
ABSTRACT

FERRITER, KYLE ROBERT. Query and Storage Optimization of Genetic Variant Data via Structural
and Semantic Compression and Indexing. (Under the direction of Frank Mueller.)

As genomics and personalized medicine are becoming ubiquitous around the world, and

datasets are growing at an accelerating pace to fulfill the needs of the medical industry and its

patients, so too grows the amount of data needing to be stored and used both within institutions

and by individuals on their personal computing devices. This data must be retained long term but

also needs to be quickly and cheaply accessible, two goals which in many ways compete with each

other.

After genomic sequencing is performed, genomic analytics requires the ability to query large

datasets for information about a particular genetic sequence at certain positions. Series of queries

are combined in order to perform correlation analysis and comparative analysis in order to track

genetic variation over time and between organisms, as well as the effect those variations have on

the physical manifestation of traits in organisms.

Traditional database technologies are not well suited for this use case because they do not take

into account usage patterns or structure of the data. These traditional databases, when storing

genomic files and servicing queries on them, place significant demand on system resources and

take significant amounts of time to return results. To address these problems, the bioinformatics

community has developed industry-standard methods.

However, these existing industry-standard methods for compressing and indexing genetic variant

files primarily use generic compression schemes, which have the benefit of being robust, reliable,

and in widespread use, but novel schemes for compression as well as indexing that better take into

account usage patterns as well as the structure and semantics of the data itself can lead to even

better turnaround time for queries.

This work contributes a novel line-based run-length partial-compression technique for variant

genotype data that performs well on large sample sets, and several novel indexing strategies. Each

is accompanied by a comparison between it and the industry standard. The evaluation of these

contributions are performed on two different storage technologies and two different modern filesys-

tems, and the difference between these for storing genetic variant data and the novel indexes is

also evaluated and discussed. When evaluated using the 1000 Genomes Project VCF dataset, the

compression technique achieves a compression ratio of over 96%, and this compression technique,

combined with the indexing strategies, leads to an approximate speedup of 2X in turnaround time

on both single variant and range-based variant lookups.
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CHAPTER

1

INTRODUCTION

Over the last decade, and increasingly so in recent years, genomic datasets have rapidly grown

in size, and this trend is expected to continue and accelerate into the future. What drives this

trend is the increased use of genetic sampling, sequencing, and analysis as genetics becomes more

integrated into common health and medical processes ranging from emergency room or hospital

visits to simple periodic checkups. Researchers specializing in areas such as precision medicine,

rare diseases, and infectious diseases, are placing increased demands on data infrastructure. These

demands include the precision with which data can be semantically queried from storage, speed

with which it can be utilized in work flows, and cost reductions enabling wider use.

In order to offload storage and computational resources from researchers’ personal machines,

genetic and other forms of large medical data are being moved into the cloud. The advantages are

clear: it can scale to store a practically unbounded amount of data, it provides a single point of

reference for teams of researchers, which need to read and in some cases write to the same dataset,

it can help ensure better security and privacy of sensitive data, and the data is easily accessible by

processing pipelines already being run on cloud instances or clustered environments.

However, this move to the cloud is not without disadvantages. One such disadvantage is the cost

associated with storing data long-term. There are costs also associated with storing data on local

disks or in an on-premise data center, but the durability, availability, and scalability of managed

cloud cloud storage comes at a premium cost. For this reason, data compression at sufficiently high

ratios is a critical feature of big-data tooling.

Another disadvantage is the cost of compute resources in cloud environments. These costs,

in many cases, can significantly outweigh storage costs. By reducing demand on CPU, memory,

and network bandwidth, the same amount of work can be performed with fewer cloud compute
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resource allocations, thus lowering the cost. In a clustered environment this also means freeing up

time slots for other jobs and possibly enabling cluster scale-down.

1.1 Motivation

For genomic data, data warehousing services have grown in popularity due to their ability to manage

and provide an SQL or similar query API to large amounts of data. However services like these

emulate traditional tabular database systems. The downside to this is that it is difficult to take into

consideration the particular schematics and patterns of the data. Database systems whose schemas

support object nesting and structured records can attempt to achieve better efficiency; however, in

practice, unavoidable downsides remain:

1. The cost of provisioning or running a service like this is expensive. Fees charged to managed

service clients are significant.

2. Even when fast, accessing data is slower than native I/O of optimally domain-structured

and indexed files. Part of this is due to I/O bandwidth, but another factor is the file seek

performance and minimization of total data read from storage, both of which can suffer on

non-local storage connections.

3. Immense time and memory demands. Highly intelligent database engines can optimize

queries and query plans, but without knowing or targeting a specific use case these will still

load very large sets of data into memory which can only be filtered after the fact during a

later stage of execution. Large portions of the memory footprint may be dedicated entirely

to the discarded data, which can be considered wasted memory. The fact that this memory

still must be provisioned from a cluster or available in a bare metal machine allocated to the

query means that this is a wasted cost as well.

4. These systems must necessarily throw out some of that domain structure information in order

to conform the data to a generic schema. One crucial example is sorting, which is commonly

utilized in genetic data files, but which is nonexistent in most generic database systems unless

a very expensive sort operation is performed. Due to the large size of the data, in some cases it

is not feasible to sort the data within a table because all available working memory is exhausted,

even within working memory arrays ranging into the hundreds of gigabytes.

Storage technologies have over recent years trended away from spinning HDD devices, towards

several tiers of SSD technologies, and away from SATA storage interfaces towards NVME,

which supports higher speeds. These local storage devices can be leveraged in clustered

environments by providing a working space for swapping data objects in and out of main

memory, and for providing backing storage for networked filesystems, which are also often

used for working object storage or intermediate data workspaces, but the access latency and
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I/O bandwidth of these compared to main memory is inferior for servicing random access

patterns on large scale datasets compared to native intra-host I/O operations.

Because these forms of medical data are intended to be used throughout the lifespan of an

individual in order to achieve the best positive health outcomes, the data needs to be stored long

term in a cheap manner, but also be readily accessible to low-latency sequential and random

access patterns. On top of these features, storage technologies and formats must also support high

concurrency and resource sharing by placing limited demands on read I/O, CPU, and memory

resources. To do this, two mechanisms are used:

1. The first mechanism is compression. The core goal of this mechanism is to reduce the size of

data in storage without losing information. Techniques often include combining duplicate

values, or otherwise encoding digital symbols in the uncompressed data into fewer bits in

the compressed form. The benefit of compression generally comes from reduced overall

processing time, because in many cases, especially with large data objects common in big

data use cases, a significant portion of overall turnaround time is spent on I/O. I/O operations

include but are not limited to: reading a data object out of storage into memory, writing

from memory into storage, and transferring between memory arrays over a network, which is

common in clustered environments and frameworks such as Spark [1] and HDFS [8]. For these

I/O operations, not only is there some cost associated with storage, but depending on the

circumstances, there may be a direct cost associated in performing the I/O itself, as is common

when reading or writing crosses a cloud region boundary. Though reduced storage and transfer

costs are a benefit on their own, compression algorithms must seek to also maintain the time

benefit and not cancel it out by requiring significant amounts of processing to perform the

decompression once the compressed data is read into memory.

2. The second mechanism is indexing. This creates a way to find relevant data within a larger

dataset, without needing to read through the entire set. In traditional database systems, a

table index takes a column (or field), and for each value or set of contiguous values, stores

pointers to table records, mapped to each value in a structure like a search tree or hash table.

After indexing, if a database client wishes to select records, based on a value in a column

which is indexed, instead of searching the entire column, the database engine can quickly

filter to a set of table records which meet the criteria, without reading any records from the

table itself. The primary advantage of indexing is usually considered significantly reduced I/O

bandwidth and read operation turnaround time, as filtering is done at least partially within

the smaller index instead of the table, but corollary benefits to this I/O decrease is reduced

CPU and memory demand because less data is being read into main memory and processed.

This document covers these two mechanisms, within the specific application of genetic data,

and more specifically a terminal format of genomic sequencing pipelines often used in gene research

and genetic variation research. On the topic of compression, existing techniques are described. The
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work contributes a different strategy, which takes into account particular known constraints and

patterns of the input data. On the topic of indexing, existing techniques are briefly covered. The

work then contributes new indexing strategies, which can again take into consideration certain

value constraints of the data, features of the proposed compression technique, and also use case

patterns associated with genetic data.

1.2 Hypothesis

A novel encoding technique of genetic variant data can be devised based on structure-

and semantic-aware compression and indexing such that response times for common

queries outperform those on existing semantic-agnostic storage formats.

1.3 Contributions

This work makes the following contributions:

• A novel row-based run-length partial compression technique is developed that performs

comparably well to block-based full compression techniques on large genomic datasets.

• Three row-based indexing strategies for genetic variant data stored in row-compressed format

are devised that leverage both key binning and a novel use of sparse file offsets for indexing.

• A comparison is provided of NVME and SATA SSD technologies, and EXT4 and XFS filesystems,

for the storage and retrieval of indexed and compressed genomic data, in both dense and

sparse files.
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CHAPTER

2

BACKGROUND

Genomics is the field of science dedicated to the study of genomes, which are sequences of DNA

within cells. Human DNA is split across 23 chromosome pairs, 22 of which are relatively symmetric

autosomes and one is a pair of sex chromosomes, which are not the same in males and females. There

are other places that DNA and other biomolecular sequences exist within humans, but they are much

smaller and other than perhaps mitochondrial DNA, these are not the primary focus of information

format optimization within genomics or sequence bioinformatics; because of their small size they

do not pose significant problems regarding digital storage and retrieval of information.

Within each pair of chromosomes, one comes from the genetic father and one from the genetic

mother. The human chromosomal sequences are made up of micromolecules represented symboli-

cally by the letters A, T, C, and G. Individual molecules in the sequence are referred to as bases. DNA

is comprised of two strands of base molecules wound around each other in a double helix pattern,

now a widely recognized image throughout the general population. A in one strand is paired with T

in the other strand at the same location, and similarly C and G are paired with each other. Due to

this fact, one strand is able to be inferred by knowing the contents of the other strand, and thus only

one of the strands needs to be recorded. By convention, one strand is chosen as the forward, and

the other is chosen as the reverse.

The contents of these sequences control many biological characteristics. The value of knowing

the genetic makeup of an individual is that correlation analyses can be run between a person’s

physical characteristics and their sequence characteristics, especially focusing on places where an

individual differs from a majority of the global or localized genetic populations. Using these types of

analyses, physical ailments or physical responses to stimuli like medication can be linked to genetic

traits, and such linkages when obtained with high confidence scores can be used predictively
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with other individuals who have similar genetic traits. The process of attaching rich semantic

information to genomes is known as annotation. To date, many such analyses have been performed,

and annotation datasets are growing quickly alongside the raw genetic datasets. This predictive

power informs processes like precision medicine and preventative healthcare, which given accurate

sequence information and annotations can lead both to improved health outcomes and reduced cost,

by means of both early detection, and reducing time and medical resources by tailoring treatments

and care to a particular individual [11] [21].

Genetic sequencing pipelines are used to obtain and record the genetic makeup of an individual.

