
ABSTRACT

GOWNIVARIPALLI, YASASWINI JYOTHI. Hybrid Cache, Bank, and Controller Aware Coloring
for Multicore Real-Time Systems. (Under the direction of Dr. Frank Mueller.)

Real-time systems require tight bounds on the Worst Case Execution Time (WCET) of

a task. Modern multicore CPUs provide multiple levels of storing data (caching) and differ-

ent paths to access memory (banks) that improve the performance but also introduce unpre-

dictability in task execution time. To obtain predictable task execution times, developers have

to consider the WCET, which may void the benefits of modern CPUs and may lead to low

utilization of resources.

On multicore platforms, caches present a source of unpredictability as standard heap al-

located regions do not provide guarantees on the cache set that will hold a particular page

translation. This unpredictability can lead to cache misses and consequently inter-task inter-

ference resulting in loose bounds on the WCET. Memory access latency varies significantly

depending on where the data is located in Non-Uniform Memory Access (NUMA) systems

and how banks are interleaved. Data allocations without locality awareness may experience

high memory latency so that execution times become highly unpredictable, resulting in loose

bounds on the WCET of tasks and overly conservative scheduling with low utilization of modern

CPUs.

The goal of this work is to obtain tighter bounds on the WCET of a task while still using

the benefits of modern CPUs. The coloring technique is applied for the Last Level Cache (LLC)

and memory for this reason. The design reuses the existing Application Programming Interface

(API) so that changes are transparent. The interface works with a minimal modifications to

existing applications to provide LLC and bank-aware heap allocation.

Synthetic benchmark results indicate that with the integrated LLC+bank coloring, a 26.43%

reduction in task execution time (with standard deviation: 0.01) is achieved relative to shared

same LLC+bank (worst case) (with standard deviation: 0.39). Parsec standard benchmarks

indicate that a 24-89% reduction in execution time can be achieved relative to shared same

LLC+bank (worst case). Hardware performance counters indicate that the LLC miss rate can

be reduced by 39% with the LLC coloring and by 95.3% with the integrated LLC+bank coloring

relative to shared same LLC+bank (worst case). Experimental results indicate that the LLC,

memory bank, and memory controller-aware coloring reduces memory latency, avoids inter-task

conflicts, and improves timing predictability of real-time tasks.
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Chapter 1

Introduction

Multicore processors share resources like the LLC and memory across all the cores. When

part/all of the data used by different tasks map to the same sets in LLC, eviction and refill of

the cache line may occur for each task. If tasks use the same bank to access memory there will

be contention. Both scenarios will lead to variable latency in task execution. A Non-Uniform

Memory Architecture partitions sets of cores into a “node” with a local memory controller, such

that memory accesses may be resolved locally or via the on-chip interconnect from a remote

node and its memory. Each memory node consists of multi-level resources called channel, rank

and bank. The banks can be accessed in parallel to increase memory throughput. When tasks

running on different cores access memory concurrently, performance varies significantly across

cores depending on which node data is located on and how banks are shared. The latency of

accessing memory of a remote node is significantly longer than that of accessing memory local

to the node. Even for the same memory node, conflicts between shared-bank accesses result

in unpredictable memory access latency. The latency is worse when all running tasks map

their data to same cache line. As a result, the WCET bound of tasks has to be conservatively

(over-)estimated, which may result in low system utilization due to potentially inferior memory

performance.

1.1 Hypothesis

We hypothesize that dynamic memory allocation can be controlled in software, so that real-time

tasks will not interfere with one another in terms of Last Level Cache (LLC) and memory bank

accesses in multicore systems.
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1.2 Contributions

We have designed and implemented a coloring approach that affects heap memory allocations

at LLC, bank, and controller levels. Two tasks can request colors in six possible ways: 1)

different local controllers and different LLC-sets; 2) different local controllers and same LLC-

sets; 3) different banks of same controller and different LLC-sets; 4) different banks of same

controller and same LLC-sets; 5) same banks and different LLC-sets; and 6) same banks and

same LLC-sets. Option one gives the lowest latency and option six the highest for accesses.

Programmers can assign one (or more) colored LLC-sets and memory banks exclusively per

task. Migration of a task to a different core can be avoided by pinning it to a core. The

underlining kernel establishes that heap allocation is done such that LLC-set and memory bank

isolation is established across tasks. This effectively shortens the WCET and makes execution

more predictable. A novelty of our LLC and memory-aware coloring API is that it does not

need any linking of additional libraries. Our approach requires the developer to make a single

mmap() call during initialization with an appropriate set of color arguments to enable colored

allocation for all subsequent malloc() calls. We have modified the Linux kernel to support

colored allocation.

