show results for unblocked

and blocked matrix multiplication, respectively. The x-axis shows a large number of combinations of

cache block sizes and associativities. The y-axis presents the offset in accuracy of SMA-ML compared

to Dinero. The difference in accuracy is usually below 20% but spikes up to 23% for unblocked matrix

multiplication on four occasions as seen in Figure 4.5. An important metric to understand this is the L1

cache miss fraction, i.e., the number of misses passed on to L2 with respect to the total references in

the trace. All four cases have L1 miss fractions below 1%, which provides insufficient data for SMA to

produce accurate results, thus generating pessimistic results.

Figure 4.6 shows a similar pattern for blocked matrix multiplication. The inaccuracy of SMA-ML

stays below 20% but spikes up in cases where the L1 miss fraction is below 2% causing SMA-ML to

produce less accurate results. The results for blocksize 64 are omitted as the miss fraction falls below

0.2% providing insufficient data for SMA-ML to process reliable results. A lower miss fraction at the
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Figure 4.5 L2 Cache Analysis: Accuracy Results for Unblocked Matrix Multiplication

Figure 4.6 L2 Cache Analysis: Accuracy Results for Blocked Matrix Multiplication

previous cache-level does not mean that SMA-ML will always produce pessimistic results. The results

shown in these two experiments consist of cases with miss fractions ranging from 0.4% to 80%, yet

SMA-ML is quite accurate for most of them. During experimentation, it was observed that miss fractions

below 2%, i.e., very infrequent miss patterns, cause SMA to treat them conservatively as capacity misses

on few occasions. Meanwhile, Dinero uses accurate simulation to determine the cache behavior. Hence,

miss fractions below 2% explain SMA-ML’s pessimistic performance for regular access patterns. Note

that an increase in irregularity of memory references may in turn increase the threshold for less accurate

SMA-ML results to a miss fraction of 6%.

The next set of results are from the SPEC and NAS benchmark suites depicted in Figure 4.7 and 4.8,
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Figure 4.7 L2 Cache Analysis: Accuracy Results for SPEC Benchmark Suite

Figure 4.8 L2 Cache Analysis: Accuracy Results for NAS Benchmark Suite
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respectively. The x-axis displays a large combination of cache configurations testing a variety of test

cases from the benchmark suites. The miss fraction of the SPEC CPU 2006 benchmarks varies between

1% to 70%, yet the inaccuracy of SMA-ML is within 20% for all test cases.

Figure 4.8 shows the last set of results for the NAS PB benchmark suites (serial version) [Bai91].

Even though the inaccuracy of SMA-ML varies significantly, it stays within 20% for all testcases except

for BT. BT exceeds the 20% mark for one configuration, but the L1 miss fraction for this configuration is

below 2%, which explains this behavior. These results show that SMA-ML’s inaccuracy is within 20%

or better for most cache configurations tested over a variety of programs and benchmark suites. This

suggests SMA-ML is well suited to study cache performance for kernels that have higher miss ratios. Its

ability to provide loopwise cache analysis may help in performance tuning of such kernels.
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CONCLUSION

Experiments indicate that the SMA-ML redesign does not incur additional analysis cost over the execution

of SMA. The hypothesis stands valid as the analysis time remains constant irrespective of loop trip

counts and provides sufficiently accurate miss rate predictions for regular access patterns compared

to conventional trace-based cache simulation. Furthermore, SMA-ML maintains cache performance

counters per loop level, which helps in identifying the root cause for performance degradation.