The beginning of these pipelines is to obtain physical sequence fragments, and record their contents

digitally. Next is to assemble the digital fragment data into a single high quality representation of

the organism’s overall sequence. Various methods of taking fragments and assembling them into

a complete sequence are established in the genomic academic and industrial communities, and

continue to be an area of research and improvements. The human genome is just over 3 billion base

pairs long, so data structures and algorithms must be used to speed up the process of assembling

the fragments, instead of naive solutions such as exhaustively searching for the best-match place for

fragment in the overall sequence. Sequencing processes generally include many layers of redundancy

in order to make sure that each position is read with high confidence, and to ensure that as many gaps

are covered as possible. A metric used here is read depth, which affects the quality and thoroughness

(minimizing gaps) of the sequencing [19]. The depth refers to the average number of reads that

overlap each base position. For example, a read depth of 4 means that the sum of the lengths of the

reads divided by the length of the whole genome is 4.

The Broad Institute maintains a list of "Best Practices" for sequencing pipelines, which describe

the recommended steps [7]. The major computational steps are summarized below.

1. Assembling short sequences of input reads into an overall sequence, determining at which

position each short read belongs. This often includes aligning to a reference (∼3 billion bases

in human genome, with a file size of ∼3.1GB) by finding the most similar region based on

some inexact matching algorithm. This creates a SAM (Sequence Alignment Map) file, or a

binary or compressed BAM/CRAM equivalent.

2. Deduplication of overlapping regions (using read/coverage depth).

3. Sorting the records by chromosome and position (all data is sorted from now on).

4. Quality score normalization.

5. Variant calling. This determines where, and how, a sample differs from the reference, and

creates a Variant Call Format (VCF) file.

6. Filtering by quality scores. Some reads are of low quality, which happens because they are

obtaining data from an imperfect physical sample. If, for one sample, many reads at a particular

location are low quality, a threshold can be used to filter those out because it is not valid to

make an assertion about the content of that location on that genome.
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7. Annotation of positions or specific alternate bases.

Figure 2.1 Genome Sequencing Pipeline Overview

Figure 2.1 visualizes this process in a vastly simplified manner. At the top are a number of reads;

these are digital text representations of DNA fragments read in from a physical sample through

a sequencing machine. These fragments are then assembled and matched to positions on the

genome through some method. Several methods for this exist, and this is a computationally hard

problem, so bioinformatics algorithms and data structures are crucial in performing this in an

efficient manner. In one popular method, a reference genome, and a suffix tree constructed from

it, are used to determine where subsequences of read fragments occur in the reference, using a

best-score optimization algorithm because the match may not be exact. In a standard sequencing

read there must be overlaps in reads, by the pigeonhole principle, because the sum of their lengths

is multiples times the length of the full genome. The average overlap per position is known as the

coverage, shown here to be approximately 4. In a sufficiently random sample of reads, the overlap is

spread throughout the genome sequence and not concentrated to any particular region, leading to

improved reliability for the whole genome. In shallow reads, gaps can and often do exist, meaning

that the sample’s genome is not fully sequenced, and these gaps can also recorded in the VCF file

as unknown bases. In such a shallow read containing gaps, the gaps can be left in, or statistical

methods can be used to infer bases from similar existing samples [13].

After assembling the genome sequence, variant calling is performed between it and the refer-

ence. Single base modifications known as Single Nucleotide Polymorphisms (SNPs), insertions and

deletions (INDELs) of bases, and other more complicated structural modifications not shown in
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Table 2.1 VCF File Snippet

##fileformat=VCFv4.3
##FILTER=<ID=PASS,Description="All filters passed">
##INFO=<ID=AC,Number=A,Type=Integer,Description="Total number of alternate alleles">
##INFO=<ID=AN,Number=1,Type=Integer,Description="Total number of alleles">
##fileDate=20200409
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT HG01 HG03 HG04 HG05 HG08 HG15
1 10075 rs12 A G 100 PASS AC=2;AN=12; GT 0|0 1|0 0|0 0|0 0|0 0|1
1 10115 rs21 G A 100 PASS AC=2;AN=12; GT 0|0 0|0 1|1 0|0 0|0 0|0
1 10213 rs24 C T 100 PASS AC=1;AN=12; GT 0|0 0|0 0|0 0|0 0|0 1|0
1 10319 rs28 C T 100 PASS AC=1;AN=12; GT 0|0 0|0 0|0 0|0 0|1 0|0
1 10527 rs32 C A 100 PASS AC=3;AN=12; GT 0|0 1|1 1|0 0|0 0|0 0|0
1 10568 rs40 C A 100 PASS AC=1;AN=12; GT 1|0 0|0 0|0 0|0 0|0 0|0
1 10607 rs42 G A 100 PASS AC=1;AN=12; GT 0|0 0|0 0|0 1|0 0|0 0|0
1 10838 rs44;rs46 GA GAA,G 100 PASS AC=1,5;AN=12; GT 2|0 0|2 0|2 0|1 2|0 0|2

this figure, are detected and recorded into the VCF file. This investigation looks at the output of the

variant calling step, simply represented in the variant table in Figure 2.1.

VCF files are laid out as a mapping of genetic variation descriptions to genetic samples that

may or may not contain this type of variation. This is done by storing an N x M matrix of N variants

and M samples. Each line is a location on the sequence, recording the way this variant position

changes from the reference, and the samples which contain this variant. VCF files are written as tab

separated values (TSV), so between each column is a tab character (0x09), and between each line is

a newline character (0x0A). An example of a VCF file snippet is given in Table 2.1.
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CHAPTER

3

EXISTING SOLUTIONS

3.1 Compression

3.1.1 BGZF (.bgzf / .vcf.gz)

The most commonly distributed compression format for VCF files is called BGZF [17][p. 14], also

sometimes referred to as BGZIP after its implementation’s command name. These names may be

used interchangeably. This is part of the Samtools project [18] under the htslib software repository

[9], in an executable named bgzip. At a high level, the strategy is to iterate through VCF data lines

until 64 KiB is read, and then compress this into a GZIP block. This is done repeatedly, each time

concatenating the current GZIP block to the end of the output stream of previous blocks, until the

end of the input file is reached. This can achieve high throughput given the level of optimization

work that has gone into the GZIP algorithm and library over many years.

GZIP has a theoretical upper bound compression ratio of approximately 99.8%, which occurs

when every byte in the stream is the same and the stream is a multiple of the default GZIP block size,

which is a rare scenario to encounter in real-world applications. BGZF used on the 1000 Genomes

Project chromosome 1 VCF file achieves a compression ratio of 98.14%. This is a good ratio because

the bytes are not nearly all the same, but the GZIP used under the hood of BGZF is still able to

recognize repetitions of multi-byte symbols.

An advantage to this method is that GZIP is a mature standard with wide support in tooling, and

the concatenated compression output stream of blocks constitutes a valid GZIP decompression

input stream, which can be decompressed with standard utilities like the GNU gzip or gunzip
commands. A downside is that lines are packed into blocks and to get one of them, the whole block
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must be decompressed.

3.1.2 BCF (.bcf )

Another common format is BCF, replacing the V in VCF with B for Binary. This format more takes

into consideration the original VCF format by maintaining the line and some of the column-based

structure. BCF is documented on page 27 of the VCFv3 format specification [24]. It is also in the

Samtools project, but under thebcftools repository, and it links against some files from thehtslib
codebase. The strategy is to perform some preliminary compression of lines by first encoding some

textual key and label symbols as smaller lookup keys into a metadata dictionary. Then the first

8-9 columns are compressed, which contain the information about the variant itself, and then the

remaining M sample columns are compressed. If the sample columns have F number of fields,

where F > 1 (denoted by multiple field names in the FORMAT column), the sample columns are

unpacked into F distinct text vectors, one for each field, with the internal order of samples preserved

within each vector. The vectors are then concatenated and compressed in the same way a simple

F = 1 sample vector would be. The two chunks of the line, variant description and sample genotyping,

are concatenated, and then packed into a BGZF block much like the above BGZF-only strategy.

For the 1000 Genomes Project chromosome 1 VCF file, BCF achieved a compression ratio of

98.42%, compared to the BGZF ratio of 98.14%.

3.2 Indexing

3.2.1 Tabix

The existing standard strategy for indexing both BGZF and BCF files is Tabix [12]. Tabix uses both a

linear index, and a 6 level binning strategy, where each level from the top down uses smaller bin sizes

than the level above it. Each index entry stores a 64-bit virtual offset voffset, which is comprised

of a 48-bit compressed block offset, coffset, and a 16-bit uncompressed stream offset, uoffset.

The coffset is the offset within the compressed file of the start of the BGZF block which contains

this line. The uoffset is the offset within the uncompressed form of that block where this line starts.

The 16-bit uoffset is sufficient to address any location within the block, which, as mentioned in

the BGZF section, has a maximum size of 64KiB (216).

The indexing process of Tabix iterates through the lines of the VCF file, inserting a record into

a bin based on the chromosome and position of the variant record. The index file has a whole

index section dedicated to each chromosome, if the VCF file it indexes contains more than one

chromosome. One binning structure only contains one chromosome’s records. Based on the position

of the record, Tabix finds the smallest bin which it can fit that record into. It starts at the lowest

level of bin layers, and if it cannot find an empty slot for an index entry, it goes to the next layer up

and continues this until it finds a bin with an available slot. In theory, it is possible that it finds no

available slot, but in practice, due to the nature of VCF files, this will not happen.

10



Figure 3.1 Tabix Binned Index

Figure 3.1 shows this "multilevel binned" layout. On the right hand side is the BGZF compressed

file, and on the left side the multiple levels of the binned index for chromosome 1. Values are

conceived only as examples. In this example, the index entries fit into the lowest level of the index,

and each of the smallest bins covers 100 base positions, with space for 3 entries, and each line in the

BGZF file is exactly 50 bytes long. In a real Tabix index these are much larger numbers but smaller

numbers are used here to illustrate the layout.

In the linear index, Tabix stores an entry for each of the lowest-level bins in the binned index,

which in the implementation are set to 16KiB regions across the chromosome, with the position and

voffset of the first line in that bin. Tabix uses a linear index when searching larger bins, particular

the largest bin covering the whole sequence range, which is likely to contain items when smaller

bins overflow around variant hotspots. This significantly reduces seeks and bytes read in worst-case

lookup scenarios.
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CHAPTER

4

DESIGN

4.1 Compression (VCFC)

This novel compression strategy, which is coined VCFC (VCF Compressed), focuses specifically on

the M sample columns within a VCF file. The justification for this is that the 9 non-sample columns

are constant size and do not grow with the size of the sample set. Some benefit may be gained with

compressing some of those columns, particularly the INFO column, which contains arbitrary-length

annotation text, but even its size does not scale directly with the input size so it is not the focus

of this investigation. Some fields in the INFO column which may contain count values, may scale

in byte size on a log10 basis, by storing non-left-padded integers as text, but in common practice

these can be assumed to have a reasonable upper bound because they are based on the size of a

population.

VCFC takes advantage of underlying assumptions about the content of VCF files. These assump-

tions are as follows:

1. There is more than 1 sample in the file. VCF files can be created for each individual in the

sample dataset, but this results in extremely high levels of redundant information and a

difficult-to-query fragmentation of data across many small files. For smaller cohorts, perhaps

a dozen or few dozen samples may be included, but in general the assumption is that the

number of samples is on the order of a few hundred, ranging up to the many thousands or

more. This juxtaposition of sample entries next to each other in the same file frequently leads

to adjacent entries of identical value. Since run-length sample compression is used, a larger

sample set will yield a better compression ratio.
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2. There is a restricted character set. The overall character set is UTF-8. Sample columns have

well-defined data fields within the VCF specification [24]. These fields in turn, for the most

part, have well-defined types and even more restricted character sets than UTF-8 or even than

ASCII, which is a subset of UTF-8. These restrictions can be used to reduce the number of bits

needed to represent a symbol comprising one or more bytes.