Our design and implementation contributions are:

1. We design and implement a new heap allocator that guarantees isolation between two

tasks while accessing LLC.

2. We conduct an experimental evaluation of our heap allocator to demonstrate task isolation

realized by LLC coloring.

3. We integrate bank and controller aware coloring with our LLC coloring.

4. We conduct an experimental evaluation of our heap allocator to demonstrate task isolation

realized by integrated LLC, bank, and controller aware coloring.

We observed a 25.43% reduction in execution time (with standard deviation: 0.01) of syn-

thetic benchmarks with LLC+bank coloring relative to shared same LLC+bank (worst case)

(with standard deviation: 0.39). Parsec standard benchmarks indicate that we can achieve a 24-

89% reduction in execution time with LLC+bank coloring relative to shared same LLC+bank

(worst case). Hardware performance counters indicate that we can reduce the LLC miss rate

by 95.3% with our integrated LLC+bank coloring relative to shared same LLC+bank (worst

case).
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Chapter 2

Background

Data access latency is affected by the following aspect: (1) whether or not the data is located

in the cache; (2) how the memory banks interleave and how much of the accesses contend; and

(3) where the data is actually located, i.e., the local memory node or the remote memory node.

In this section, we provide a brief description of these three aspects. Our description is based

on LLC and DDR3 SDRAM memory systems.

2.1 Cache Organization

Most modern CPU architectures have multiple levels of cache hierarchy within in a single chip.

For example, the cache hierarchy in an AMD Opteron 6128 single socket is as shown in Fig.

2.1. Each core has access to a local L1 and L2 cache and all cores share the LLC. A miss in L1

initiates an access to L2, and a miss in L2 initiates an access to L3. A miss in LLC initiates an

access to memory.

2.2 DRAM Organization

Modern day DRAM systems are organized as a group of controllers, where each controller

is associated with a set of cores as shown in Fig. 2.2. Every memory controller has multiple

resources, namely rank, bank and channel, where each rank consists of multiple banks, and

banks can be accesses in parallel. Average throughput can be improved by interleaving access

between multiple channels. For each bank, a row buffer and a storage array is organized into

rows and columns. If multiple tasks access (write or read) the same bank, they contend for the

row buffer. The data loaded by one task may be evicted by the other tasks, i.e., the latency

of memory accesses will be increased if multiple threads access the same bank concurrently.

For each bank, a row buffer and a storage array is organized into rows and columns. When a

3
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memory request is issued, the data is first loaded into the row buffer through an Activate (ACT)

command. If the data has previously been placed in the row buffer, it can be read or written

by a column access strobe (CAS) command. If a second request wishes to access a different row

from the same bank, the system first needs to write the data in the row buffer back to the array

with a Pre-charge (PRE) command before loading the second row into the row buffer. Finally,

a periodic Refresh (REF) command must be issued to all banks and, as a side effect, data in

the row buffer is written back to the data array.
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2.3 Memory Controller

The memory controller translates memory requests (read/write) to corresponding DRAM com-

mands (Fig. 2.4). It acts as a mediator between the LLC of a processor and the DRAM devices.

In an architecture with multiple memory controllers, a memory (DRAM device) that is directly

connected to the controller (local memory) will have the shortest access latency. A memory

access from one controller to memory of another controller (remote memory) incurs additional

cycles of memory load penalty compared to local memory access. This is due to interconnect

access latency. Local memory access has lower latency and is also contention free from intercon-

nect access synchronization delays. It is beneficial to place the data locally as much as possible

and avoid remote memory access. In practice, it is hard to completely avoid such accesses to

remote controllers as a task’s usage of data is complex and most of the times tasks run concur-

rently. This leads to unpredictability in task execution times depending on where the data is

placed. Without localization of memory references, we have to always consider remote accesses,

which will result in overly pessimistic WCET bounds and low utilization of system resources.
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Chapter 3

Design

3.1 Kernel design

Our design is based on the number of sets available in LLC, and the number of banks available

within a memory controller. We assign llc color and bank color to each physical page based on

the LLC-set and the memory bank to which the physical page belongs to (Fig. 3.3).