SMA-ML enables multi-level cache analysis from compressed traces without uncompressing them

or simulating accesses one at a time. The local cache tree maintains information of arrays and updates

the miss patterns during the compositional stages of SMA. We discuss the challenges faced during the

generation of traces for subsequent cache levels due to the compositional analysis approach and the

method to overcome it. Furthermore, we discuss the limitations of SMA-ML and develop metrics to

address their impact.
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FUTURE WORK

The compositional approach towards cache analysis represents a start. This redesign of SMA enables

multi-level cache analysis. SMA-ML is restricted to uni-processor systems. The next step should be to

design a version of SMA-ML that can analyze multi-threaded applications. Then, based on the in-depth

analysis data per cache-level per loop and nesting level, extrapolation can be performed to provide

theoretical performance predictions for large numbers of threads, such as on a GPU, without actual

simulation. This would introduce cache analysis to new domains such as prediction of cache behavior for

multi-threaded applications, extrapolation of memory behavior for large number of threads and providing

performance predictions for porting applications to GPUs. Furthermore, SMA-ML is restricted by the

cache coherence model for lower level caches. Currently, SMA-ML assumes caches to be exclusive but

in order to predict cache behavior for lower level caches a cache coherence model is required. Since L3

follows a shared architecture, we report results for L1 and L2 caches only.
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APPENDIX

A

RSDS AND PRSDS

RSDs and PRSDs use the same format. Loopcount represents the length of the loop. Loopsize represents

the number of RSDs and PRSDs within this loop. Sign represents the unique stackwalk signature. Start-

value represents the start address of the memory access. Stride contains the memory access strides. Type

represents the type (load/store) of the memory access. Since SMT is not restricted to uniprocessors, it

maintains thread and node information as well. Tid-start-value stores the thread ID of the first thread.

Tid-length represents the number of threads within a specific pattern. Tid-stride represents the distance

between two thread IDs. Tid-addr-stride caters for the difference in the start-address per RSD within a

thread. Similar information is stored to represent node details as well.

loopsize:6 loopcount:4 sign:0xc0ffeefeedc0ffee// gap: 0

start-value: (nil)

length: 4

stride: (nil)

tid-start-value: (nil)

tid-length: 1

tid-stride: (nil)

tid-bit-pattern: 0x1
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tid-addr-stride: (nil)

node-id-start-value: (nil)

node-id-length: 1

node-id-stride: (nil)

node-id-bit-pattern: 0x1

Sign-len = 1

Sign:0xc0ffeefeedc0ffee

ref-id = 0xc0ffeefeedc0ffee

type = 0x68
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APPENDIX

B

MEMORY LATENCY PREDICTIONS

In this section, we discuss the memory latencies predicted by SMA-ML. We compare the percentage

difference in L2 Memory latencies between SMA-ML and Dinero for L1 and L2 data caches of 16KB

and 64KB data, respectively. The formula we use for latency calculation is as follows:

Latency = (L1_Hits * L1_Hit_Penalty) + (L2_Hits * L2_Hit_Penalty) + (L2_Misses * L2_Miss_-

Penalty)

where the penalties for the cache levels are:

L1_Hit_Penalty = 1

L2_Hit_Penalty = 12

L2_Miss_Penalty = 50

SMA-ML works on traces generated by evaluating the miss patterns identified during the analysis of

L1 cache performance. These traces aim to preserve the access patterns within loops and loop nesting

behavior. This produces an approximation in striding pattern and start addresses. The accuracy results

prove that this does not affect the nature of loops and access streams within them. The difference in

actual numbers of hits and misses is significant and affects the latency results. The penalties for L2 level

are higher causing a significant rise in difference between the latencies reported by SMA-ML and Dinero.

The gap would further widen if we increased the L2 miss penalty. As observed in Figures B.1 and B.2,

the penalties stay between 20-30% in most cases but spikes up for the others. The latency numbers are
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Figure B.1 L2 Cache Analysis: Memory Latency Results for SPEC Benchmark Suite

Figure B.2 L2 Cache Analysis: Memory Latency Results for NAS Benchmark Suite

not always reliable but provide a high-level performance evaluation.
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APPENDIX

C

ADDITIONAL ACCURACY RESULTS

In this section, we provide additional accuracy results for 16KB and 64KB data caches for L1 and L2,

respectively. SPEC wrf and NAS cg benchmarks results are shown in Figure C.1. The results show that

the inaccuracy of SMA-ML stays within 20% for both cases. The SPEC Wrf benchmark touches the 20%

mark for one configuration but the miss fraction of 2% explains this behavior.
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Figure C.1 L2 Cache Analysis: Additional Accuracy Results
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