3. The alternate bases for a given variant are ordered in decreasing order of frequency. At a

position on the genome, the most frequent variant is listed first, proceeding down to the

variant with the lowest frequency. This constraint is not imposed by the VCF specification but

is a common, reliable, and most importantly computationally useful convention that can be

used by processing utilities.

Consider an example in Fig 4.1. Headers are shown for ease of comprehension. Position 10075

within chromosome 1 has 3 recorded variant alternates from the base A in the reference.

In descending order of frequency they are T, AA, G. The order is verifiable by counting the

appearance of those 1-based indexes in the sample columns. It is common practice to include

the AC field in the INFO column, which also has these counts at the same indexes as the ALT
column. In the example, the variant to T at ALT index 1 appears 3 times in the sample set.

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT HG1 HG3 HG4 HG7
1 10075 rs12 A T,AA,G 100 PASS AC=3,2,1;AN=8; GT 3|0 1|2 1|1 2|0

Figure 4.1 VCF Line Example

An important note is that this ALT sorting convention is so useful in alleviating future sorting

operations that it warrants inclusion in the specification itself. If a VCF file does not meet this

specification, a file reader can re-index the alternate bases for a variant in order to impose it,

without having altered the informational content of the file.

4. The samples do not differ from the genome reference file in most positions in most sam-

ples. The implication of this is that the sample genotype value 0 is the most common case,

meaning that this copy of the chromosome (humans are diploid, meaning two copies of each

chromosome, which can independently vary) has, at this position, the base listed in the REF
column.

Because individuals within a species (and even across species) share so much of their DNA,

this is a safe assumption, and the abundance of samples with genotype 0|0 can be utilized in

compression schemes.

In addition to the above assumptions, for the purpose of this investigation, a constraint is

imposed that only genotype values are considered, and only in the format of two non-negative
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whole numbers separated by a bar character ([0-9]+|[0-9]+). This refers to the GT field for sample

columns, specified in the FORMAT column. Other information about a sample can be included and

specified in the FORMAT column, but those are not considered. The work subject to this investigation

could be expanded to handle those cases by grouping by field type and compressing each set of

contiguous field values individually in order to achieve more contiguous regions of similar values,

which is how the BCF format [24][p.29] handles this.

For VCFC compression, the scheme used is very simple. It only compresses the sample columns.

The reason for this is that it is the primary way that data size scales with more input data in the

form of sample genomes. A species genome is bounded in size, and a thorough dataset with high

coverage will include most variants, so including more input data is unlikely to add many more lines

to the N variant lines in the file, but rather adds more columns to the M sample columns. Instances

of human genetic variation are on the order of several hundred million, and are unlikely to increase

far above a constant multiple of that in the very near future, barring some significant intraspecies

genetic drift. The 1000 Genomes Project [22] has published nearly 90 million variants. On the other

hand, the M sample columns are theoretically unbounded and depend directly on the amount of

input data; as more samples are added, the size of the uncompressed dataset experiences a linear

increase.

Figure 4.2 Genotype value frequencies 1000 Genomes Project Phase 3 Chromosome 1 all-sample VCF (log
scale)

Figure 4.2 shows the occurrences of various sample genotype values within the 1000 Genomes

Project chromosome 1 VCF file. Genotype values with fewer than 4 occurrences were excluded, for

brevity and readability. The y-axis is a log scale, so 0|0 vastly dominates in frequency, but those
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Figure 4.3 Run Lengths by Sample Genotype in 1000 Genomes Project Phase 3 Chromosome 1 all-sample
VCF

with 0|1, 1|0, 1|1 are also highly frequent compared to all other values. This analysis was used

in restricting the compression in this strategy to only compressing those 4 genotype values. An

interesting phenomenon, also visible in this figure, is that symmetric allele pairs tend to be more

common, on average, than mismatched alleles, meaning the two copies of the chromosome in

the sample tend to have same variant at a particular location, even among relatively rare variant

alternates like 5|5 and 6|6.

Figure 4.3 shows the distribution of genotype run lengths among the sample columns, i.e. the

number of samples with a same genotype that are adjacent to each other in the VCF file. The data

points were grouped by run length ranges of 25 in order to be more readable. The size of the circles

are a linear relation to the number of runs of each length. Genotypes 0|0, 0|1, 1|0, 1|1, and 2|2
are by far the most frequent values and several of them extend in run lengths up into the several

hundreds or a few thousand. The maximum length of a run in the VCF file is based on the number

of samples. For this dataset that number is 2504.

Using the assumptions listed, and analysis shown in Figures 4.2 and 4.3, we take advantage of

the prevalence of genotype values of 0|0, 0|1, 1|0, 1|1, and apply run length compression to each

of these, with each sequence of 3 bytes treated as a symbol to be compressed. We additionally get a

benefit of discarding white space within the runs, so we reduce some number of 4 byte symbols

down to 1 byte. Genotyping values other than these four are ignored and left uncompressed in the

file. This is acceptable because they not as common and even on the occasion when they do occur,

they comprise only short runs or none at all. Those listed for compression are often in runs of tens

or hundreds at a time in large multi-sample VCF files.

Table 4.1 shows how runs of consecutive genotype values are encoded and thereby compressed.
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The underlined value is the flag which is a non overlapping prefix with the other run flags, and the

remaining bits store the length of the run. Instead of reserving 2 bits for each flag, which would

evenly distribute it across the 4 possible genotype values, the decision was made to use 1 bit for

the 0|0 case and 3 for the others, giving the most frequent case the ability to compress longer runs,

as in that case 7 bits remain for the length encoding while 5 bits remain for the others. Figure 4.2

shows the vast disparity between the more common alternate allele genotype indexes and those

that are less common. The graph uses a log scale, so the genotype values shown in Table 4.1 that

are much more common are the prioritized focus for optimizations in the compression scheme

involving the variable length flag and run length bits.

The visual in Figure 4.4 is meant to aid understanding the compression strategy, using the same

input simplified VCF as shown in Chapter 2. In the top VCF, samples are highlighted based on their

value and whether or not they are compressed. In the bottom, the compressed genotype values are

removed entirely and replaced with the corresponding byte containing a flag and run length bits

from Table 4.1. In this example, the bytes needed to represent the sample columns went from 184

bytes, to 43 bytes in the compressed version. In larger VCF files, this ratio increases drastically as

runs become more common and lengthy.

Table 4.1 VCFC Run Compression Flags
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Figure 4.4 VCFC Example Visual
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4.2 Line Based Indexing

The strategies for indexing used by Tabix and BGZF discussed in Chapter 3 are a hybrid approach

between block-based indexing and line-based indexing. The index points to the compressed block

that the requested line is in, and the offset within the decompressed block where it begins. So while

a reader does know the location of a line after decompressing the required blocks, it must still read

and decompress the entire block that the line is contained within.

One method of recording indexes for individual records is exhaustive indexing, in which an index

entry for each record in the set is stored. This can lead to large index sizes, but for some scenarios,

for example indexed columns with high value cardinality, the decreased lookup time is worth the

cost of increased index size.

Another method is sparse indexing. In this method, index entries are stored for records in the

dataset, except for those which are omitted based on some condition, for example, a key value

does not map to legitimate data or a key value is deemed redundant with existing keys. A particular

form of sparse indexing is binned indexing, in which key values are grouped into bins of similar

values based on some comparison function. Comparison functions vary and certain ones are better

for certain types of data, and can include strategies such as hashing, integer range binning, and

exact value grouping (such as in SQL GROUP BY statements). Since, in our case, the file is sorted by

position, the index can use this to its advantage and just skip some number of lines in the file which

are close to an existing index entry, and not include those in the index. As a result, the index becomes

smaller in a direct relation to how many lines are skipped between each entry, but the index can still

direct a reader to a location in the file which is relatively close to the first record requested by the

reader. There is a trade-off between these two factors:

• The time it takes to read through the index to locate the appropriate entry to service a query;

and

• the skip distance the index entry places the reader inside the file, ideally minimizing seek time

from that point to where the actual position is that was requested.

Because we are utilizing line-based indexing instead of raw byte-stream based indexing, where a

global optimum between these tradeoffs can be found (at least for that particular storage technology

depending on the seek overhead), the length of the lines in the input data determines the optimal

balance between these two factors. The same is true for BGZF and Tabix, and both the compression

block sizes and the index bin sizes used in that technique.

In this section, three strategies for performing both purely line-based based indexing are featured,

taking advantage of the purely line-based compression of VCFC. These are listed and described

below.
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4.2.1 Sparse File Offset-As-Index

In this first strategy, for each variant, a positive integer offset is computed based on the chromosome

name and its position. This enables the byte offset of a line within the file, if it exists, to be computed

in constant time.

Sparse files are supported in many modern filesystems, such as EXT4 and XFS. A sparse file is

a file in which some sections of the file are addressable bytes within the file, but do not actually

allocate blocks within the filesystem. A filesystem block is a contiguous, non-overlapping sequence

of storage device sectors. For example, a common scenario is for a storage device to have sectors

of 512 bytes, and a filesystem to have a block size of 4096 bytes. This means any operation to the

storage device will incur a read or write of at least 512 bytes, and any operation to the filesystem will

incur a read or write of at least 4096 bytes, in this case 8 sectors. Filesystems generally use a block

size larger than the sector size because they assume most files are larger than one sector. Grouping

them into blocks of larger sizes is much better for performance, by reducing function calls and

by reducing I/O operations (IOPS) to the storage device, which for non-flash storage may incur

an expensive head seek operation. This batching of IOPS is especially beneficial when the device

and kernel are direct memory access (DMA) enabled so that the storage device can be pointed to a

sequence of addresses in memory to read from or write to directly without needing the CPU to issue

additional read or write instructions to the device.

In a sparse file, filesystem blocks which would contain all zeros are simply not allocated on the

hardware device. This region is referred to as a hole. The reported nominal file size is the maximum

file offset minus the minimum file offset, but the real file size is the number of blocks allocated to

the file times the size of the filesystem block. For dense files these are approximately the same, but

for sparse files they can be very different.

Deallocating empty blocks is one way to save space, but it only can be exploited when the empty

regions are at least one block large. If an empty region of a file is less than the size of a filesystem

block, or overlaps into two filesystem blocks but does not reach the edges, those blocks will still

need to be allocated because there is real (non-zero) data in them. Remember the filesystem block

is the minimum size of an operation that the filesystem supports, it cannot allocate part of a block

and leave the rest sparse. In the worst case scenario, we may have a file in which one byte of each

block is written by an application, and the rest of the block is empty. For each one byte, one would

need to allocate an entire block minus that byte of real data. This additional wasted allocation is

referred to as internal fragmentation.

In dense files, it is often the case that the last block of a file is not completely filled with data.

Any application reading the file will encounter the end-of-file (EOF) before reaching the end of that

final block. Because of this, it is often the case that even a completely dense file in which all written

non-zero bytes are contiguous still has some small amount of internal fragmentation. In that case,

the nominal file size is less than the occupied storage size in blocks.