The LLC color of a physical page is determined as follows:

NLLC = S/(W ∗ L) (3.1)

B = {lg(P )...lg(L + lg(NLLC)− 1} (3.2)

PFN = physical address >> lg(P ) (3.3)

llc color = (PFN)&(2powNLLC) (3.4)

where

NLLC - Number of LLC colors,

B - bits to identify LLC color of page,

PFN - page frame number,

S - LLC size,

W - LLC ways,

L - LLC line size,

P - page size.

Fig. 3.1 shows the bits used for identifying the LLC color of a physical page on AMD
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Figure 3.1: LLC color identifier on AMD Opteron 6128

Opteron 6128 (Magny core) [1].

The bank color of a physical page is determined as follows:

bank color = channel ∗NC + rank ∗NR + bank ∗NB (3.5)

where

channel - channel to which the physical page belongs,

rank - memory rank to which the physical page belongs,

bank - memory bank to which the physical page belongs,

NC - number of channels available within a memory controller,

NR - number of ranks available within a memory controller,

NB - number of banks available within a memory controller.

Channel, rank, and bank information is obtained from AMD Opteron 6128 (Magny core) [1].

3.2 Application Programming Interface (API) design

3.2.1 Normal API

void *mmap (start, length, prot, flags, fd, offset);

3.2.2 Color API

void *mmap (color arg, 0, COLOR ALLOC, ...)

color arg: Used to represent the color identification bits as shown in Fig. 3.2.

size: Zero is used to mark that this is a special call for coloring

prot: COLOR ALLOC is used to mark colored allocation for this task

8
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Chapter 4

Implementation

In our design, the Application Programming Interface (API) for colored allocation is provided

through the mmap() system call. Using mmap() instead of a new system call reduces the

developer efforts of linking with a new library and it does not require an extra system call in

the kernel. For colored allocation, the address is used to pass the color information(set/clear

color, coloring level: LLC/memory/both, color identifier), and the length argument of mmap() is

passed as zero. We differentiate a mmap() colored request call from a regular call by interpreting

the length argument in the kernel. In regular Linux, when the kernel observes the length as zero,

it returns an error to the application. In our colored implementation, when the kernel identifies

the length argument as zero, it considers it as a colored call and marks in the task struct of

the process that it is requesting a colored allocation. The kernel stores the requested LLC and

bank color(s) in task struct of the process. All subsequent calls to malloc() will be served by

our colored allocation strategy in the kernel. In summary, when an application needs a colored

page, it issues an mmap() call with the colored information as the first argument (address)

and zero as the second argument(length). Fig. 4.1 demonstrates the interpretation done in the

kernel when the mmap() system call is called by the application. When the application requires

more memory than can be satisfied by a single memory bank, multiple banks needed to be

requested by making multiple mmap() calls.

LLC and bank coloring is implemented by modifying the page allocation strategy in the

Linux kernel. For experimental evaluations, we have modified Linux kernel version 2.6.32.27,

but our implementation does not have any version dependency. Our implementation does not

require any hardware features, this differs from other implementations [15]. During the booting

phase, the LLC color and bank color of each page is stored in the struct page data structure

of kernel, in page→llc color, and page→bank color, respectively. The number of LLC colors is

same as the number of available sets in the LLC. So, the LLC color of page is determined by the

bits that identify the LLC set to which the physical frame maps. The bank color is identified by

10



channel, rank and bank information obtained from Peripheral Component Interconnect (PCI)

registers/BIOS. Coloring is provided as a configuration option in the Linux kernel, which can

be selected using the standard Linux kernel configuration.

The Linux kernel page allocation strategy is modified to support colored allocation requests.

In our implementation, the Linux kernel maintains pages in a corresponding color list. It is

a two-dimensional array supporting a combination of LLC and bank colors. When the task

requests an LLC color B and a bank color A, color list[A][B] is searched. If a free page is found,

it is returned. If the list is empty, the kernel will try to pull pages from buddy allocation lists

and add them to the respective color list. Once the required entry with matching LLC and

bank color is found, it will be returned. If the task is requesting for only LLC coloring, then

the page with a matching LLC color is returned without considering its bank color. Similarly, if

the task is requesting only bank coloring then the page with a matching bank color is returned

without considering its LLC color. If the task has requested for multiple LLC/bank colors, the

first matching page is returned. The overhead of building color lists will be imposed only when

the corresponding list is empty. Therefore, subsequent requests for allocation will be faster.