Table 4.2 shows this overhead due to internal fragmentation in one representative (1000 Genomes

Chr 22) VCF file, using two different EXT4 block sizes. In the top row with 4KiB block size, the sparse
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Table 4.2 Sparse File Internal Fragmentation Overhead

equivalent of the compressed file was 12.56 times larger than the contiguous compressed file, the

majority of which is purely due to internal fragmentation. In the second row, the filesystem block

size was set to 1KiB. Because the block size is smaller, there is less room for fragmentation to occur.

For XFS, sparse files are handled differently. For an identical sparse offset-as-index version of

the chromosome 22 VCFC file, EXT4 only allocated 9522024 blocks, while XFS allocated 84825032

blocks, an approximately 8.9x increase. A possible cause of this is that XFS uses a more aggressive,

preemptive allocation of filesystem space [20], which may be poorly suited to a usage in which the

overwhelming majority of the file is sparse and the majority of data writes distributed within the

sparse file are relatively short (less than 16KiB)

Each line in the sparse file has an additional header placed at the start, which has the byte

offset from this line to the previous line and the byte offset from this line to the next line. This

is used to quickly and reliably traverse between lines of the sparse file, e.g., when performing a

range-based lookup in the file. In the file described in Table 4.2, this overhead constituted just

16MiB of the 3979MiB of overhead from converting from a contiguous compressed file to the sparse

representation of the same file. Sparse regions between data lines in the sparse file may be very

large, so to avoid seeking through all of those bytes, these line headers provide a way to seek over

them and skip the sparse region.

The first step of performing a query using the sparse offset-as-index method is to translate the

query start position into an offset in the file. This is done using a linear equation based on several

parameters.

Given a coordinate query: chrN:Start-End, one can translate this to a byte offset. In order to

maximize sparse file efficiency and ease of traversal, this must be aligned to the start of a filesystem

block.

1. First, the chromosome N is translated to {1..22, X, Y, M}, X=23, Y=24, M=25.
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2. Next, assume the max length of a chromosome (L). Since all unused locations will be sparse one

can overshoot and pick a value higher than necessary. This may result in translated coordinate

offsets beyond the actual file length. It is relatively safe to assume that the maximum human

chromosome length is 250 million base pairs. We set it to 300 million to be safe.

3. Next, a multiplication factor (F) is defined. This ensures two consecutive variant lines do not

overlap in the sparse file, and depends on the input. If compressed lines are long, F must be

higher, as F must be a multiple of the FS block size (B) that is larger than the longest line in

the file.

We set F to 16KiB, with B = 4096.

See Figure 4.5 for a better understanding of why this is needed. This figure shows the byte

length of compressed lines within a VCF file from the 1000 Genomes Project in compressed

form using VCFC. With a block size of 4096 and lines written to the file aligned to the start

of filesystem blocks, if two lines that are longer than 4096 bytes have consecutive variant

positions, say 100 and 101, their offset translation would cause the second line to overlap with

the bytes from the first line extending past 4096 bytes long. This factor allows us to space these

lines out so that this overlapping does not happen. The actual value depends on the input

data and how long its compressed lines are. Setting it higher than it needs to be is safe, and

can avoid having to tweak based on any practically foreseeable input, as long as it does not

overflow a long integer type in the offset calculation.
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Figure 4.5 VCFC Compressed line lengths in 1000 Genomes Project chromosome 22
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The equation for computing byte offsets for the sparse offset-as-index strategy are shown below:

General form of byte interval: [F (N · L +S ), F (N · L + (E +1))−1]

As an example, let the following file parameters be:

• L = 300000000,

• F = 16384.

Consider the query 2:1000000-2000000, meaning chromosome 2 from base positions 1 million

to 2 million.

That query range is used to compute a sparse offset range:

St a r t = 16384(2 ·300000000+1000000) = 9846784000000

E nd = 16384(2 ·300000000+ (2000001))−1= 9863168016383

The section of the sparse file where variants meet this location query is R a ng e bytes long, where

R a ng e = E nd −St a r t .

R a ng e = 9863168016383−9846784000000= 16384016383

This R a ng e covers 1 million · F bytes of the file.

The program can then seek directly to the St a r t offset in the sparse compressed file. If the

location seeked to is not a sparse file hole, then the first position in the range does have a variant

in the file, and one can use the line headers to jump from this line to the next, and continue

through to the end of the query range. However, if this position initially seeked to (computed from

2:1000000) does not have a variant in this VCF file, the reader will be placed inside a sparse hole,

that is, unallocated blocks of zeros where no data resides. Because this hole in the file may be very

large, seeking forward or backward to the closest data line could be extremely time consuming.

However, reasonably recent versions of the Linux kernel provide a mechanism for handling this with

additional whence values for the lseek function, documented in its manual page [14], which are

also usable in the libc fseek function. These are SEEK_DATA and SEEK_HOLE. If lseek is called

with SEEK_DATA and the offset of the current position in the file, the kernel will update the file offset

to be the start of the next block that contains data, if one exists, effectively jumping past all of the

following sparse blocks to the first non-sparse block. If the current block contains data, the file offset

is left unchanged. Since our factor parameter (F) for sparse offset computation is constrained to

being a multiple of the filesystem block size, all of our data lines in the sparse file are aligned to the

start of filesystem blocks. So the next non-sparse block after we initially seek into a hole based on

the query offset computation will be the start of the next highest data line.
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4.2.1.1 Sparse Offset-as-Index Caveats

There are two caveats in this indexing technique, which are not encountered in the others. These

are detailed below, along with the reasoning for why it will not significantly impact evaluations for

the first problem, while a workaround is employed for the second problem.

4.2.1.1.1 Duplicate Records

One caveat for this particular technique of indexing is that there is a 1:1 relationship between a

(chromosome, position) location tuple and a file offset. However, VCF files support multiple

records for the same location tuple. For example, when a position has multiple important variants

that are deemed worthy of their own identifier and information columns. One possible solution

to this would be to merge those records at the same location, which is valid and constitutes a

semantically equivalent VCF file. This is done by joining the alternate bases into the same alt

column, now as a list separated by commas, re-indexing the sample genotypes using that list of

alternate bases, and joining the other columns and information key-value pairs together in the same

order as the list of alternate bases (with commas between them and dots for nonexistent values).

Nonexistent values could occur when one variant has an information key-value pair for which the

key does not exist in another variant record on the same chromosomal location.

These records are relatively rare within the evaluation dataset. Hence, this resolution was not

pursued in this work. In the 1000 Genomes VCF dataset, approximately 0.09% of chromosome 1

variant positions are duplicate, and 0.1% of chromosome 22 variant positions are duplicate. When

these records are excluded from the sparse offset-as-index versions of the VCF files, this will reduce

the query time spent in the decompression phase. But the index evaluation phase remains the same

since the duplicate records are contiguous in the file and map to the same index position. This also

only occurs for those records that are duplicate, and within those only with the ratio of 1− R−1
R ,

where R is the number of times a position repeats, which is low (around 2 or 3 times). For example,

if a variant query range of 10k has 0.1% of its records repeated once and the duplicate records are

excluded in this indexing strategy, the overall decompression time will be reduced by approximately:

0.001 · (1− 1
2 ) = 0.0005, or 0.05%

4.2.1.1.2 Maximum File Size

Another caveat is that due to the multiplications used for the multiplication factor F and upper

bound on chromosome length L , the numbers for file offsets grows very large and can pose problems

relating to maximum file sizes of filesystems. For example, for chromosome 1, with F = 4 ∗4096 and

L = 300000000:

Offsetma x = (300000000 ∗25) ∗ (4 ∗4096)−1

Offsetma x = 122879999999999

Offsetma x ≈ 246.8
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This offset fits easily within a 64-bit integer, however EXT4 has a maximum file size constraint

of 16 TiB (244) due to it supporting 232 maximum blocks per file and all of our evaluations use a

4 KiB block size (212). This means EXT4 with a 4 KiB block size is unable to address file locations

in the upper regions of the space. Neither the L nor the F can be reduced to fit the max offset

within the maximum EXT4 file size. If the EXT4 block size is increased, the sparse file fragmentation

increases and the real file size increases slightly above linearly, making that an impractical option.

XFS does not have this problem due to its maximum file size of 8 exabytes (EiB) minus one (263−1).

To work around this, we can remove the factor of 25 used for indexing to each chromosome in the

file, which reduces Offsetma x by more than 4 powers of two. This address space will fit within

42 bits, addressable by EXT4. This means that a strict constraint for this strategy either that each

chromosome be stored in a separate file, or that a filesystem is used that supports sufficiently high

file sizes.

4.2.2 Contiguous external binned index

In this second strategy, an external file is used to store a linear index of bins, each containing a

number of records which point to records in the compressed VCFC file. The index entries map a

chromosome and position to a byte offset within the VCFC compressed file of the line where that

combination occurs. The structure of each 13 byte entry is shown in Figure 4.6.

struct index_entry {
uint8_t reference_name_idx;
uint32_t position;
uint64_t byte_offset;

};

Figure 4.6 VCFC External Index Entry Structure

Stored in struct index_entry, reference_name_idx is an integer translation of the chro-

mosome name. The position is the position of the variant on the chromosome. And byte_offset
is the offset in the compressed file where this chromosome and position first occur. In the case

of duplicate (chromosome, position) value tuples or variants which span a large range of po-

sitions, each entry covered by one or more variant lines in the input points to the byte offset of

the first variant record which met that criteria. The fact that the file is sorted by start position

makes this possible. The sequence of index entries is created for a specific VCF file; the number of

entries and the position difference between them vary. Instead each index represents a constant

number of lines within the VCFC file. This bin size is configurable as an input parameter to the

create-binned-index command.

To query the index, since the entries in the index and the data in the file are both sorted, a binary
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search implementation is employed to rapidly find the first index entry which is equal to or less

than the start of the requested query. That byte offset is then seeked to in the data file, and lines are

decompressed. Based on the bin size, there may be some number of lines which must be filtered

past before reaching the start of the query.

4.2.3 Sparse external index

This third and final index combines beneficial aspects of both of the previous index strategies. It

uses an external file as the index with the same entry layout as the contiguous external binned index

(see Figure 4.6, and it uses sparse offset-based indexing into itself. One way to think about it is that

the index file indexes the compressed data file, and the sparse offsets of index entries index the

index file itself.

Using an external file vastly simplifies file layout as compared to the Sparse Offset-As-Index

technique, and enables much faster indexing operations because only the small external file must

be written or updated, instead of the compressed file containing all of the data. Even if updates to

the index can be done in place without a full rewrite of the file, if the index is stored within a large

file, kernel or userspace library (e.g. libc, C++ iostream standard library) I/O caching can increase

time and I/O bandwidth cost on the larger file (where the index is interspersed with data) compared

a smaller file containing only the index, because more unused file data is read into memory.
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CHAPTER

5

EXPERIMENTAL FRAMEWORK

5.1 Implementation Correctness

The evaluation of correctness for the VCFC compression and indexing techniques was performed

through thorough experimentation.

The first correctness experiment validates the VCFC compression and decompression. A set of

VCF files from the 1000 Genomes Project were compressed with VCFC, then decompressed with

VCFC, and the output of the decompression was checked against the original VCF file with the diff
line differencing utility.

The second experiment focuses on the indexing implementations. It samples a variety of VCF

queries across the possible query space and validates that they matched the expected output. This

was done using Tabix as the reference query servicing implementation. The same query, for example

22:17000000-20000000 (chromosome 22 from positions 17 million to 20 million), was performed

using both Tabix and our indexing strategies, and the output line count was obtained and the

complete output was hashed with sha256sum. The same was then performed with Tabix, and

the line counts and hashes were compared. A series of queries were performed in order to cover

equivalence classes and boundary conditions which included cases like querying before or after the

first and last lines in the file, and querying for lines that do not exist.

It is possible that the VCFC implementation and Tabix returns, for the same query, different

output variants of the same number of lines and with the same SHA256 hash. However, the VCFC

compression and decompression was thoroughly tested with exact output value matching, so any

individual lines that are output are assumed to be correctly decompressed lines from the input

VCF. Any erroneous output from the index queries would mean that one or more lines were entirely

27



included or excluded, altering a minimum of a few hundred bytes in the output. The chance of

this large of a byte-wise difference in output producing a line count match and a hash collision,

on multiple different regions of the index, is so exceedingly small that it is assumed to have not

occurred.

For a small number of variants, our binned external index and sparse external index will include

them in results, while Tabix will not. The reason for this is that we include some structural variants

that overlap a query range if they provide an SVLEN key-value pair in the INFO column. If that integer

value is present, its absolute value minus 1 is added to the start position of the variant, and this is

treated as the range of the variant (see the VCF specification [24], section 3). For other structural

variants, we use the END key-value pair in the INFO column to obtain the start and end position

of the variant. This is the same way that Tabix computes this, so we obtain the same results as

Tabix for these queries. The impact of the inclusion of structural variants with ranges provided by

SVLEN is that some queries used in the evaluation may return slightly more results in the VCFC

binned external index and sparse external index implementations than in the Tabix or VCFC sparse

offset-as-index implementations, leading to very slightly increased times for those two indices. In

the 1000 Genomes Project chromosome 22 VCF file, 127 out of 1,103,547 variants (0.0115%) are

structural variants that use the SVLEN field. To evaluate these relatively rare cases, the first 3 fields of

the output lines (chromosome, position, id) were extracted and compared using a line differencing

utility against the output of the same query from Tabix. Output lines in our output that were not in

Tabix output were then cross-referenced with their corresponding INFO column to verify that they

constituted a case of the SVLEN position overlap described above.

The Sparse Offset-as-Index strategy was validated using a mix of hash and line-wise output

differencing as well. Due to caveats described in Section 4.2.1.1.1, some mismatches, in which

multiple lines existed at the same position but were not reported as such, were ignored in the results.

As discussed previously, the time impact of these discrepancies did not make up a significant portion

of the differences in average query performance over the large experimental data series for this

particular index implementation.

5.2 Systems Evaluation

This section describes the methods and systems used to evaluate the performance along with other

measurements performed and included in Chapter 6.

The implementation is written in C++11, compiled using the GNU C++ compiler and libraries

version 4.8.5 on CentOS 7 with Linux kernel 4.10.13. For timing evaluations, optimization level

3 was enabled with -O3. No other nonstandard build flags were applied.

The evaluations were performed on the the ARC cluster [2] at North Carolina State University.

The two cluster instances are described in Table 5.1. The implementation is single-threaded so only

one hyperthreaded logical core was used for execution. Only one execution was run at a time to

minimize CPU context switching and cache contention and to eliminate I/O bandwidth contention.
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Table 5.1 ARC Cluster nodes used in evaluation experiments

Cluster Node 1 (c80):

• CPU: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz

16 cores, 32 threads. 20MiB L3 cache.

• Storage: SAMSUNG MZPLK1T6HCHP-00003 (NVME), 1.6 TB

Cluster Node 2 (c29):

• CPU: Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz

8 cores, 16 threads. 11MiB L3 cache.

• Storage: Samsung SSD 860 EVO (SATA), 250 GB

On each storage device, two partitions were created, each filling approximately half of the

storage device. One partition was initialized to contain an EXT4 filesystem, and the other with an

XFS filesystem. Both filesystems used a block size of 4 KiB on 512 byte physical device sectors. The

filesystem block size is the minimum size of a contiguous set of sector-aligned bytes on the storage

device that are allocated, read, and written at a time by the filesystem.

Kernel disk caching was left enabled. For comparative timing-related evaluations which seek to

incorporate I/O performance, to minimize impact of disk caching and cache retention, the kernel

filesystem and read/write buffers were flushed before each run using the following method:

echo 3 | sudo tee /proc/sys/vm/drop_caches

Each test scenario used in timing-related evaluations was run 10 times and averaged. For some

tests which report result sets of a small number of data points, standard deviation is included in the

reporting of results. In tests which graph several hundred or more data points, each averaged over 10

runs, the standard deviation of each averaged data point is on the order of a few hundred microsec-

onds, with some ranging into the several milliseconds. The sparse file queries had higher standard

deviation, with more being on the order of milliseconds, rather than hundreds of microseconds.

Since these evaluations used 200 data points per graph data series, and the measured standard

deviations within the 10 runs for each data point are much lower than the deviation between data

points and the average trend of each series, and also less than the difference in averages between

data series, the standard deviations of each data point are not reported, as the trend lines are deemed

to be accurate representations of each data series.

Some tests involved aggregating a large sampling of queries across the range of the input file

in order to evaluate a different independent variable, for example, index bin size, which provides

additional amortization of environmental impacts on runtime. Given these mechanisms employed

during execution, outliers shown in timing results are assumed to be true positive outliers.
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5.3 Evaluation Data

The data used to evaluate the new compression and indexing strategies included both synthetic

and real-world VCF objects.

Synthesized VCF files were created by generating N variants and M samples, with reference

bases and alternate bases chosen at random, with up to A alternate bases with decreasingly likely

probabilities, and with the same A for each variant in the VCF file. Since in the real world variants do

not all have the same number of alternatives, this does not accurately mimic a real VCF file and may

underestimate compression ratios because a large number of variants have either 1 or 2 alternate

base sequences which are variant from the reference. This may underestimate the compression ratio

because the synthetic files have shorter run lengths of sample genotypes in each variant line. But

this method does mimic a more complex case than simply having one alternate. The configuration

used for testing was to have 3 alternates for each variant position, with probabilities [0.90, 0.08,
0.02], in that order, since the alternates are defined to be listed in decreasing order of frequency,

that is, alternate 1 is more common than alternate 2, which is more common than alternate 3, and

so on. There is in theory no limit to the number of alternates that can occur at a variant location.

These synthetic files were only used for running high speed correctness evaluations, rather than

sub-sampling from an existing real-world VCF file.

Real-world VCF files were also used for evaluating correctness in final stages of development

of each solution, as well as for measuring storage and time metrics. The input files were from

the 1000 Genomes Project [22] Phase 3 all-sample VCF files, which contain 2504 samples and

approximately 89 million variants. Exhaustive evaluations were performed on the whole set of 1-22

and X chromosomes with the constraints discussed in Chapter 4. Additional non exhaustive, but

still representative, tests were performed with either chromosome 1 or chromosome 22, as roughly

representing the endpoints of large and small autosomal (non-sex) chromosomes, respectively.
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CHAPTER

6

RESULTS

6.1 Compression

6.1.1 Compression Ratio

The compression ratio for VCFC was 96.87% on the 1000 Genomes Project chromosome 1 VCF file.

This compares to the 98.14% for BGZF and 98.42% for BCF. This is a good outcome for a compression

ratio. Remember that VCFC only performs compression on the sample columns, and within sample

columns only compresses those with alternate alleles 0 and 1. This means that the relatively simple

strategy of compressing runs of only high frequency genotype values achieved nearly the same

compression ratio as performing both GZIP on a VCF file (BGZF), and performing GZIP on a slightly

binary translated and additionally line-compressed form of a VCF file (BCF). The advantage is that

much of the compression value is preserved, but the variant site and description columns are

not compressed at all. After reaching a variant line during a query operation, if only the variant

information is desired, no decompression takes place as it can read that part of the line in plaintext

directly from the compressed file. This fact is also useful when performing filters on the chromosome

and position, as those columns are not compressed and records can be filtered without doing any

decompression, and by only reading the first 10-15 bytes of a line.

6.1.2 Compression Time

In addition to compression ratio, compression time is also of interest. Compression times for the

1000 Genomes Project chromosome 22 VCF file are shown in Table 6.1 in seconds. Each experiment

was performed 10 times, and the arithmetic mean and standard deviation are reported. The time to
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read the uncompressed file from storage is one factor in the compression process, along with the

compression time and the write time, but since these experiments read the exact same file from

storage, the compression algorithm itself mostly impacts the compression time and the write time

(the algorithm compression ratio affects the output file size and the implementation affects the

pattern of write calls to the device). For this reason, for each storage device, the time to read each

uncompressed VCF input file from uncached storage is also included, labelled cat because it was

performed with the following command:

cat $vcf_file > /dev/null

Table 6.1 Compression Times for 1000 Genomes Project chromosome 22 VCF

EXT4 NVME XFS NVME EXT4 SATA XFS SATA
BGZF 127.29 ± 0.50 126.97 ± 0.56 126.91 ± 0.19 126.90 ± 0.12
BCF 238.43 ± 0.52 238.27 ± 0.38 226.70 ± 0.29 226.62 ± 0.22
VCFC 192.96 ± 0.82 194.49 ± 1.73 176.38 ± 1.0 175.56 ± 2.01
cat 6.15 ± 0.24 5.88 ± 0.26 23.73 ± 0.08 20.42 ± 0.05

Refer to Table 6.1. For the simple read time, NVME performed significantly better than SATA, and

EXT4 and XFS on NVME were essentially equivalent. On SATA, XFS read the input file 3.3 seconds

faster than EXT4. This is interesting because the BGZF, BCF, and VCFC times for EXT4 and XFS on

the SATA device were very close to each other. This means that the read performance was not a

bottleneck in the overall compression process.

In the first column, the BCF compression took 1.9X as long as BGZF, and VCFC took 1.5X as long

as BGZF. BCF performs two phases of compression, leading to more computational work. This trend

also applies for XFS in the second column. VCFC also had a much higher standard deviation than

either of the other two compression algorithms. This can be attributed to the fact that the writes

performed by VCFC are on a line-by-line basis, making them smaller and issuing more of them

than the block-based writes by BGZF and BCF. This can increase the device latency in responding

to each operation, whereas in the former two cases the I/O bandwidth is the more significant

factor when writing the output file. Since these operations were the only active processes on the

device, the available bandwidth should have remained constant between all values in a column.

On XFS, the standard deviation for VCFC was roughly 2X that of the same file being compressed

on the same node on EXT4. Given that the standard deviation of XFS read times was very close to

the standard deviation of EXT4 read times, this suggests the XFS write times have a much higher

standard deviation than both the read times on XFS and the write times on EXT4. This may be due to

the XFS speculative block preallocator [20] suffering in performance due to the jagged write length

patterns of VCFC. To confirm this, further investigation is needed, in particular to understand why

the write performance was so highly variable even between identical file writes.
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For BGZF, the performance across all devices and filesystems is approximately the same, within

one standard deviation of each other. However, for BCF and VCFC we see interesting results. Despite

the read of the input file being multiple times faster on the NVME device, the overall compression

time for BCF and VCFC was significantly faster on SATA. The NVME device was 5.2% slower for BCF

compression and 9.5% slower for VCFC compression. These were run on different nodes, but the

NVME node had a 20 MiB L3 cache vs. only 11 MiB on the SATA node. This is counterintuitive, as one

would expect that compression from and to the NVME device would be faster. The only plausible

explanation might be that the small writes resulted in erase-before-write operations at the block

level of the NVME device within the Flash Translation Layer.