The Buddy allocator in the Linux kernel maintains pages in different order lists, i.e., in an

array of size MAX ORDER. The 0th element of the array points to a list of free page blocks

of size 20 or 1 page, the 1st element points to a list of 21 or 2 pages, and similarly the MAX -

ORDER points to 2MAX ORDER1 number of pages. This eliminates the need of a larger block

to be split to satisfy a request where a smaller block would have sufficed. The page blocks are

maintained on a linear linked list via page→list. In our implementation, the colored allocation

and freeing is done only for order-0 lists i.e., we allocate/free only one page at a time because

most application requests result in a single page being allocated as part of serving a page-fault.

The Linux kernel page management is modified to add the freed page back to either the

color list or to the regular buddy lists. If the task has requested colored allocation and frees

the page in colored mode then the page is added to the corresponding color list. If the task has

requested colored allocation and frees the page after clearing the colored mode or if the task

has not requested colored allocation (i.e. a regular task) then the page is freed using the general

Linux freeing policy. In our implementation, the changes to the Linux kernel are minimal as the

coloring information of a physical page is stored in Page Table Entry (PTE) and task-related

coloring information is stored in Task Control Block (TCB) data structures.

11
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Chapter 5

Architecture

We investigated the LLC and memory organization of contemporary architectures. The ARM

Tegra3 (Kayla) [2] has a smaller associative LLC (8 ways), one/two memory banks, which made

is hard to provide memory isolation on this platform. The AMD Opteron 6128 (Magny core) [1]

has a higher associative LLC (96 ways), multiple memory banks (32) per controller, and four

memory controllers.

The platform used for running our Linux colored implementation and experiments is a two

socket SMP with AMD Opteron 6128 (Magny core) processors [1]. Each socket has two memory

controller nodes, and each memory controller accesses four local cores. In total, the system has

sixteen cores. Each core has a private L1 cache (64KB I-cache and 64KB D-cache) and a private

L2 cache (512KB unified). All 8 cores of a socket share an L3 cache (12MB unified), which is

the LLC. There are two nodes per socket and nodes are connected via Hypertransport as shown

in Fig. 2.2. The core frequency is between 800MHz-2GHz with a governor that selects 2GHz

once a CPU-bound task starts running. There are four memory controllers, two per socket (per

8 cores), connected via Hypertransport at a link speed of 1.8GHz with different distances to

controllers (1 hop to the local controller, 2 hops to the other controller within a socket and

3 hops to controllers of the other socket). There are two channels per memory controller, two

ranks per channel and eight banks per rank, i.e., 128 banks altogether. All banks can be accessed

in parallel.
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Chapter 6

Results

We assess the performance of LLC aware allocation, LLC plus bank aware allocation, and LLC

plus controller aware allocation using synthetic micro-benchmarks and standard benchmarks

from Parsec [4] and NAS Parallel Benchmarks [3].

6.1 Synthetic Benchmarks

We assessed the access latency to different controllers with a synthetic benchmark. We bind the

synthetic program to a specific core in one controller and try to access memory across different

controllers in the system. Fig. 6.1 depicts access latency (y-axis) for different access types (x-

axis). We observed that the access latency to memory for the local controller (Local-samesocket)

is the lowest, followed by the remote controller in same socket (Remote-samesocket). The mem-

ory access latency to controllers in a different socket (Remote-diffsocket) is the highest.

Using a synthetic micro-benchmark we allocated a large amount of memory to a task. We

created four tasks, each pinned to a different core, three tasks run in the background and one

task runs in the foreground. The purpose of the background tasks is to create conflicts for the

foreground task by accessing various memory locations. We assigned banks and LLC sets based

on the application requests and we measured the time required to complete the foreground task.

We ran a synthetic benchmark to observe the latency in accessing shared banks and shared LLC

sets. Fig. 6.2 depicts the overall execution time (y-axis) across our different coloring techniques

for a sequence of ten experiments (x-axis). We observed that the most conflicts are created

when all tasks share LLC sets and banks (shared LLC+bank) and task execution time is the

highest (29 seconds, standard deviation 0.39). The foreground task has lower execution time

(27 seconds, standard deviation 0.01) when tasks access different LLC sets (LLC coloring).

Execution time for the foreground task is lower (23 seconds, standard deviation 0.32) when

tasks access different banks (bank coloring). The foreground task has the lowest and bounded
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Figure 6.1: Latency as a function of distance to memory controller

execution time (20.6 seconds, standard deviation 0.01) when all tasks access not only different

banks but also different LLC sets (LLC+bank coloring). We observed a 26.43% improvement

with our LLC+bank coloring over shared LLC+bank along with lower and tightly bounded

execution time with our coloring techniques.