6.2 Indexing

This section covers several sets of performance related queries performed against BGZF, BCF, and

VCFC files with corresponding indexes described in Chapter 4. It also covers performance relating to

the creation of the index itself, and profiling of the novel VCFC binned index under different tuning

parameter values.

6.2.1 VCFC Binned Index Profiling

This section covers time profiling of different key phases of the index query operation for the binned

index. The reason this index is profiled separately is because of the input tuning parameter, which

controls the bin size. The operation phases investigated are searching through the index, seeking

from the start of the bin in the compressed file, and decompressing lines in the compressed data

file.

In the following figures, the index search phase (blue) represents how long the program takes

to find the appropriate bin within the index. For example, if the query is looking for a line with a

position field of P , this phase is the time it takes to search through the index to find the bin which

contains P . With smaller bin sizes, there are directly proportionally more bins to search, and so

the portion of the overall query servicing time spent on index search is higher. However, the index

search implementation uses a binary search algorithm, which only increases the number of bins

searched in a logarithmic fashion. In all cases, the index search phase was relatively small compared

to the other phases.

One phase which was intentionally omitted from each profile graph is the metadata reading

phase. The VCF metadata lines must be read in each query in order to determine the schema of the

file. This phase was omitted because the overhead is a constant time for every query.

Each bin size was evaluated with a uniform distribution of 200 position queries across the

chromosome 22 VCF file, and each query was evaluated 10 times and averaged. These tests are

meant to focus primarily on computational query phases, and not I/O performance of the storage

device, so the kernel disk page cache was not flushed between each run. For this reason, the times

in this section are not directly comparable to times in the later index timing sections.
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6.2.1.1 Single Variant Queries

Figure 6.1 and Figure 6.2 both show time profiles for queries performed with different bin sizes used

in the index on Node 1, on EXT4 and XFS, respectively. Figure 6.3 and Figure 6.4 show the same test

suite run on Node 2.

The x-axis of each of these graphs shows the bin sizes of each set of queries. The x-axis is not a

linear scale, with a smaller interval between lower x-axis values than between higher x-axis values.

This was necessary because differences between bin sizes are more visible at the lower end, due to

the inversely proportional relationship between bin size and total number of bins (e.g. for a total

input size N , N
5 is more different from N

10 than N
800 is from N

900 ). Each bar includes the average time

profile across the 200 queries, each of which itself was averaged over 10 runs. This high level of

amortization across 2000 runs for each bar provides a high degree of certainty that the profiles visible

are not significantly impacted by environmental factors, making them statistically meaningful. The

y-axis of each graph shows the time in milliseconds. Each bar represents the cumulative time of the

profile phases for one bin size, and within a bar, each colored portion represents one phase of the

time profile.

These graphs show a clear relationship between the bin size and the amount of time spent

searching from the start of that bin to the actual requested record. It may seem to be universally

beneficial to just pick a smaller bin size, however if the size of the index is an important factor to be

considered in a usage scenario, then that may not be the case. The size of the index file is inversely

proportional to the bin size, so the lowest time query shown in these figures will have a much higher

index file size than the slower queries. For the 1000 Genomes Project chromosome 22 VCF file, the

VCFC binned index with bin size 10 is 1.4 MiB, and with bin size 100 is 140 KiB, and with bin size

1000 was 16 KiB. Thus, it would make sense to pick a bin size with sufficiently acceptable query

performance, not necessarily the best, in order to balance the trade-off between performance and

storage size. All of the graphs follow the same trend. Referring to Figure 6.1, a bin size around 100

should be acceptable, as it performs well but does not increase the index size as much as a bin size

of 20 would.

In Figure 6.3 for EXT4 on Node 1 and Figure 6.4 for XFS on Node 1, we observe no discernible

difference in times between EXT4 and XFS. The index search drops off steeply and the trend becomes

almost flat after reaching a bin size of around 20, decreasing slowly over the rest of the graph. The

seek phase increases roughly linearly within each set of bin size step increments (4-100, 100-250,

250-1000). Likewise, for Node 2, the graphs for EXT4 and XFS were essentially the same. Between

the two nodes there was a notable difference. On Node 1, the lowest bin size had an average profile

time of 2.17 milliseconds while in Node 2, the lowest bin size had a profile time of 2.47 milliseconds.

This is accounted for entirely by the index search phase, which is significantly slower on the SATA

SSD than on the NVME SSD.

This is because the binary search algorithm used to search the index loads and caches index

entries into memory on demand instead of loading them all up front. Because the index is one flat

layer and all entries are the same size, an entry address within the file is accessible in a random-access
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Figure 6.1 Single variant query time profile related to index bin size (Node 1, NVME, EXT4)

pattern. The downside to using this technique is that there are a larger number of seek operations

and short reads from the file, which has can have a higher overhead. As discussed previously, SATA

does not service these short I/O operations as well as NVME does.

In Figure 6.2 and Figure 6.4, we see the difference in index search between the SATA SSD and

NVME SSD, particularly at bin sizes 4, 8, 12 before the polynomial dropoff converges to very close to

zero. Figure 6.3 and Figure 6.4 show no difference in the binned index time profile for EXT4 or XFS

on Node 2. For dense files and identical patterns of read calls, EXT4 and XFS performed the same.

Another observation is that for the higher bin sizes in these time profiles, the SATA SSD performs

slightly better (0.1-0.2 milliseconds). This is due to the line decompression phase decreasing at

higher bin sizes. This could be due to the Linux kernel using different readahead caching policies

for the two different storage devices. Linux will adaptively set the readahead cache policy based

on device statistics and application behavior. The NVME device has better IO operation servicing,

and during the seeking from start of bin phase before reaching line decompression, small reads are

being performed until reaching the desired line to start decompressing. During this phase, the SATA

drive might place more data into the readahead cache than the NVME drive, which benefits it when

it finishes seeking and finally reaches the line decompression phase.
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Figure 6.2 Single variant query time profile related to index bin size (Node 1, NVME, XFS)

6.2.1.2 Range-Based Variant Queries

The figures in this section show the same time profiles based on bin sizes as in the time profiles in

the Single Variant section above, but this time using queries ranging 5,000 base positions extending

past each start position. It takes every query performed in the single variant lookups, and obtains an

end position for the query by adding 5,000 the start position of the query. Figure 6.5 and Figure 6.6

Figure 6.3 Single variant query time profile related to index bin size (Node 2, SATA, EXT4)
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Figure 6.4 Single variant query time profile related to index bin size (Node 2, SATA, XFS)

are results obtained on Node 1 with EXT4 and XFS, respectively. And Figure 6.7 and Figure 6.8 were

performed on Node 2, using EXT4 and XFS, respectively.

The y-axis scale here is larger than in the single variant lookup profiles, because the overall query

time was larger due to more variants being decompressed and output. The phase for seeking from

the start of the bin followed the same pattern as in the single variant lookup profiles, and the index

search was also essentially constant (which is difficult to see because it comprises such a small

portion of the time, shown at the bottom of each bar). In these queries, as opposed to the single

variant lookups, the phase spent in line decompression was a much more significant portion of the

overall time.

In Figure 6.5 and Figure 6.6, we observe no difference in profile times between EXT4 and XFS on

Node 1. Similarly, in Figure 6.5 and Figure 6.6 we observe no difference in profile times between

EXT4 and XFS on Node 2. This can be explained by the essentially equivalent read performance

between XFS and EXT on the same device (see Table 6.1).

However, there was a time difference between the nodes. As in the single variant queries in the

previous section, the SATA SSD performs worse than the NVME device during the index search

phase, particularly at low bin sizes, which involve more small index entries needing to be read and

searched. Also, as in the single variant lookups, the line decompression performs better on the SATA

SSD than on the NVME SSD, particularly at high bin sizes.

In addition, the NVME SSD times range from approximately 6ms to 9.2 ms, while the SATA times

range from 5.8 ms to 8.5 ms. This could again be due to the bin size affecting the pattern of read

calls to the device during the short reads in the seeking phase, which then affects cache contents

available during the decompression phase.

There are some clearly better and worse bin sizes. The queries used to evaluate did not test every
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Figure 6.5 Range variant query time profile related to index bin size (Node 1, NVME, EXT4)

Figure 6.6 Range variant query time profile related to index bin size (Node 1, NVME, XFS)

possible query, but rather a smaller uniformly distributed sampling of possible queries. Results

may be affected by bin size choices for the queries, such that the average modulo of the query

result’s line position within the file was lower for some bin sizes than for others. This would lead

to those bin sizes performing better for that set of queries but not necessarily on average across

every possible single query. One example supporting this explanation is that there is a slight local

maximum around bin size 500 and a local minimum around bin size 100, which is a trend present

in all four of the range-based query graphs.
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Figure 6.7 Range variant query time profile related to index bin size (Node 2, SATA, EXT4)

In Figure 6.7 and Figure 6.8, which show results for EXT4 and XFS on the SATA SSD, we observe

a higher index search time than in the same query profiles on the NVME SSD device. The small bin

sizes involve more short reads and seeks, which perform better on NVME than SATA.
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Figure 6.8 Range variant query time profile related to index bin size (Node 2, SATA, XFS)
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6.2.2 Query Performance

6.2.2.1 Single Variant Queries

Figure 6.9 depicts results for Node 1 with EXT4, Figure 6.10 those of Node 1 with XFS, Figure 6.11

those of Node 2 with EXT4. Figure 6.12 those of Node 2 with XFS. Each shows the BGZIP and BCF

compression with Tabix indexing, compared to the VCFC compression with a sparse offset-as-index,

sparse external index, and the external binned index techniques. The near-horizontal lines are the

linear trend lines for the respectively colored data series. In these single variant position queries,

all three of the VCFC index strategies returned query results in roughly half of the time as Tabix for

either BCF or BGZF.

In Figure 6.9 we see the two Tabix index trend lines overlapping and averaging around 375

milliseconds, and the three VCFC index trend lines overlapping just over 200 milliseconds. The

VCFC Sparse External Index does slightly worse than the other VCFC indexes near the front of the

chromosome VCF file, but the linear trend line has a moderate negative slope does, which implies

that this index improves in comparison to the others at the end of the file. However, linear trend

lines are a limited way to compare slopes between the data series, and they are so similar to each

other in slope there is very little difference.

In Figure 6.10, which displays results for XFS on Node 1, we see that the Sparse Offset-as-Index

is slower than the other VCFC indexes, especially compared to Figure 6.9. This suggests that this

strategy performs worse on XFS than EXT4. The other indexing strategies performed approximately

equivalently. Between EXT4 and XFS on Node 1.