We ran the same benchmark to observe LLC coloring benefits along with controller-aware

allocation, in controller-aware coloring (controller) each task is assigned to a different core

in a different controller. This ensures that tasks experience the least conflicts as there is less

contention at the hardware level. Fig. 6.3 depicts the overall execution time (y-axis) across

our different coloring techniques for a sequence of ten experiments (x-axis). We observe that

controller allocation in Fig. 6.3 has a lower execution time than our LLC+bank coloring in

Fig. 6.2. This is because controller-aware allocation inherently avoids queuing contention at the

controller and contention for banks. Controller-aware allocation still has LLC conflicts. We also

applied our LLC coloring on top of controller-aware coloring (LLC+controller coloring). We

observe that our LLC+controller coloring gives lower execution time (1.63 seconds, standard

deviation 0.01) than controller-aware allocation (1.66 seconds, standard deviation 0.01). Our

LLC+controller’s allocation worst case is same as controller-aware allocation for two of the

ten runs of the experiment. This is due to the overhead of maintaining multiple color lists for

coloring.
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Figure 6.2: Synthetic benchmark with LLC and memory(bank) coloring
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Figure 6.3: Synthetic benchmark with LLC and controller coloring

6.2 Standard Benchmarks

We have modified standard benchmarks to replace static allocation with dynamic allocation.

We also pin a task/thread to a core to avoid task/thread migration effects.

6.2.1 NAS Parallel Benchmark Results

We observe performance benefits of LLC coloring, bank coloring, and LLC+bank coloring over

shared LLC+bank coloring using the NAS Parallel Benchmark (NPB) suite [3]. The NPB suite
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Figure 6.4: NPB-IS benchmark

is a set of programs designed to evaluate the performance of parallel execution. We investigate

the OpenMP version of IS with four OpenMP threads. IS is written in C. The other NAS codes

are Fortran benchmarks and do not work with heap allocation. IS is an integer sort application

with many random memory accesses. Each of the four OpenMP threads is pinned to a different

CPU core and dynamically allocates memory per thread. In the worst case, the normal buddy

allocator can assign all threads the same banks and LLC sets, which would inflict conflicts

when accessing memory. Our LLC-aware and bank-aware coloring ensures that neither remote

memory nor shared memory bank accesses are issued by these threads. Fig. 6.4 depicts the

average execution time of the program over ten runs for different allocation schemes (y-axis)

along with error bars denoting the maximum and minimum execution time. We observe that

the execution time for the first run is higher compared to the next runs. This is due to the initial

overhead for creating color lists. The worst case execution time of our LLC+Bank coloring (18.2

seconds) is less than the best case execution time of shared LLC+bank model (18.8 seconds).

For real-time scheduling, a tight bound on the execution time is important to guarantee good

system utilization, which we achieve with our coloring technique with less variance in execution

time across different runs as indicated by the standard deviation in Table. 6.1. LLC+bank aware

allocation also utilizes system resources better, as this avoids LLC conflicts and interleaves banks

across tasks. We make the following observations: The execution time of shared LLC+bank

(worst case of buddy allocation) is significantly higher than that of LLC coloring and bank

coloring. With integrated LLC+bank coloring we not only decrease the execution time, but

also bound it more tightly with less variance.
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Table 6.1: NPB-IS

standard deviation

Shared LLC+Bank 0.14
LLC Color 0.03

Bank COLOR 0.06
LLC+Bank COLOR 0.01

6.2.2 Parsec Benchmark Results

We investigate the performance and predictability for the PARSEC benchmark suite [4]. The

Parsec suite focuses on emerging workloads and is said to be representative of next-generation

shared-memory programs for chip-multiprocessors. We have created a multi-task workload

where one or more ‘memory attackers’ run in the background to assess their interference on

memory latency for a foreground task similar to prior work [16], [11]. E.g., if there are four tasks

in the experiment, one of them (the foreground task) is a Parsec benchmark and the others

(background) are memory attackers. Fig. 6.5 shows an average execution time of the Parsec

task over ten runs along with error bars denoting the maximum and minimum execution time.

Shared LLC+bank (worst case of buddy allocation) has the highest latency and maximum vari-

ance as indicated by the error bars. For comparison, we have included the single run of a Parsec

program (‘parsec without attackers’). It uses the general buddy allocator and does not have

memory attackers in the background. We observe that fluidanimate has the highest gain due

to coloring: shared LLC+bank (58 seconds, standard deviation 0.18) compared to LLC+bank

coloring (6.5 seconds, standard deviation 0.01) i.e., a 88.79% improvement in execution time.

Swaptions has the lowest gain due to coloring: shared LLC+bank (4.2 seconds, standard de-

viation 0.04) compared to LLC+bank coloring (3.2 seconds, standard deviation 0.01), i.e., a

23.81% improvement in execution time. Our observation is, with LLC+bank aware allocation

we can reduce the task execution time, achieve better system utilization, and provide tighter

bounds/less variance on execution time.

We observe the performance improvement for multi-threaded applications by using our

LLC+bank coloring. We used the OpenMP version of Parsec’s blackscholes application and

created experiments with 1, 4, 8, and 16 threads, where each thread is pinned to a different

core. We do not have any attackers in this experiment. Fig. 6.6 depicts an average execution

time of the Parsec task over ten runs along with error bars denoting the maximum and minimum

execution time. We present execution time (y-axis) across our different coloring techniques for

different number of threads (x-axis). We observe that one thread has the highest execution time,

as it is equivalent to running a non-threaded version of the application. Four threads have lower
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Figure 6.5: Parsec with memory attackers

execution time than one thread. This is due to parallelization and because each thread accesses

a different LLC and bank, which avoids LLC conflicts and interleaves bank accessing. Eight

threads have lower execution time than four threads. This is again because of parallelization

and less contention for LLC sets and banks. We observe that our coloring provides better results

with increased number of threads, as we avoid conflicts among threads by allocating different

LLC(s) and bank(s) to each thread. We observe that when we increase the number of threads

to sixteen, performance does not improve compared to four/eight threads. This is because of

thread synchronization requirements and also because of inter-controller access delays while

accessing a different socket. As shown in Fig. 2.2, eight cores are in one socket and the other

eight cores are in another socket. Sixteen threads require more access synchronization involving

multiple controllers. The result is a smaller improvement in execution time than four/eight

threads. We have observed the inter-controller access latency using our synthetic benchmark

in Fig. 6.1. We observe that our coloring technique has less variance across different runs, as

indicated by the standard deviation in Table. 6.2. We conclude that our LLC+bank coloring

achieves benefits for multi-threaded applications, but we shall also consider hardware access

delays while allocating resources to tasks.

We investigate LLC misses with our LLC coloring and LLC+bank coloring using Parsec’s
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Figure 6.6: Multi threaded Parsec (Blackscholes)

Table 6.2: Multi threaded Parsec

1thread standard deviation

Shared LLC+Bank 1.7
LLC Color 0.01

Bank COLOR 0.01
LLC+Bank COLOR 0.01

4threads standard deviation

Shared LLC+Bank 0.01
LLC Color 0.01

Bank COLOR 0
LLC+Bank COLOR 0

8threads standard deviation

Shared LLC+Bank 0.05
LLC Color 0.01

Bank COLOR 0.01
LLC+Bank COLOR 0.01

16threads standard deviation

Shared LLC+Bank 1.4
LLC Color 0.01

Bank COLOR 0.03
LLC+Bank COLOR 0.01

x264 benchmark. The setup for this experiment is same as for the memory attacker model

explained earlier. Three stream attackers run in the background and x264 runs in the foreground.
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Figure 6.7: LLC (L3) miss-rate of Parsec (x264)

We measure the LLC miss rate of x264 using LIKWID [14], an open source software that we

have configured for the AMD Opteron. Fig. 6.7 depicts Parsec’s x264 task execution time in log

scale (y-axis) across our different coloring techniques for a sequence of ten runs (x-axis). We

observe nearly zero variance across different runs in all coloring techniques. We observe that

the LLC miss-rate is the highest when all tasks share LLC+bank. The LLC miss-rate reduces

with LLC coloring as the attackers and x264 use different LLC sets, i.e., we observed a 39%

reduction in the LLC miss rate compared to shared LLC+bank. Only with bank coloring, we

observed that, we do not achieve much improvement in the LLC miss rate as tasks contend

for same cache sets. Our integrated LLC+bank coloring has the lowest LLC miss rate for x264

compared to shared LLC+bank as it avoids LLC conflicts and interleaves banks across attackers

and the x264 code, i.e., we observed a 95.3% reduction in the LLC miss rate.