For the SATA results on Node 2 in Figure 6.11, the variance of data points within the Tabix with

Figure 6.9 Single Variant Lookups by Position (Node 1, NVME, EXT4)
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Figure 6.10 Single Variant Lookups by Position (Node 1, NVME, XFS)

BCF and Tabix with BGZIP series from each series’ trend line was significantly higher compared to

the absolute value of each data point, than for the same queries performed on the NVME device,

shown in Figure 6.9. There are a small number of query turnaround times that were much higher

(60-80%) than the trend line. This conflicts with observations of read time standard deviations from

Table 6.1, which show a larger standard deviation on the NVME SSD than on the SATA SSD. However,

the reads in that table are single uninterrupted reads, while these index queries involve many seek

operations as well as short variable-length reads. This suggests that NVME can service a larger

number of short I/O operations with a more reliable turnaround time (lower standard deviation)

than SATA can. The difference between the worst-case and average case was larger on the SATA SSD

than on the NVME SSD.

Figure 6.12, which displays query performance using XFS on Node 2, shows a large difference

between Figure 6.11, which displays results for EXT4 on Node 2. We observe relatively similar trend

lines for all indices except VCFC Sparse Offset-as-Index, which is slower on XFS. We also observe

significant outliers for BGZIP + Tabix, taking 150-300 milliseconds, while the series average was

between 45 and 60 milliseconds.

When comparing the Node 1 results graphs to the Node 2 results graphs we see interesting

findings. The NVME SSD on Node 1 performed roughly 5X worse than the SATA SSD on Node 2.

This is difficult to account for. It could be that the cache flushing mechanism used causes extremely

poor performance outcomes for the NVME SSD, more so than for the SATA SSD. The SSDs were also

released in different years, with the SATA SSD device being newer, which may benefit from newer

and improved internal technology.

The script which flushes the cache before each run has a vastly different runtime between the

NVME SSD and SATA SSD. Averaged over 50 runs, the flush-cache script takes an average of 1.09
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Figure 6.11 Single Variant Lookups by Position (Node 2, SATA, EXT4)

Figure 6.12 Single Variant Lookups by Position (Node 2, SATA, XFS)

seconds on the NVME SSD, while only 0.31 seconds on the SATA SSD. The NVME SSD is 1.6 TB while

the SATA SSD is only 250 GB, which could play some role in this time discrepancy, however the only

active processes interacting with these storage devices were the evaluation scripts, so no caching

by the kernel should have been taking place outside the files we were interacting with. In the case

of this 50 run evaluation of cache flush runtime, no files on either storage device were touched, so

there should be no data from those devices in either kernel page cache. This suggests that there is

a big difference in how caching is managed between the two devices, which happens at multiple
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layers, from the standard library, to the kernel page cache, to the storage device’s onboard cache.

And this difference leads to a read from the NVME SSD with a cold cache being worse than a read

from the SATA SSD with a cold cache.
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6.2.2.2 Range-Based Variant Queries

The range-based variant queries shown in this section have much higher times than the single

variant queries, because many more lines are decompressed and output.

For Node 1, Figure 6.13 displays results on EXT4, and Figure 6.14 displays results on XFS. For

Node 2, Figure 6.15 displays results on EXT4, and Figure 6.16 displays results on XFS. These show

the same query start positions as in the previous single variant queries section, but using a 5,000

base position range extending past each start position. They each show evaluations of BCF and

BGZF with Tabix indexing, and VCFC with Sparse Offset-As-Index, Binned External Indexing, and

Sparse External Indexing.

Figure 6.13 Range-Based Variant Lookups by Position (Node 1, NVME, EXT4)

For the queries on the NVME SSD device in Figure 6.13 and Figure 6.14, the VCFC Sparse External

Index and Binned External index performed roughly equivalent to the single variant queries in the

previous section. However, the Sparse Offset-as-Index technique performed worse. This is because

in order to traverse between adjacent variant records in the file, the reader must, for each line,

read an additional 16 byte header saying how far the next line is away, and then perform a file seek

operation to it. This cost was not incurred in the single variant queries because only 1 line was

requested. The Sparse Offset-as-Index technique performed particularly worse on XFS, increasing

turnaround time by approximately 20-25%. This suggests that XFS performs significantly worse

with reading and traversing sparse files than EXT4 does.

For these same Sparse Offset-as-Index queries on the SATA SSD device, the turnaround time

suffered even more. This is due to, as previously discussed in the single variant query section, the

45



Figure 6.14 Range-Based Variant Lookups by Position (Node 1, NVME, XFS)

limitations of SATA service of frequent short I/O operations such as 16 byte reads and file seeks. The

Sparse Offset-as-Index indexing strategy relies much more heavily on those than the other indexing

strategies, leading to a lower SATA performance than the other indexing strategies.

The results for the the SATA SSD device are displayed in Figure 6.15 and Fig 6.16. As in the single

variant queries for this device, we also observe that the two Tabix indexes had much higher variance

between some data points in each series and each series trend line than on the NVME devices.

Figure 6.15 Range-Based Variant Lookups by Position (Node 2, SATA, EXT4)
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Figure 6.16 Range-Based Variant Lookups by Position (Node 2, SATA, XFS)

Between Figure 6.15 and Figure 6.16 we observe a large difference for both the VCFC Sparse

External Index and the VCFC Sparse Offset-as-Index, suggesting a substantial performance cost for

sparse file traversal on XFS. This large discrepancy did not exist for single variant queries because

those perform no traversal of the file, they only look at one record location (see Figure 6.11 and

Figure 6.12). The difference in VCFC Sparse External Index times between EXT4 and XFS was much

lower than the difference between EXT4 and XFS for VCFC Sparse Offset-as-Index. This is because

the Sparse Offset-as-Index traverses more sparse file regions and file holes than the Sparse External

Index, making the cost of the XFS sparse file handling more prominent.
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Table 6.2 Index Creation Times

EXT4 NVME XFS NVME EXT4 SATA XFS SATA
Tabix BGZF 34.38 ± 0.07 34.32 ± 0.08 35.02 ± 0.07 35.08 ± 0.13
Tabix BCF 12.22 ± 0.07 12.19 ± 0.08 11.62 ± 0.05 11.59 ± 0.02
VCFC Binned External Index 3.68 ± 0.03 3.78 ± 0.05 3.24 ± 0.04 3.26 ± 0.04
VCFC Sparse External Index 10.62 ± 1.04 12.82 ± 0.69 66.76 ± 1.01 28.97 ± 7.03
VCFC Sparse Offset-as-Index 17202 32150 > 12 hours > 12 hours

6.2.3 Index Creation Time

Another area of interest is the time to create the index. When records in a dataset are added as is

common in genomic datasets, the dataset must be re-indexed in order to reflect the changes. For

both Tabix and VCFC contiguous external binned indexing, this involves re-writing the whole index

file. For the sparse index strategies, since indexing is based on file offset and any unused record

offsets are left as sparse file holes, if new records need to be added they can just be inserted into the

file holes, without disturbing or needing to rewrite any of the rest of the file.

For evaluations of index creation time, shown in Table 6.2, the 1000 Genomes Chromosome 22

VCF file was used, along with its compressed BGZF, BCF, and VCFC versions. For VCFC binned index,

indexing time for a file depends on the bin size used, and those values are shown in Figure 6.18.

Tabix does not have a mechanism for specifying bin sizes or number of bin layers for its layered

binning approach, so those two indexing times are static and recorded below. The VCFC Sparse

Offset-as-Index and VCFC Sparse External Index also use a static indexing method, so they are also

recorded below as a single value. The VCFC Binned External Index strategy uses a linear indexing

strategy as opposed to a multi-level approach, so the indexing time does not vary substantially

based on the bin size used, rather it largely varies based on the size of the input file that must be

read during indexing; for this reason that strategy is also shown below with times based on a bin

size of 100.

Table 6.2 depicts runtimes in seconds, and all filesystem block sizes are 4 KiB. The NVME and

SATA drives, and processor types and cache specifications are described in Table 5.1 of Chapter 5.

For the SATA device and the VCFC Sparse Offset-As-Index technique in the last row, the run time was

so large that performing it numerous times to average was deemed unnecessary for a comparison

to other values, which were several orders of magnitude lower.

Figure 6.17 shows the binned index creation time when entries were inserted at regular bin size

intervals, even if that same information could be inferred from the adjacent index entries. We see

observe a polynomially decreasing relation between the bin size and the time, as the number of

entries written out is the size of the position range of the VCF file divided by the bin size.

Figure 6.18 shows the binned index creation time using an implementation that removed redun-

dant information, that is, entries which contained no new information than what could be inferred

during the servicing of a query from either the entry before or the entry after. This reduced the

number of index entries significantly in the worst and average cases and eliminated the polynomial
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relation to the bin size. The y-axis range in this figure only covers only approximately 0.25 seconds,

while the y-axis in Figure 6.17 covers 1.75 seconds. The best case in the new version is not as low as

the best case in the previous version (3.25 seconds). But as discussed in Section 6.2.1 (VCFC Binned

Index Profiling) showing query turnaround times based on bin size), we want to keep the bin size

relatively low i.e, between 50 and 300. This fact reduces the difference by only comparing the data

points from Figure 6.18 against the leftmost points from Figure 6.17.

Figure 6.17 VCFC Binned Index Creation Time (Before Redundant Entry Removal)

An interesting observation during the process of writing the two sparse index files is that it is so

much slower than writing the dense index files (see Table 6.2), and a substantial amount of work is

being done by kernel threads. In other indexing methods, the work is performed almost entirely

by the user space program process with very little work being done in kernel space. However, in

the sparse index methods, the balance of work shifted into kernel space, with 2-4% core utilization

by the program process, and 90%+ core utilization by a Linux kernel kworker thread. Because this

reduced the core utilization of the indexing program, this significantly increased the time to write

the file.

This kworker represents work performed at the filesystem layer. During the writing of the sparse

files, the records are spaced out and aligned to a file offset that is a multiple of the filesystem block

size. In the Sparse Offset-As-Index technique, for every variant line, between one and four 4 KiB

blocks need to be allocated in the filesystem (see Figure 4.5). Both EXT4 and XFS also use the concept

of extents: file metadata blocks that record 1 or more contiguous data blocks. EXT4 has a maximum

extent size of 128 MiB and XFS has a maximum extent size of 8 GiB [5] [25]. Since our sparse files

cover an offset range much larger than these maximum extent sizes, in addition to allocating blocks,
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Figure 6.18 VCFC Binned Index Creation Time

at a certain interval, sparse file writes lead the filesystem to allocate an additional extent. The Sparse

Offset-As-Index method is very sparse, so it must allocate many extents. It also uses a position

multiplication factor (F) of 4 blocks (16 KiB), so at most, 8,192 VCF lines will fit in an EXT4 extent,

and 524,288 in an XFS extent. This occurs when all VCF positions differ by one (1, 2, 3, etc.), which is

uncommon. In the 1000 Genomes Project chromosome 22 VCF file, the average gap between variant

start positions is 31, so during the translation of this file to a Sparse Offset-As-Index file, on average,

an extent is created roughly every 264 lines for EXT4 and every 16,912 lines for XFS (see formulas in

Figure 6.19).

b l o c k s−p e r−e x t e n t
b l o c k s−p e r−p o s i t i o n = p o s i t i o n s −p e r − e x t e n t

p o s i t i o n s−p e r−e x t e n t
p o s i t i o n s−p e r−l i ne = l i ne s −p e r − e x t e n t

Figure 6.19 Formula for computing Sparse Offset-As-Index VCF lines per extent

This additional bookkeeping work by the filesystem explains some of the overhead during sparse

file creation. However, given the average interval between extent creations, it is unlikely to explain it

in full. In particular, it does not explain the discrepancy between EXT4 and XFS sparse file write times

in which EXT4 is substantially faster. In addition to the creation of extents, before a write to a file

offset, the filesystem must first to check if the offset is in an existing extent. This process of checking

for an extent containing the desired offset has a computational cost. EXT4 stores extents in a tree

structure with a variable branching factor, but XFS uses a list. This difference in offset-to-extent

resolution strategy could explain the large difference between EXT4 and XFS for the two sparse
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index strategies in this work, and the difference became more prominent when putting more stress

on block allocations from writing to such sparse offsets.
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CHAPTER

7

RELATED WORK

The most directly related other works to this work are Tabix, BGZF, and BCF, covered fairly extensively

already throughout this work. In addition, engineering work by many institutions is continually

ongoing in the area of genomic storage optimization in cloud data warehousing environments.

In Next Generation Indexing for Genomic Intervals [10], the authors describe the challenges

posed in servicing range based queries on large scale genomic data using traditional indexing

strategies and existing domain-specific indexing strategies. Existing strategies require expensive

file scans, or tree traversals which work well for single positional lookups but which may suffer in

lookups of larger ranges of positions. The solution developed by the authors seeks to alleviate these

issues by focusing on semantic information of genomic regions, in order for a query to quickly gain

information about a particular region (marked by a start and end position) without doing a wider

file scan.

Sparse indexing as a general method of mapping only a subset of key tuples has been used in

a variety of database technologies [23] [15] and can also be referred to as binning. However, these

sparse indexes are stored in dense files. To date, no technique has been developed for leveraging

filesystem sparse files for key-to-offset based indexing. Technologies such as QEMU [16] can leverage

sparse file support for reducing disk utilization of the backing file for guest filesystems, however

distribution of data within the sparse file is based on filesystem allocations of the guest filesystem,

not based on a deterministic translation of the object keys, which in a filesystem are file paths.

Samsung, along with other organizations, is working on a novel storage API layer enabling

key-value SSD storage through a key-value device driver as opposed to a traditional block-based

filesystem layer. This was first presented at the Storage Developer Conference (SDC) in 2017 [26]

and has been described in several technical news articles [3] [4]. This technique hashes object
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keys and maps them directly to physical sectors on the storage device, instead of going through

a filesystem tree and a file block mapping. The advantage is that an object can be queried in a

time complexity based on the length of the key (or file path) instead of via a tree walk, however a

disadvantage is that the tree layout often used to usefully organize objects is lost. The scenarios

discussed in the conference talk focused primarily on the most clear match, which is key-value

databases such as Redis and RocksDB. Indexing could be moved from the software application

layer into the hash function and corresponding hash lookup from the storage device. They showed

a clear I/O performance gain for key-value databases backed by a key-value device driver over a

traditional block filesystem. However they believe it may also be used in more general purpose

document databases such as MongoDB and object storage such as Ceph. If the performance of such

adaptations prove to be better than the traditional filesystem approach as backing stores to Ceph,

this key-value storage could be integrated into cloud storage systems such as S3 and HDFS which

are used in cloud compute tools such as Hadoop, Jupyter, and Spark.
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CHAPTER

8

CONCLUSION

The hypothesis, that a novel encoding technique for genetic variant data devised based on structure-

and semantic-aware compression and indexing can improve response times for common queries,

is justified by the observed results. The evaluations show that the line-based partial compression

technique for genotype data can provide comparable compression and improved index response

times for common use case patterns compared to existing methods, which utilize more generic, full,

block-based compression formats.

In addition, indexing techniques that place a heightened focus on minimizing I/O from storage

can perform better than indexing techniques that do not, even if the former is a much simpler

format that may seem intuitively to be missing search algorithm advantages of a more complex

index structure. Tabix uses a more complex multi-layered indexing approach that may perform well

when the index and the data file are cached into main memory, but the block-based approach leads

to more data being processed during the servicing of each query.

Another finding was that the pattern of read, write, and seek calls has a significant impact on

the performance of compression, indexing, and index querying software, and this impact can be

dependent on the storage technology used. The NVME SSD used in evaluations has a much higher

read and write bandwidth than the SATA SSD, but counter-intuitively performed worse in some

evaluations. Additionally, the filesystem used for storing data files has a large impact on the read

and write performance of both dense and sparse files, as well as on the difference in turnaround

times between the average and worst-case inputs.

After the evaluation of using sparse files and their offsets as an indexing technique based on

a semantic query to offset translation, it appears that this novel form of indexing is promising

and should be an area of additional exploration, as should the general area of key-value constant-
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time storage strategies based on a constant-time mapping of keys to physical storage locations.

Limitations around the 1:1 mapping nature of field tuples to offsets in the Sparse Offset-as-Index

technique can be addressed using a multi-layered approach in which sparse index entries point to a

second-layer of objects, which contain 1 or more record entries. However, for sorted data, like the

sorted VCF files in this work, the Sparse External Index addresses these fallbacks and also does not

have the downside of such excessive index-creation times and query time increasing in cost as much

on SATA SSD devices. Given that short read and seek I/O patterns of the Sparse Offset-as-Index

strategy suffered so much on the SATA SSD compared to the NVME SSD, it can be assumed further

that on a spinning disk for which seek latency is much higher, performance would be even more

adversely impacted.
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CHAPTER

9

FUTURE WORK

• One improvement is the size-conditional compression of the INFO column in VCF files. This

paper does not consider the compression of INFO columns, which are arbitrarily-large key-

value pairs of additional features of each variant not stored in other columns. A length header

can be injected into the line to say how long the INFO column is, so that it can be seeked over

if not needed, but its existence in the file will likely incur file reading and memory overhead

consisting of some of those unused bytes, if a read-ahead buffer enabled API is used to access

the file, and if the likely event that column data not needed crosses filesystem block boundary

into a block which contains data that is needed, resulting in the reading of physical storage

sectors that are not needed. So compressing large INFO columns would be beneficial.

The BCF file format uses a mechanism for schema-enforcement on INFO columns which can

compress the column if the key labels are long, however the amount of compression gained

through this is not small. Additional work can be performed to further leverage content format

constraints of the INFO column to reduce its size and improve queries on keys it contains. For

example, a nested dictionary encoding of key names and a map to value offsets, can provide

faster lookups on the key-value pairs, to avoid an exhaustive parsing of all keys and values

when only a small number of them are requested, as long as this additional encoding does

not significantly increase the size of the variant record in the file.

• In the discussion of run lengths in Chapter 4, there is an analysis of how many samples of the

same genotype were adjacent to each other in the file. Another optimization for compression

would be to compute similarity scores between samples, and reorder them in the column order,

so that more similar samples are adjacent to each other. This would improve compression
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in any scheme using row-oriented run-length compression, which VCFC, BCF, and BGZF do.

Given the large number of variants, computing an pairwise similarity computation for all pairs

of samples and all variants within the samples is expensive. A smaller number of important

genetic markers, which can, with some statistical confidence, distinguish superpopulation

or subpopulation groupings, could be used compute similarity scores. Fewer values would

need to be compared, and other variants tend to correlate with these population markers, so

it could be a good way to heuristically determine sample similarity.

• Other general data warehousing technologies in use in cloud-based environments often use

column-oriented storage and compression. In many use cases this can provide speed-ups by

reducing amount of data processed per query if the number of columns selected is kept small.

However in firsthand experience, data read sizes, memory utilization, and compute time spent

on servicing even filtered queries is much too large. But this does not mean that columnar

storage itself is a problem. Other investigations are needed to see if more semantically-tailored

columnar formats, indexing, and index-based query processing can lead to benefits over

row-oriented solutions in common use case patterns for genomic data. There is likely a trade-

off point, such that columnar storage always performs better when only a few columns are

selected, but row-oriented storage may be better at higher column cardinality. Overall table

dimensions and value repetition patterns must also be considered.

• Tabix was published alongside a technical description paper [12] in 2011. Since then, datasets

have grown exponentially in size, but underlying compression and indexing strategies have

not fundamentally changed. The source code for Tabix in the htslib repository [9] has been

actively modified over the years by a number of individuals, demonstrating an active interest

in improving tool support. The codebase is very robust, with changes made to improve error

detection and handling, to expand input file formats accepted to a wide variety of genetic

file formats, and to accept remote URLs as file paths which demonstrates a demand for the

capability to use these tools in networked environments where the data is not co-located

with the compute resources. Additional work can be performed to leverage the robust file and

parsing support of Tabix, and to adapt the novel indexing strategies in this paper to the Tabix

codebase.

Additionally, the BCF file format described in the VCF version 3 specification [24] employs two

strategies, row compression and block compression. The second stage of block compression

is tied to the BGZF blocked-gzip strategy that Tabix depends on. By adding purely row-based

indexing support to Tabix, BCF could be adapted to support a non-BGZF variant, which could

perform purely row-based compression and have those rows indexed directly.
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A

APPENDIX

This Appendix covers a set of useful commands and scripts used to run and collect results. The source

code created for this investigation is published online in a GitHub repository[6]. Files referenced are

hosted in that repository.

A.1 Compilation

The Makefile provides targets for 3 builds of the main VCFC command line. These are release,

debug, and timing. Release suppresses all unnecessary output except for when errors occur, pro-

viding only the VCF query results on standard output. The timing build injects timers into critical

code sections and prints time information to standard output along side query results. This is used

for profiling the code especially higher level phases of the code flow. The debug build contains a

substantial amount of debugging output and should not be used except when debugging.

There is also a uniqc target to build an executable by that name, which is based around the GNU

uniq command but modified for the use cases of collecting total counts as well as counts run lengths

on a line-by-line basis. These can be performed without an expensive sort operation beforehand

that the uniq command relies on for overall statistics, and which can write large amounts of data

to a tmp directory for its sorting algorithm’s working intermediate memory. This executable, along

with GNU grep and cut is used for the collection of genotype run length and frequency metrics.
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A.2 Development

In the dev folder in the repository, there is an Ansible playbook called ubuntu-playbook.yaml
which will configure an Ubuntu machine with the necessary library and header packages, and will

build the bgzip and tabix commands and add them to the PATH interactive bash environment

variable.

There is also a file called setup-fedora.sh which will install all of the necessary packages for

Fedora/CentOS/RHEL systems.

A.3 Evaluation

The majority of the evaluation is performed in Python, with some help from shell commands for

batching. The evaluation folder in the repository contains this code. Within that folder there is

another evaluation folder which is a python3 module by that name, which contains common

functions for running and timing bgzip, bcftools, tabix, and vcfc commands.

There is a large file named evaluation_main.py which contains a main function for perform-

ing a time evaluation run, as well as functions to record and save results, and, for each evaluation, a

function to render a graph image for the results.

There is also a query.py file which contains code to perform queries for genes. This was not

used in the evaluation in this paper because it was not exhaustive and uniform enough across VCF

files. With a vastly more comprehensive list of genes, or if it was expanded to support SNP RSIDs as

well, it could be used in place of the uniform position distributions.

A.3.1 Scripting

Inside theevaluation folder, there are two files used for batching of time evaluations,run-all.sh
for running, and graph-all.sh for graphing.

For evaluating compression times, there is a file called compression-times.py which per-

forms 10 runs of each compression program and reports the mean and standard deviation for

each.
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