6.2.3 Real-time Experiment with Malardalen Benchmarks

For the experiments described in this section, we use benchmarks from the Malardalen suite [6]

to show task isolation. We modified the benchmarks so that they use heap allocation instead of

statically allocated data. We have also increased the size of the programs, as the original data

sets are too small to conduct our experiments. We have created a multi-threaded program with

four OpenMP threads, each thread pinned to a different core and assigned a different real-time

priority, where each thread executes one of the Malardalen suite programs. All the threads

use the SCHED FIFO real-time scheduling policy of the Linux kernel. We used select (select

k-th largest number), compress, st (stat), and bs (binary search) of the Malardalen suite. Fig.

6.8 depicts task execution time of each Malardalen program (averaged over ten runs) (y-axis)

21



1450

1500

1550

1600

Select

3000

3100

3200

3300
Compress

1800

1850

1900
ST

0

2

4

6
BS

Ta
sk

 e
xe

cu
tio

n 
tim

e 
(u

se
c)

Shared LLC+Bank LLC Color Bank Color LLC+Bank Color

Figure 6.8: Malardalen programs as RT-tasks

along with error bars denoting the maximum and minimum execution time across our different

coloring techniques (x-axis). We observed that rt-tasks have low execution time and low variance

with our coloring techniques compared to shared same LLC+bank. Our LLC+bank coloring has

lower execution time for all real-time tasks and also tighter bounds on the WCET as indicated

by the standard deviation in Table. 6.3.
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Table 6.3: Malardalen RT-Tasks

Select standard deviation

Shared LLC+Bank 28.85
LLC Color 12.88

Bank COLOR 11.58
LLC+Bank COLOR 8.48

Compress standard deviation

Shared LLC+Bank 21.05
LLC Color 7.64

Bank COLOR 3.09
LLC+Bank COLOR 3.02

ST standard deviation

Shared LLC+Bank 10.39
LLC Color 2.73

Bank COLOR 6.13
LLC+Bank COLOR 2.27

BS standard deviation

Shared LLC+Bank 0.99
LLC Color 0.48

Bank COLOR 0.32
LLC+Bank COLOR 0.48
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Chapter 7

Related work

Puaut et al. [12] proposed a compiler approach to make paging more predictable. The main

idea of the paper is to identify page in and page out points of virtual pages at compile time.

This method relies on the static knowledge of the possible references between virtual pages of

tasks. However, the focus of their work is to make demand paging more predictable while ours

is on task isolation with respect to cache and memory.

Compiler-directed page coloring proposed by Bugnion et al. [5] involves three key phases.

First, a compiler creates a summary of array references and communicates this information to

the run-time system. The run-time system then uses machine-specific parameters like the cache

size to generate a preferred color for the physical frame. The operating system then uses this

color as a hint in a best effort to honor them. This technique is applicable to physically indexed

caches. Our technique does not require profiling or modifications to the compiler.

Software cache partitioning is related to our idea. This is commonly known as cache coloring.

The main idea of this technique is to color physical frames such that two frames of different

color will not map to the same cache set. Liedtke at al. [8] proposed OS-controlled cache

partitioning. Mancuso et al. [9] used memory profiling to identity hot pages in virtual memory.

Then, the kernel subsequently allocates physical frames to these pages, such that there are no

cache conflicts. Ward et al. [15] proposed cache locking and cache scheduling for the last level

caches. Their scheme treats cache ways as resources that must be acquired by tasks before

beginning their execution. The technique requires support for hardware cache locking from the

processor. Our approach does not depend on any architectural features like cache locking.

TLSF [10] is an approach to support dynamic memory allocation in real-time systems. The

main idea is to provide constant time dynamic memory allocation and deallocation. CAMA

[7] builds upon TLSF to incorporate cache awareness. CAMA can allocate dynamic memory

in constant time and can also guarantee the cache set that will hold this allocated memory.

PALLOC [16] is a DRAM bank-aware memory allocator. It ensures that tasks running concur-
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rently on different cores do not access physical memory that maps to the same DRAM bank.

Thus, PALLOC reduces DRAM bank-level interference between tasks. Though these techniques

enable real-time tasks to use dynamic memory, they provide only either cache or bank coloring,

but not both. Our approach works for reduced interference across the tasks at both cache and

memory level accesses.

Suzuki et al. [13] proposed coordinated bank and cache coloring, but they do not consider

NUMA systems. In our work, along with integrated cache and bank coloring, we also demon-

strate cache and controller-aware coloring. Their work is based on the Linux/RK kernel on an

Intel platform, where the application reserves a part of physical memory for exclusive use. Our

work is based on Linux on the AMD platform and we do not pre-allocate any memory. So even

with dynamic allocation, we observe lower and more tightly bounded execution times. In their

work, algorithm(s) decide the color that is going to be allocated to a task. In our work, we give

the flexibility to the application to choose the color(s) with very minimal changes to applica-

tion (one mmap() call). Our approach is simpler and easy to port across different versions of

Linux kernels and hardware architectures. Controller-aware bank coloring [11] proposes bank

and controller-aware allocation. Our work is an extension as it supports combined LLC, bank,

and controller-aware allocation.
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Chapter 8

Future scope

Our current approach reduces conflicts across tasks at the LLC and at the memory bank level.

We can apply a similar approach to provide isolation to the Translation Look-aside Buffer

(TLB) to support a conflict free allocation at the TLB-LLC-Memory level. Another scope of

extension would be to compare our benefits of multi-level coloring across different architectures,

Intel, ARM, etc. Our implementation is not tied to architectural features, i.e., we can easily

provide portability across different architectures if we have the information required to identify

TLB sets, cache sets and memory banks.

26



Chapter 9

Conclusion

This work contributes the design and implementation of LLC coloring and the integration of

LLC, bank, and controller coloring for multicore real-time systems. The new allocator compre-

hensively considers LLC, memory bank, and controller to color while allocating memory to a

task, without requiring hardware modifications. Developers have to include our header file and

add a few initialization calls to an application to request specific LLC and bank colors for the

entire program. Our kernel modifications are easily portable across different kernel versions and

different architectures provided the information to identify LLC sets and memory banks. With

our approach, accesses to a remote memory node can be avoided for all tasks while bank and

LLC access conflicts are reduced.

We assess our approach in a number of experiments on a multicore platform with mi-

crobenchmarks, NPB, Parsec, and Malardalen codes to investigate its performance and pre-

dictability impact. Synthetic benchmark results indicate that with the integrated LLC+bank

coloring, a 26.43% reduction in task execution time (with standard deviation: 0.01) is achieved

relative to shared same LLC+bank (worst case) (with standard deviation: 0.39). Parsec stan-

dard benchmarks indicate that a 24-89% reduction in execution time can be achieved relative

to shared same LLC+bank (worst case). Hardware performance counters indicate that the LLC

miss rate can be reduced by 39% with the LLC coloring and by 95.3% with the integrated

LLC+bank coloring relative to shared same LLC+bank (worst case). Experimental results in-

dicate that the LLC, memory bank, and memory controller-aware coloring reduces memory

latency, avoids inter-task conflicts, and improves timing predictability of real-time tasks. With

the above results, we show that our hypothesis holds by demonstrating that dynamic memory

allocation can be controlled in software, such that real-time tasks will not interfere with one

another in terms of Last Level Cache (LLC) and memory bank accesses in multicore systems.
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Appendix A

Appendix-A

We investigate the performance and predictability for the PARSEC benchmark suite [4]. We

have created a multi-task workload where several ‘memory attackers’ run in the background to

assess their interference on memory latency for a foreground task similar to prior work [16], [11].

We call these background tasks the ‘memory attackers’, represented by one or more instance

of the stream benchmark [16]. E.g., if there are four tasks in the experiment, one of them (the

foreground task) is a Parsec benchmark and the others (background) are memory attackers.

Fig. A.1 shows an average execution time of parsec task over ten runs along with error bars.

We have six experimental models: 1) shared LLC+bank, where all the three background tasks

and foreground Parsec task share LLC(s) and bank(s); 2) LLC coloring, where all the three

background tasks and foreground Parsec task share bank(s) but access different LLC(s); 3)

Bank coloring, where all the three background tasks and foreground Parsec task share LLC(s)

but access different bank(s); 4) LLC+bank coloring, where all the three background tasks

and foreground Parsec task access different bank(s) and LLC(s); 5) Parsec without attackers,

where we run standalone Parsec program with buddy allocation and without any attackers in

the background; and 6) No color(buddy), where all the three background tasks and foreground

Parsec task use the general buddy allocation. We observe that for the most of Parsec applications

the buddy allocator (No color(buddy)) gives fairly good performance for an average of ten

runs. But we can not guarantee that it would be always predictable, and in the worst case the

performance would be equal to shared LLC+bank. We also observe with the buddy allocation,

variance and standard deviation in execution time is higher than our colored allocation.
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Figure A.1: Parsec with memory attackers (including buddy allocator with attackers)
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